
RC24877 (W0910-084) October 15, 2009
Computer Science

IBM Research Report

Text2Test: Automated Inspection of Natural Language
Use Cases

Stanley M. Sutton Jr., Avik Sinha, Amit Paradkar
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Text2Test: Automated Inspection of Natural Language Use Cases

Stanley M. Sutton Jr., Avik Sinha, Amit Paradkar
I.B.M. T. J. Watson Research Center
19 Skyline Drive,Hawthorne, NY, USA

{suttons,aviksinha,paradkar}@us.ibm.com

Abstract—The modularity and customer centric approach
of use cases make them the preferred methods for require-
ment elicitation, especially in iterative software development
processes as in agile programming. Numerous guidelines exist
for use case style and content, but enforcing compliance to
such guidelines in the industry currently requires specialized
training and a strongly managed requirement elicitation pro-
cess. However, often due to aggressive development schedules,
organizations shy away from such extensive processes and end
up capturing use cases in an ad-hoc fashion with little guidance.
This results in poor quality use cases that are seldom fit for
any downstream software activities.
We have developed an approach for automated and “edit-

time” inspection of use cases based on the construction and
analysis of models of use cases. Our models contain linguistic
properties of the use case text along with the functional
properties of the system under discussion. In this paper, we
present a suite of model analysis techniques that leverage such
models to validate uses cases simultaneously for their style and
content. Such model analysis techniques can be combined with
a robust NLP techniques to develop integrated development
environments for use case authoring, as we do in Text2Test.
When used in an industrial setting, Text2Test resulted in
better compliance of use cases, in enhanced productivity and,
subsequently, in higher quality of test cases.
Keywords-Requirements, Use Cases, Testing, Automated In-

spection, Analysis, Text2Test

I. INTRODUCTION
Ever since they were introduced by Jacobson in [1],

use cases have enjoyed popularity among business analysts
(BA) and requirement analysts (RA). BAs and RAs like
use cases because of their modularity, simplicity and user
centric approach. In practice, due to the need of BA’s and
RA’s to interact continuously with the customer, use case
descriptions are written in natural language. In the past,
this has been a hurdle for computer aided software engi-
neering (CASE) that aim to leverage use case descriptions
for automation of downstream activities such as iteration
planning, requirement validation or test case generation.
As a remedy, researchers have usually suggested use of
formal notations with pre-defined semantics for writing use
cases. Such notations, while readily consumable by the case
activities for functional analysis, create hurdles for BAs and
RAs in using use cases for communicating to customers.
Natural language, therefore, still remains the preferred way
of writing use cases. While there are guidelines that target
communication and functional properties of NL use cases,

automatic enforcement of such guidelines are largely miss-
ing. For high quality use cases we need automated analysis
techniques that validate both the linguistic style and the
functional content of the use cases.
Recent advances in Natural Language Processing (NLP)

techniques have led to a few high accuracy technologies for
interpreting natural language use cases [2], [3], [4]. In fact,
our home-grown technology discussed in [4], when mea-
sured on 57 industrial use cases, demonstrated a very high
average precision of 86.1% and an excellent average recall
of 91.3%. Such a technology enables use case contents to
be extracted and represented in a model. This model plays a
role with respect to the use case text that is comparable to the
role that an abstract syntax tree (AST) plays with respect to
a program text. An AST-like representation simultaneously
preserves syntactic and functional properties of use cases.
It exists and is accessible separately from the program text
and is available as input for any subsequent processing steps.
These steps may include such things as generation of flow
models or test cases, and they can be decoupled from the
creation of the model.
In this paper we focus primarily on the use of models of

use cases as the basis for analysis in support of development
activities. The general contribution of this work is to show
that use cases, which are substantially informal documents,
can be treated to a large extent like formal artifacts (such
as code), with corresponding opportunities for automated
processing and prospects for life cycle support in the form of
IDEs. Specifically, in this paper, we report on 1) a AST-like-
model based approach to use case validation; 2) Text2Test,
an integrated development environment (IDE) for use case
authoring; and 3) its effectiveness on automated test case
generation when applied in an industrial setting.

II. BACKGROUND, RELATED WORK AND MOTIVATION

Use cases serve two primary needs in a software develop-
ment process, especially in an agile software development
environment. They serve as a written contract between
developers and customers and they serve as requirement
documents for down-stream processes. Superior quality of
use cases should therefore serve both the communication
value and the functional value.
In order to be of any communication value, language

of a use case should generally be clear, consistent and

correct. Its style should be straightforward and simple. It
should not contain extraneous material (that is, unrelated
to the elucidation of system behavior) and it should avoid
presupposing aspects of system implementation (that is, the
use case should address what the system does, not how it
does it). In the past, researchers have attempted to address
these concerns via standards or guidelines [5], [2], [6], [7],
[8]. Common examples of such guidelines are that sentences
should conform to certain simple grammatical patterns, that
verbs should be active and have present tense, and that
descriptions of the mental states of users should be avoided.
With the exception of work by [2] these guidelines have
never been automatically enforced during use case editing.
We believe enforcing such guidelines during use case editing
are important and are of value to authors and consumers of
the use cases.
Functionally use cases should represent scenario based

requirement specification in a consistent and unambiguous
fashion. Approaches related to functional analysis of use
cases include human review of use case texts [7], [6] and
automated analysis of use case texts [2], [9], [10]. However,
the technique reported in [2] works on a structured subset of
the language which may preclude its applicability to indus-
trial use cases which are typically written in unconstrained
language, thus limiting its appeal to practitioners. Fantechi
et al. [9] use a sentence analyzer to look for lexical and
syntactic issues such as: ambiguities indicated by words like
naturally or subjectivity indicated by words such as similar
etc. The analysis used in [10] seems to be the closest in
spirit to ours. However, due to proprietary nature of the
technology, any comparison can be based only on the pub-
licly available white-papers. Based on these white-papers,
we conjecture that the use case analysis in [10] occurs at
an individual sentence level and not across the entire use
case (or across a set of use cases). Furthermore, automated
analysis of previous works may entail the construction of
a model to serve as an internal representation of the text,
but these models are generally not exposed to developers or
available for processing separately from the analysis.
Lastly, most of the reported work on defects in use cases

is from academic environments and very few, such as [9],
[11], have reported experience with industrial use cases. Of
the two, only Törner et al. report statistics on defects found
through manual inspection of automotive use cases. Fantechi
et al. only show examples of issues with the use case text.
One of our other motivation is assess the effectiveness of
our technique in industrial use cases.

III. METHODOLOGY

Our approach to assuring the quality of use cases is cen-
tered on persistent, shared models. We perform a linguistic
analysis of the use-case text to construct the model, then
analyze the model consistency and other properties. We have
adopted a model-centered approach for several reasons:

• The models provide a structure for storing information
about the use case, including both results of textual
analysis and information from other sources (e.g.,
mark-up by users).

• Models can provide a more abstract representation of
the use case than is embodied in the text. For example,
actions in a use case can be represented without regard
for the voice or tense in which they were originally
written. (Not all grammatical information is needed for
all purposes.)

• Models of use cases can be related to other models
that may be available in the context of software devel-
opment, such as domain models, glossaries, test plans,
and so on. These relationships can be exploited for uses
such as consistency checking and change propagation
(for example, [12]).

• The models can be subject to analysis. Certain infor-
mation, such as relationships between use cases, may
not be readily evident in use case texts. Additionally,
the availability of a persistent model separately from
the texts can allow analysis of the use cases separately
from the creation of the model and without requiring
reanalysis of the texts.

• Models of use cases are better suited than text as input
to many tools, such as for test-case generation [13].

• In ways that are analogous to the uses of ASTs, models
of use cases can serve as the focal point of an IDE in
which tools and services can be integrated to support
use-case development and other tasks.

Analysis of models of use cases can address “non-
linguistic” information such as structure, control flow,
dataflow, and so on. As noted, it can relate use cases to
external sources of information (such as domain models),
and it can evaluate conditions that span multiple use cases
(e.g., the mutual consistency of a set of use cases). There
are a number of ways in which such analyses can be useful.
These include the identification of concerns or problems
in the use case (such as consistency or style errors), the
collection of metrics (e.g., on use case size and complexity),
the provision of feedback for use case refinement, the
integration of use cases from different sources, and the
verification of the suitability of use cases for downstream
applications, both automated and manual.
The core of our approach to use case specification is an

interactive write-analyze-revise cycle that is analogous to the
edit-compile-debug process familiar from the development
of code. Abstractly, the author of the use case enters natural
language text into the system through an editor (or via an
import facility). The system invokes the text analysis engine
to produce a model of the use case (analogous to compiling a
program unit to produce an AST). The system automatically
analyzes the model of the use case, in conjunction with
models from associated use cases, and reports on problems

found. The problems relate to both style and content of
the use cases. The author can then refine the use case text
(“debug” it) so as to improve its quality or suitability for
various downstream uses.
In contrast to the usual practice with code, however,

we envision that use cases may be developed or modified
by people in different roles and at different stages of the
life cycle. For instance, a Business Analyst may write use
cases that are more business-oriented and that have a less
formal style, while a Test Designer may write use cases
(possibly refining a Business Analyst’s use cases) that are
more system oriented and that have a more formal style. To
support the different requirements that these different users
may have for use case quality and consistency, we allow
the predicates by which use cases are assessed to be varied
according to context. So, for instance, a Software Designer’s
use cases may have to meet certain technical conditions for
correctness of data flow, while the Business Anaylst may
care nothing about data flow but may be concerned with
understandability.
Additionally, we expect that use cases will be put to

different uses by people in different roles at different points
in the life cycle. For instance, the Business Analyst may
want to generate process diagrams for review by domain
specialists, whereas the Test Designer may have responsibil-
ity for generating test case from the use cases. The ability
to support a variety of downstream uses is one of the main
motivations for parsing the use case text into an abstract
model. Along with our prototype we have developed tools
to generate process models, generate test cases, and create
problem summary reports.

IV. TEXT2TEST
To give a more concrete view of our approach, let us

describe Text2Test, a platform for authoring use cases.
Text2Test enables an edit-time analysis and feedback sys-
tem for use case authors. Figure 1 shows a screenshot of
Text2Test. The platform provides a rich-text editor with spell
checking to support use case entry. As mentioned before,
the core of our approach to use case specification is an
interactive write-analyze-revise cycle . Text2Test supports
such a cycle by providing online analysis and feedback. The
author starts by creating a project in Text2Test. To add use
cases to the project, the author of the use case enters natural
language text into the system through an editor (or via an
import facility or via direct graphical editing). The system
invokes the text analysis engine to produce the model of the
use case (analogous to compiling a program unit to produce
an AST). The analysis is triggered automatically on creation
or update of this model. Issues found with the underlying
model are listed in the “Problems” pane, as shown in the
screenshot. It lists the feedbacks based on the analysis of
the model. A feedback includes a diagnostic of the problem
and its severity. Notice the problems, their categories and

their markers in the screenshot. The markers inform the
users of the location in the input text that cause the failing
tests. Clicking a problem, highlights the fragments of text
contributing to the error. Problem markers are also used to
generate corresponding error annotations in the editor. Using
this feedback mechanism, the author can then iteratively
refine the use case text and improve its quality or suitability
for various downstream uses.
The underlying model is presented back to the user in

multiple views, e.g., the graphical view, the outlined view,
the scenario view, and the properties view. In the graphical
view, Text2Test provides visualizations of the flow using the
Business Process Modeling Notation (BPMN) [14]. In the
outline view, each use case action is listed in a enumerated
list. In the scenario view, the multiple scenarios of executing
a use case are displayed under different tabs. In the proper-
ties view, properties are listed for elements selected in the
Explorer. The purpose of providing a multitude of views,
is to facilitate multiple stakeholders (BAs, RAs, Customer,
Designer, Developer, Tester, etc.) understand the abstract
model.

A. Stake-holder specific feedback
Use cases need to be validated for different purposes

throughout an application life-cycle. For instance, while
early in the life-cycle a Business Analyst may be interested
in checking if the use case specification is complete, he
may not be interested in knowing the data flow errors in
the specification. Such errors, however, could be of interest
to a Test Designer later in the life-cycle. Customized suites
of predicates can be chosen selectively by the author.
Figure 2 shows the feedbacks resulting from different

configurations of predicates applied to the same use case.
Notice in Figure 2(a), that when configured for a hypotheti-
cal Business Analyst, the prototype IDE returns three errors
related to problems with parsing or classifying sentence
elements, and it gives three warnings related to stylistic
concerns such as use of conditionals, complex sentences
(multiple actions), and passive voice. When configured for a
hypothetical Test Designer, the IDE provides very different
feedback (see Figure2(b)). Here we still see some parsing or
classification problems but also data-flow errors, a dangling
use-case reference, and multiple updates of an item within
one use case (an issue for our test-planning engine). The
issues of conditional statements and passive voice are not
of concern here since they may have an interpretation in
our test planner. Likewise, the unclassified action is reported
as an “info” because the test designer may understand the
implications for test-planning purposes.
Because we want to support different kinds of us-

ers/stakeholders in different development scenarios, our pro-
totype IDE deliberately does not impose any intrinsic notion
of use case consistency or completeness. Thus, it does
not require the evaluation or enforcement of any particular

Hyper-linked model elementsHyper-linked model elements

Problem markersProblem markers

Predicate Argument ViewPredicate Argument View

Error categorizationError categorization

Bolded main actionsBolded main actions

Resolved AnaphorResolved Anaphor

Action ClassificationAction Classification

Italicized actorsItalicized actors

Underlined business itemsUnderlined business items

Figure 1. The Online Analysis Environment

predicate on use cases. The predicates that are available in a
particular installation of the IDE are introduced via Eclipse
extension points and so are a configurable element of the
runtime environment. The predicates are grouped into suites,
which can be tailored to particular user roles or development
objectives. The evaluation of a predicate suite as a whole can
be turned on and off. Within a suite, the severity level of a
each predicate can be set individually (or even ignored). 1

B. Implementation and Performance

Text2Test is implemented as a rich-client application
on Eclipse (http://www.eclipse.org). The Eclipse Modeling
Framework (EMF, http://www.eclipse.org/emf/) is used to
represent the use case model. In our experience the per-
formance of the prototype is adequate to support regular,
interactive development of use cases by iterative refinement.
As an example, we analyzed a set of 16 industrial use cases
(average length 8 sentences) for 28 inter and intra use case
predicates 2. The analysis found an average of 10 errors per
use case. To complete a full analysis the IDE took an average
of 15 seconds.

1We recognize that there are issues relating to the control of enforcement
across the life cycle. These will generally involve aspects of management
and process support that are beyond the scope of our current work.
2Hardware configuration: ThinkPad T61P, Windows XP version 2.11,

Intel(R) Core(TM)) Duo CPU T7700 @2.40GHz, 790 MHz, 3.00GB RAM

V. MODEL ANALYSIS

We perform a linguistic analysis3 of the use-case text to
construct the model, then analyze the model consistency and
other properties. Our text analysis technology is described
in our previous publication [4]. Figure 3 depicts our meta-
model. The information in a use case text can be summed
up at the most abstract level in an application model. An
application model contains a model of the context and a
model of use cases. The context model contains a description
of kinds of actors and business items. Each use case in the
use case model contain a list of sentences. The sentences, in
turn, contain one or more actions initiated by some actor of
a kind described in the context model. An action may also
have a set of parameters and can be associated to actors (also
of a kind described in the context model) who receive the
effect of the action. In addition, each action has a type and
a voice (active/passive), while each parameter have one or
more roles. While the type of action determines its classifi-
cation, the role determines the relation of the parameter with
respect to the action. Currently, the permitted action types
are: INPUT, the act of providing information; OUTPUT, the
act of receiving information; CREATE, the act of creating an
entity; QUERY, the act of searching for an existing entity;

3Linguistic analysis should be seen here as an enhancer and not the
primary enabler. The models can be constructed via graphical editors, XSLT
transformations and a myriad of other techniques supprted by the Eclipse
modeling framework.

(a) Feedback to a Business Analyst (b) Feedback to a Test Designer

Figure 2. Stakeholder specific error feedback

UPDATE, the act of updating the state of an entity; DELETE,
the act of deleting an entity; DIRECT, the act of directing
another actor to perform an action; INITIATE, the act of
initiating another use cases; ACCESSCHANGE, the act of
navigating between interfaces and UNCLASSIFIED. Roles of
a parameter can be : ARGUMENT, the main argument of an
action; HELPER, the parameter helping an action; PURPOSE,
the objective of an action; etc. Some parameters can be
linked to one of the business items defined in the context
model. A statement in use case action can also be linked
to zero or more exceptions. Each exception is guarded by a
condition and contains a list of actions that must replace
actions in the parent statement if the guarding condition
is true (at runtime). Notice how the model preserves the
syntactic and the linguistic aspects (sentence boudaries,
action voices, etc.) along with the functional aspects of
the use case (sequence of pre-classified and parametrized
functions). We recognize that some downstream applications
may require additional information than what is captured
currently. The current meta-model is implemented using the
Eclipse Modeling Framework (EMF) and is amenable to
extension.

As an example, consider a snippet of a NL use case
“Withdraw Money” : The customer enters the withdrawal
amount. The ATM returns cash to the customer and changes

Sentence

Action
-type : ActionType
-isActive : boolean

Parameter
-role : ParameterRole

0..1

Exception *Condition
-expr :Expression

1

Application Model

Context Model Use Case Model Use Case

Actor Business Item

1..*

1..*1..*

11

1..*

Initiating Actor

Receiving Actor *

1..*

1..*

1..*

Figure 3. Use Case Description Metamodel

his account balance. If the balance on customer’s account is
less than the withdrawal amount, the ATM returns an error.
The application model corresponding to this text is shown
in Figure 4.

A. Reports and Predicates

Abstractly, analyses take two different forms: reports and
predicates. Reports produce arbitrary output (typically text
in some form). They may embody an arbitrary computation;
these are presumed to be focused on a model of a use
case but are not restricted to that. Reports are intended
for information that may summarize a model or describe

s1: Sentence

The customer : Initiating Actor

withdrawal amount: Parameter
-role =ARGUMENT

m: Application Model

c: Context Model

ucm: Use Case Model

withdraw: Use Case

customer: Actor

account: Business Item

ATM: Actor

s2: Sentence

e2.1:Exception

enter :Action
-type=INPUT

-isActive=TRUE

ATM : Initiating Actor

the customer : Receiving Actor

cash: Parameter
-role =ARGUMENT

return :Action
-type=OUTPUT
-isActive=TRUE

ATM : Initiating Actor

balance update process: Parameter
-role =ARGUMENT

initiate :Action
-type=INITIATE
-isActive=TRUE

ATM : Initiating Actor

error: Parameter
-role =ARGUMENT

return :Action
-type=OUTPUT
-isActive=TRUE

s2-1.1: Sentence

c: Condition
-expr= customer.account.balance < withdrawal amount

Figure 4. Instance of a Model

many collective elements in detail. Examples would be
the collection of metrics or the gathering of data on the
occurrence of errors (as used in this paper).
Predicates must produce a boolean result. Like reports,

predicates may embody arbitrary calculations that are pre-
sumed to be focused on a model of a use case but are
not restricted to that. Additionally, a predicate applies to
a particular model element, which is its principal argument,
and its result is conventionally associated with that element.
Additionally, predicates can be assigned a severity level and
interpreted as indicators of errors or other notable conditions.
So, for example, a predicate may test whether as sentence
has more than one action, violation of which may yield a
warning, or it may test whether a reference to a use case is
defined, violation of which may yield an error.
Not every condition of interest for a use case can be

evaluated automatically, but the set of interesting conditions
that can be evaluated automatically is quite large (if not
open-ended). We have implemented a range of predicates,
some of which exemplify commonly accepted standards
for use case style and content, and some of which are of
particular interest to us in relation to test-case generation.
Some examples of these conditions are as follows:
Stylistic checks for English sentences e.g., voice, use of

actions of recognized kinds, use of anaphora.
Complexity checks for the number of actions in a state-

ment, the number of statements in a use case, and so on.
Completeness checks of use case statements e.g., missing

actors and actions, missing parameters.
Structural checks for the model e.g., consistent use of

aliases, dangling use case references.
Flow checks for data and control flow e.g., attempts to

use items before they are created.
Concurrency-related checks, e.g., for possibly concur-

rent actions or possibly non-serializable behaviors
Inter-model checks to compare the actors and items

referenced in a use case to an associated domain model
Some of the information evaluated by predicates is ac-

tually determined by text analysis when the model is con-
structed and represented as annotations on model elements
(for example, the voice of actions). Other information is
computed only when the predicate is evaluated, such as the
complexity of sentences, data-flow properties, or aspects of
model integrity.
Our analysis paradigm makes no assumptions about the

conditions of interest, when those conditions should be
evaluated, or what significance should be assigned to the
results of evaluation. We believe these should be determined
according to the environment, processes, products, and over-
all context of development.

B. Model Analysis Algorithms
In this section we give examples of algorithms that we

use for model analysis.
1) Execution Paths: The ability to identify execution

paths through one or more use cases is needed both for eval-
uating certain categories of predicates (such as for data-flow
anomalies and serializability conflicts) and for generating
test cases. Our analysis to identify sequential execution paths
makes a few basic assumptions about control flow through
the use cases:
1) Statements are executed in their given order
2) Branching of control occurs at conditional statements,
with branches representing exceptions to the basic flow
of the use case; if not explicitly stated exceptions are
assumed to terminate without returning

3) A statement in one use case may invoke (“include”)
the execution of another use case, in which case the
control flow will cross use-case boundaries; upon the
termination of an invoked use case, control is assumed
to return to the invoking use case

4) All flows that start from a single use case are se-
quential, with the exception that a single statement

may concurrently invoke two or more use cases; those
use cases are considered to have potentially parallel
execution

5) Number of iterations for a loop is pre-determined
(thus, in effect, flattened)

These assumptions are shared and supported across the
text analysis, use-case meta-model, and model analysis.
Many are motivated by our prior work in test generation.
The model-analysis engine supports the computation of all
sequential paths (including cross-model paths) for individual
use cases. It can be applied iteratively to compute all of
the sequential paths for the set of use cases in a project.
Concurrency issues can be evaluated for a set of sequential
use cases (or use-case paths) by considering that they
execute in parallel. Iterative effects can be considered by
assuming the repetition of paths or path segments.
The main aspects of the use-case meta-model that are

relevant for flow computation are that
• A use case consists (mainly) of a sequence of state-
ments

• A statement consists (mainly) of a sequence of actions
• Some statements are conditional; these are represented
in the model as exception statements that are associated
to the nearest preceding non-conditional statement

• Some actions invoke one or more use cases
• Exceptions are semantically distinguishable into nor-
mal and abnormal flows (currently a dictionary based
heuristic in text analysis).

An execution path is represented as a sequence of path
elements, where a path element typically represents an action
within a statement within a use cases–for example, the
second action of the third statement of the eighth use case in
the project. Special path elements mark exceptions or use-
case invocations.4
Given the above, the basic logic for computing execution

paths for the use cases in a project has the following outline:
Compute execution paths for use cases in a project:
{ For each use case in the project {

Get the sequence of statements;
Compute execution paths for the sequence;

}
}

Compute execution paths for a sequence of statements:
{ For each statement in the sequence {

For each action in the statement {
If (the action is a "regular’’ action)

Add a corresponding element to the current path;
If (the action is an "invocation’’) {

For each invoked use case {
Add an "invocation’’ element to the current path;
Recursively continue to compute the current path
with the statements of the invoked use case;
Resume computation at this spot;

}
}

}

4The information recorded in the path elements is sufficient to link back
to the corresponding model elements, which in turn allow linking back to
the original text.

For each exception following the statement {
Create a copy of the current path;
Add an ‘‘exception’’ element to the path copy;
Recursively continue to compute the copy path
with the statements of the exception;
If(exception denotes a ‘‘normal’’ flow){

Terminate the copy path when the end of
the exception statements is reached;

Terminate the computation of that path;
}
else{

Continue adding to the copy path after the
exception-throwing use case statement;

}
}

}
}

Note that this logic does not explicitly account for concur-
rency among invoked use cases; rather, possibly concurrent
use cases are incorporated into the path in a sequence. This
is a deliberate simplification. Our main interest in computing
execution paths is in evaluating preconditions for test-case
generation and then in generating the test cases themselves.
The test cases themselves require sequential paths in which
concurrent actions have been serialized. The preconditions
for test generation thus require that concurrent actions be
serializable, so in generating paths for test cases we assume
that they are. Of course, in general concurent actions may not
be serializable, but we test for the possibility of concurrency
and non-serializable actions separately (discussed below).
Only if those conditions are satisfied do we consider the
path as suitable for test-case generation. Finally, invoked
use cases may be executed in different serial orders. To
avoid generating too many test cases we pick one particular
order to generate initially. The logic above can be adapted
to generate permutations of serial orders if necessary.
2) Data Flow Anomalies: We have defined a number of

predicates that address data flow anomalies. We consider the
identified business items as the “data.” We test for anomalies
such as references to items before they are created, deletions
of items when they have not been used, and writes of items
when they have not been read (among others).
Given a specific action on an item (that is, a particular

action in a particular statement in a particular use case), and
given a set of execution paths that include that action, it is
straightforward to recognize an occurrence of a particular
data flow anomaly. Suppose that we are interested in delete-
delete anomalies, that is, the occurrence on a path of two
operations that delete an item with no intervening operation
that creates the item. That can be evaluated by the following
logic:
Report delete-delete anomalies for a given action and
execution path set:

If (the given action is not a delete action)
End;

For each path in the given path set
For each occurrence of the given action on the path
For each subsequent action on the path {

If (the action does not refer to

the same item as the given action)
{

Continue For each subsequent action;
}
If (the action is a delete action) {

Report that the anomaly occurs;
Continue For each occurrence ...;

}
If (the action is a create action)

Continue For each occurrence ...;
}

Directly analogous logic can be used to identify some
other anomalies, such as consecutive creates without an
intervening use or delete. Generally similar logic can be
used to identify still other anomalies, such as a create not
followed by a use.5
3) Concurrency Conflicts: Concurrency conflicts, such as

non-serializable access to data, affect the quality of use
cases and the artifacts that are based on them. We would
like to identify non-serializable behaviors in use cases by
static analysis (rather than by testing), and we would like to
generate test cases, based on use cases, that do not suffer
from problems such as read-write and write-write conflicts.
In our model the possible concurrent execution of use

cases is directly represented by actions that invoke two or
more use cases. On this basis we can identify and report
possible concurrent behaviors. Beyond that, we can compute
the set of execution paths for each invoked use case. Given
these sets, we can perform comparative scans of paths from
pairs of invoked use cases, looking for possibly conflicting
uses of a particular business item.

VI. EVALUATION
Research Questions: In this section we report results

of an investigation that was carried out to evaluate the
following:
1) Does a platform like Text2Test (one that enables edit
time monitoring) ensure stronger compliance of use
cases to a set of pre-defined guidelines?

2) Does a platform like Text2Test improve productivity
of use case authors?

3) Does guideline-compliance of use cases ensure higher
quality test cases in model based test generation?

Experiment Process: The experiment was conducted in-
vivo, but a controlled experiment was simulated. The use
cases were collected from a live production environment in
which ten subject matter experts (SMEs) were writing use
cases, in plain English, describing the lowest level processes
of a standardized business process hierarchy. The SMEs
were experts in the domain of packaged application but had
limited experience with use case authoring .The experiment
was run for more than six months and consisted of two
distinct phases: in Phase I, the SMEs wrote use cases

5We realize that there are numerous static analysis frameworks available,
but the approach of encoding each data-flow predicate idividually is simple
and adequate to our current needs.

without any guideline; and, in Phase II the SMEs wrote
use cases with knowledge of a standard set of use case
authoring guidelines. During Phase II a few SMEs were
provided with the Text2Test tool. Thus, in effect, we had
two groups of SMEs in Phase II: the test group , which
used Text2Test to author use cases and the control group,
which used Microsoft WordTMto do the same. 5 SMEs were
randomly chosen to form the test group. In between the
two phases all SMEs were trained for a set of guidelines
that eventually formed the basis of compliance evaluation.
The use cases were stored along with their history in an
asset management tool. Two months after Text2Test was
introduced to SMEs a survey was conducted to record their
subjective assessments.
Metrics:Compliance of a use case to the guidelines was

measured as C = n
N , where n is the number of non-

compliant lines of use cases andN is the net number of lines
in the use case. Compliance was automatically computed for
each use case using a set of style and content predicates
implemented on Text2Test. The same set of predicates were
used to train the SMEs on use case authoring guidelines. To
measure productivity we used the subjective assessments of
the test group and also measured the rate at which use cases
were checked into the repository. The rate was measured
as: R = m

M , where m is the number of lines of use cases
checked in to the repository by a group andM is the number
of “Man-Days” for the group. The SMEs had a schedule
focussed on authoring use cases. Therefore, we did not have
to discount for “out-of-production” time. Also, only the final
check-in of use cases were counted and intermediate check-
ins were ignored. The quality of a test case generated from
the use case was measured as Q = t

T , where t is the number
of steps in the test case that had complete information and T
is the net number of test steps in the test case. The test cases
were generated automatically for the use cases using the
extracted model and a strategy of all-paths through a def-use
graph. A test step is deemed to have complete information if
it contains information about its initiator, its arguments and
its classification (as to execution or verification step). We
realize that our quality assessment of test cases is subjective.
However, since the project used the same test generation
strategy (and tool) as ours, the quality assessment reflects
on that of the project.
Results: Figure 5(a) summarizes our measurements.6 The

first row of measurements depicts our findings on the pro-
ductivity metrics. The productivity metric R declined from
Phase I to Phase II in the “Control” group; it shows the
effect of introduction of a process without a tool support. In
stark contrast, for the “Test” group, we find that there is a
gain in productivity. This shows how a good tool support can
enforce a process and may even enhance the productivity.

6The complete set of measurements and the survey results can be
obtained by e-mailing the authors.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Compliance

Q
ua

lit
y

 Quality Score of Test Cases 2 per. Mov. Avg. (Quality Score of Test Cases)

(c) Quality vrs Compliance
y = 2.1821Ln(x) + 84.167

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 20 40 60 80 100 120 140 160 180 200

Time
C

om
pl

ia
nc

e
Sc

or
e

(%
)

Test Control Log. (Test)

(d) Compliance vrs Time

0

20

40

60

80

100

120

Phase I -
Control

Phase I - Test Phase II -
Control

Phase II - Test

(a) The Summary of Measurements

TestControlTestControl

0.330.88tStat

0.030.110.360.20!/ !

98.2395.9751.2363.54!

Q

0.0020.92tStat

0.180.360.680.63!/ !

92.7773.0739.7740.23!

C

110.576.994.8105.2R

2556251917M

28,17848,1021,8021,789m

R

Phase IIPhase I
(b) The Box-Whisker Plots for Compliance Scores

Figure 5. Summary of Results

During Phase II, the “Test” group has a productivity of
110.50 lines/ Man-day, which is much greater than that of
the “Control” group: 76.96 lines/Man-day. The survey of the
SMEs that was conducted two months after introduction of
Text2Test, confirmed our productivity findings. According to
one SME, “The use of Text2Test helped achieve productivity
boost by constantly providing a feedback about compliance.”
Another SME commended the non-interfering style of the
feedbacks.
We noticed considerable improvement in “Compliance”

and “Test Quality” from Phase I to Phase II. This shows
that the introduction of guidelines were effective for both
the “Test” and the “Control” group. However, the “Test”
group has a significantly higher average compliance (a gain
of 19.70%) than the “Control” group. This demonstrates
how a proper tool support is necessary to support guid-
ance enforcement. We can rate this finding as statistically
significant because the “tStatistic” computed by performing
a two tailed heterogeneous t-test has a value of 0.02 (im-
plying only 2% chance that the “Test” and the “ Control”
group measurements belong to same population). Figure 5(b)
shows a box plot of the two groups during PhaseI & II. The
“Test” and the “Control” group populations show significant
differences in Phase II but they look similar during Phase
I. This further validates the significance of our finding that

proper tool support enhances guideline compliance.
The gain in compliance also results in higher quality

of automatically generated test cases. In Figure 5(c) we
depict a scatter plot between “Compliance” on X-axis and
“Test quality” on Y-axis. Notice that they reflect a positive
correlation: the Karl-Pearson Correlation Coefficient was
measured at 0.72. The moving average fitted on the data
shows how the test quality converges towards 100% with
100% compliance of use cases.
Figure 5(d) points to another interesting observation.

When we plot the Phase II compliance scores against the
time since the beginning of the phase we notice that for the
test group there is a logarithmic growth. No trend is observed
for the control group data. This confirms the intuition
that a tool like Text2Test can provide maximum benefit
to an un-experienced user. With time, the benefit becomes
increasingly marginal. The control group compliance vrs
time data was more erratic. Compliance in the “Control”
group depended more on the personal style of the author
and showed little change with time. This fact is further
exemplified by the relatively huge standard error (measured
as µ

σ) in “Compliance” scores for the “Control” group in
Phases I & II: 0.63 & 0.36 respectively (see Figure 5 (a)).
Phase I “Test” group std. error ”Compliance” score, was
similar to that of the “Control” group phase I. In phase

II, std. error on“Compliance” score for the “Test” group
reduced significantly to 0.18. Low std. error implies lower
variance and a general trend of improvement across the
group. Similar, observations can be made in the “Quality”
scores of the two groups in Phases I & II.
Threats to validity: The experiment design minimizes

the effects of the threats to internal validity [15]. Biases
resulting in differential selection of SMEs for the compar-
ison groups are eliminated through blocking of the effect
of the controlled variable, proficiency of SMEs, through
randomization. The effect of instrumentation is minimized
because the measurements are mostly automated and are
performed by a single person at the end of the experiment.
The SMEs were monitored through repository data on their
daily performances. This gave us a chance to observe any
effects due to History and Maturation. Post-mortem of the
repository log gave us no indication of such effects. Some
data was collected through surveys and self reporting of the
data poses another threat to the experiment design. Since
our measurements confirm our survey findings risk of self
reporting is minimized. Concerning the external validity, the
use of SMEs as subjects is a threat. Some authors of use
cases may have less experience in their problem domain
than our subject SMEs and such authors may commit more
domain specific errors than compliance related errors. While
this may affect the validity of productivity metrics, this is
not a significant threat to the compliance metric.

VII. SUMMARY, CONCLUSIONS, AND FUTURE WORK

We developed an approach for the writing of quality use
case descriptions. The approach has three main elements:

• Construction of abstract models of use cases that con-
tain both syntactic and functional information in use
case text.

• Automated analysis of models of use cases for a cus-
tomizable and extensible variety of quality properties

• Support for write-analyze-revise cycle of use case re-
finement.

The approach is embodied in Text2Test, a prototype IDE
built on Eclipse. As shown in an industrial setting, the use
of Text2Test in writing the use cases can greatly improve
guideline compliance, enhance productivity and increase the
quality of automatically generated test cases.
Future work will involve enhancement of the linguistic

analysis, addition to the set of predicates and reports, enrich-
ment of the use-case model and analyses to better support
downstream applications, and experimentation with use-case
development processes. In particular, we are interested in
experiments which evaluate the effectiveness of our use case
inspection technique on software productivity and quality.

ACKNOWLEDGMENTS
We are grateful to Mr. Palani Kumanan for his help

with Text2Test. We thank Dr. Branimir Boguraev of IBM

T. J. Watson Research Center for his help in the area of
text analysis. We thank many colleagues at IBM and its
client organizations for their participation in the evaluation
of Text2Test.

REFERENCES
[1] I. Jacobson, “Object-oriented software engineering - a use

case driven approach,” in TOOLS (10), 1993, p. 333.

[2] C. Rolland and C. B. Achour, “Guiding the construction of
textual use case specifications,” Data Knowl. Eng., vol. 25,
no. 1-2, pp. 125–160, 1998.

[3] G. Fliedl, C. Kop, H. C. Mayr, C. Winkler, G. Weber,
and A. Salbrechter, “Semantic tagging and chunk-parsing in
dynamic modeling,” in NLDB, 2004, pp. 421–426.

[4] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev, “A
linguistic analysis engine for natural language use case
description and its application to dependability analysis in
industrial use cases,” in DSN ’09, 2009, pp. 327–336.

[5] A. Cockburn, Writing Effective Use Cases. Boston, MA,
USA: Addison-Wesley, 2000.

[6] C. Karl, A. Aurum, and R. Jeffrey, “An experiment in
inspecting the quality of use case descriptions,” Journal of
Research and Practice in Information Technology, vol. 36,
no. 4, 2004.

[7] B. C. D. Anda, D. I. K. Sjøberg, and M. Jørgensen, “Quality
and understandability of use case models,” in ECOOP 2001,
2001, pp. 402–428.

[8] D. Jagielska, P. Wernick, M. Wood, and S. Bennett, “How
natural is natural language?: how well do computer science
students write use cases?” in OOPSLA ’06, 2006, pp. 914–
924.

[9] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Application
of linguistic techniques for use case analysis,” Requirements
Engineering Journal, vol. 8, no. 3, pp. 161–170, 2003.

[10] ”RavenFlow Inc.”, “”www.ravenflow.com”,” 2008.

[11] F. Törner, M. Ivarsson, F. Pettersson, and P. Öhman, “Defects
in automotive use cases,” in Int. Symposium on Empirical Soft.
Eng. ’06, 2006, pp. 115–123.

[12] A. Sinha, M. Kaplan, A. Paradkar, and C. Williams, “Re-
quirements modeling and validation using bi-layer use case
descriptions,” in MoDELS ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 97–112.

[13] M. Kaplan, T. Klinger, A. Paradkar, A. Sinha, C. Williams,
and C. Yilmaz, “Less is more: A minimalistic approach to
uml model-based conformance test generation,” in ICST ’08,
2008, pp. 82–91.

[14] OMG, “Business process modeling notation version 1.1,”
http://www.bpmn.org/Documents/BPMN1-1Specification.pdf,
2008, object Management Group.

[15] D. T. Campbell and J. C. Stanley, Experimental and Quasi-
Experimental Designs for Research. Houghton Mifflin
Company, June 1966.

