
RC24882 (W0910-132) October 22, 2009
Mathematics

IBM Research Report

The Parallel Machine Learning (PML) Framework and the
Transform Regression Algorithm

Sitaram Asur, Amol Ghoting, Ramesh Natarajan, Edwin Pednault
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

The Parallel Machine Learning (PML) Framework and the

Transform Regression Algorithm

Sitaram Asur∗, Amol Ghoting, Ramesh Natarajan, Edwin Pednault
IBM T. J. Watson Research Center

P. O. Box 218
Yorktown Heights, NY, 10598.

October 14, 2009

Abstract

Machine learning techniques are increasingly being used with massive training data sets in application
areas such as internet, retail, insurance, finance, manufacturing and life sciences. The Parallel Machine
Learning (PML) toolkit is a software framework for machine learning algorithms on high-performance
computer (HPC) platforms (such as the IBM Blue Gene/P supercomputer). Several well-known algo-
rithms have been implemented using the PML framework to date, and we specifically describe the detailed
implementation of the transform regression (TREG) algorithm, in view of its novelty, parallel scalability
and wide applicability.

1 Introduction

Massive training data sets, that range in size from tens of gigabytes to several terabytes, and
which, therefore, cannot be stored in entirety within the main memory of typical general-purpose
computing platforms, are increasingly becoming important in machine learning research. The
relevant applications arise in diverse disciplines, including for example, text mining of web cor-
pora, multimedia analysis of image and video data, retail modeling of consumer transaction data,
bio-informatic analysis of genomic and micro-array data, medical analysis of clinical diagnostic
data such as fMRI images, and environmental modeling using sensor and streaming data.

An excellent summary of scalable techniques for machine learning has been provided by
Provost and Kolluri [4], from which we glean three broad directions of relevant research. The
first approach is concerned with sub-sampling of the large data set along the case and feature
dimensions, and the focus is on the accuracy of the resulting model or model ensembles, as
a function of the sub-sampling rate. The second approach is concerned with the use of pre-
processing techniques, such as clustering, principal components and feature selection, in order
to reduce the data set size and dimensionality for subsequent analysis. The third approach,
which is the primary focus of the present paper, is concerned with the development of scalable

∗work performed during summer internship at IBM Research, currently at HP Labs

1

machine learning algorithms, particularly in the case when acceptable model accuracy cannot
be obtained by sub-sampling or data reduction, but only through algorithmic reformulation and
computational parallelization.

The Parallel Machine Learning (PML) toolkit [16] is a software framework, which provides
a consistent and scalable implementation of the common functionality and services for machine
learning algorithms. This framework is specifically designed for massive training data sets on
parallel computers, and is based on a master-worker execution model, where in general, the
worker processes execute independently in parallel on separate row partitions of the training
data set, with occasional inter-process synchronization and data exchange. In particular, as
described below, PML has many specific performance optimizations for distributed-memory
HPC platforms, which take maximum advantage of the I/O bandwidth, memory capacity and
processing capability of these platforms.

The PML framework provides a specific applications programming interface (API) for in-
corporating individual machine learning algorithms, and most well-known algorithms can be
adapted to this API with few or no modifications. Although the resulting adaptation of this
algorithm may not always be equivalent to a customized “one-off” parallel implementation, the
primary advantage of using the PML API is that all the details of the parallel task control,
inter-processor communication and data I/O are abstracted away from the algorithm developer,
and this common functionality is uniformly provided to all the enabled algorithms in the PML
framework itself.

The PML control layer is implemented using the MPICH2 message-passing library for par-
allel programming [11], which is widely supported on several parallel platforms, ranging from
multicore SMP microprocessors to LAN-based workstation clusters to distributed-memory HPC
platforms. In particular, on distributed-memory HPC platforms such as the IBM Blue Gene/P,
the preferred programming model is message-passing which has been widely adopted for scien-
tific computing applications, and most HPC vendors provide highly-optimized, custom versions
of the MPICH2 library [3]) for their computing platforms.

The basic parallelization ideas in PML, however, do not depend on either the MPICH2
library, or the message-passing model. In fact, PML was initially developed as an extensible an-
alytical engine for embedded predictive modeling algorithms in a parallel relational database [2]
based on stored procedures and user-defined functions, but with essentially the same paralleliza-
tion model. Similarly, the PML control layer can also be easily adapted to distributed computing
infrastructures such as Hadoop [7], which provide an alternative and complementary platform
to HPC and parallel databases for machine learning algorithms with massive data sets.

Several well-known machine learning algorithms have been implemented in PML, including
K-Means for clustering, PCA (principal components analysis) for feature transformation, and
SVM (support vector machines) for binary classification. The description of these implementa-
tions can be found in Appendix A of the PML User Guide [17].

In this paper, we have focused on the Transform Regression (TREG) algorithm [13] in view of
its specific novelty, scalability and wide applicability, and since in particular, the implementation
of this algorithm illustrates and exemplifies many of the capabilities in the PML framework.
The TREG algorithm has a wide variety of potential applications, which include for example,
least squares and logistic regression, counts regression, quantile regression and support vector
machines. As a consequence, the TREG implementation in PML provides a unique capability

2

for fast, flexible and accurate regression modeling for massive, high-dimensional data sets.
The outline of this paper is as follows. Section 2 is an overview of the PML programming

API and computational model. Section 3 is an overview of the IBM Blue Gene/P architectural
issues that are relevant to the important performance issues for PML on massively parallel
platforms. Section 4 describes the TREG algorithm, particularly in the context of parallelism
within the PML framework. Section 5 presents numerical results for TREG model quality, along
with performance and scalability results. Section 6 provides the summary discussion.

2 Description of PML Framework

2.1 PML Programming Interface for Algorithms

A schematic of the PML computational model is shown in Figure 2.1, which is based on the
abstract PML Model object with the virtual methods BeginDataScan, ParallelDataScan and
EndDataScan (another important virtual method MergeDataScan, is not explicitly shown Fig-
ure 2.1, but is discussed further below). The PML control layer continuously executes the loop
in Figure 2.1 until termination, and depending on the specified state for the Model object in the
control layer (e.g., Training, Calibration, Evaluation etc.), the appropriate concrete methods are
dispatched during each loop execution.

At the beginning of each execution loop , the BeginDataScan method is invoked by master
process, in order to initialize the model sufficient statistics in the Model object, which is then
propagated to each of the worker processes using the ParallelDistribute function. Each worker
process then scans a pre-defined, independent row-partition of the input data, and accumulates
its partial contribution to the required model sufficient statistics. Since in practice, each Model
object will in turn contain other embedded Model objects, and since the DataPoint object
corresponding to each concrete Model object may contain derived or computed fields that are not
part of the input data set, therefore, in the PML design, the appropriate DataPoint objects are
“pushed” to each individual Model object, as shown in Figure 2.1. At the end of the parallel data
scan, the distributed Model objects are aggregated, using the abstract method MergeDataScan
mentioned earlier, within the ParallelMerge function. The master processor then executes the
EndDataScan method, in which the accumulated sufficient statistics are processed. Further data
scans are then carried out as required, until the final model convergence is obtained, and the
execution loop is exited.

The concrete PML Model objects for the different algorithms that use this API do not require
any explicit parallel programming, and all the required parallelization details are encapsulated
within the PML control layer itself. Similarly, no explicit programming is required for the object
serialization and materialization which is required for the inter-processor object communication,
and this functionality is also obtained in a straighforward way by using and extending the PML
object hierarchy, as described below.

2.2 PML Class Library Overview

The PML class library is implemented in C++, and all PML objects are thread-safe and
exception-safe. The class library provides smart pointers and container classes for prevent-

3

Model model;
DataPoint datpt;
while(true) {

if (model.BeginDataScan()) {
ParallelDistribute(model);
while (datpt) {

model.ParallelDataScan(datpt);
}
ParallelMerge(model);
if (model.EndDataScan()) break;

}
}

Figure 1: Overview of PML Control Layer

ing memory leaks, detecting memory clobbering, and for tracking memory usage. The tracking
of memory usage is used internally in PML for footprint-aware memory management, so that ap-
plications execute within the processor memory limits, and avoid any potential virtual-memory
paging that can degrade application performance. In addition, many distributed-memory HPC
platforms do not support virtual memory on the individual node processors. For most PML
applications, these memory usage restrictions can be easily traded off by keeping the working
set size small, and instead performing additional input data scans, which is far more efficient
from a computational performance standpoint.

The PML container classes also provide support for object serialization and materializa-
tion, in binary as well as text formats (the latter being used for debugging purposes). The
object serialization/materialization interface is extensible and fully integrated with the memory
management functions, and is used for the coarse-grained, communication of objects between
individual processor nodes using the ParallelDistribute and ParallelCollectandMerge functions,
and therefore abstracts the details of the communication layer on which these functions are
implemented in the parallel platform (which is typically a message-passing layer for distributed-
memory HPC).

2.3 Feature discovery, Discretization and Statistics

In many large datasets, the range and distribution of the values of one or more categorical data
fields in the input data may not be explicitly specified in the metadata, and these characteristics
must therefore be discovered by examining the data itself. In addition, in some cases, it is often
unclear whether certain variables are intrinsically numerical, or possibly number-valued categor-
ical fields of high cardinality (e.g., address zipcodes). Finally, many machine learning algorithms
require certain distributional information for the discretization, sampling or approximation of
the individual data fields in the input data.

In PML, the processing of the input data fields to extract this range and distributional
information is carried out in a preliminary parallel input data scan, in which, for each input
data field, the empirical cumulant distribution is estimated from the sampled subset of the values,

4

and the equispaced quantiles of this cumulant distribution is then used to discretize the fields
values into bins. For each bin in this discretization, the min, max and average values of the field
values are also stored, which can be used subsequently to generate random samples from these
input fields, based on an approximation to their empirical marginal distribution. These random
samples generated from these approximations are used for example in the variable-importance
ranking computation described in Section (4.5).

2.4 Predictive Model Composition and Feed-forward Cascades

An important capability of PML, is the ability to embed one PML Model object inside another,
which enables arbitrary heirarchies or cascades of predictive models to be created. In particular,
the outputs of a predictive model based on a certain algorithm can be chained to the inputs of
another predictive model which may be based on a possibly different algorithm. An example of
this capability is provided by the TREG algorithm described in Section (4).

2.5 Cross-validation, Validation and Holdout data sets

PML supports model selection via cross-validation and model accuracy evaluation using holdout
data, which are common requirements for many machine learning algorithms. In PML, each
individual data record, which consists of a collection of input data-field values, is consistently
and uniquely mapped by the PML I/O layer to one of ncv + 2 data channels, comprising of
the ncv “cross-validation” channels, the “validation” channel, and the “hold-out” channel. The
data in the hold-out channel, which is not used for model training, provides the unbiased “test
data” estimate of the final model accuracy. The data in the validation channel is used in the
model training to estimate the accuracy and determine convergence, while the data in the ncv

cross-validation channels are used for the model selection.
The assignment of input data records to data channels is based on the data-field values in

the input data record, which, in the absence of duplicate data records, ensures a unique and
consistent mapping assignment, that does not depend on the order in which data records are
accessed, or even on the partitioning of the input data set among different processors. The
mapping assignment is based on a composite uniform hash code into the unit interval, evaluated
from the set of data-field values in the input data record; this hash-code output interval is
partitioned into a set of ncv + 2 non-overlapping bins, and the bin sizes can be adjusted to
change the proportion of the data records to be assigned to each input data channel.

An example of how individual algorithms can use this channel identifier for model selection,
estimation, and accuracy evaluation, is also described for the TREG algorithm in Section (4.1).

3 PML Performance Optimizations

The PML framework incorporates certain performance optimizations for distributed-memory
HPC platforms, including in particular, for the IBM Blue Gene/P system, whose details are
briefly described below.

5

3.1 Blue Gene/P overview

The IBM Blue Gene/P (BG/P) system is a distributed memory supercomputer [1], in which
each individual processing node is a symmetric multiprocessor (SMP) comprising of 4 individual
850 MHz PowerPC processors, each of which has private write-through L1 caches (32 KB I-cache
and 32KB D-cache), private L2 caches (seven-stream prefetching), along with a shared L3 cache
(8 MB) and 2-4 GB of shared main memory on the node. Each PowerPC 450 processor has a
dual-pipeline FPU unit that can simultaneously execute 2 fused multiply-add instructions per
machine cycle per processor, so that the peak node performance when these dual FPU units are
fully utilized is 13.6 Gflops per BG/P node. A single rack of BG/P comprising of 1024 nodes
has a collective peak performance of 13.9 Tflops and aggregate memory of 2-4 TeraBytes. The
largest BG/P configuration can comprise of upto 256 individual racks, with a collective peak
performance of roughly 3.56 Petaflops.

There are two main communication networks on BG/P, a 3-D Torus network which is used
for point-to-point and multicast communication, and a Tree network that is used for collective
communication operations such as MPI broadcast/reduce.

The Torus network has a hardware latency of less than 1 microsecond per link hop, and a
bidirectional link bandwidth of 425 MB/s (and since each node can be simultaneously sending or
receiving to its nearest neighbors on 6 channels on this torus network, the aggregated bandwidth
per node is 5.1 GB/s). On the individual nodes, the Torus network communication can be
off-loaded to a cache-coherent DMA engine, so that there is effective support for overlapping
of communication with computation on the nodes. Multi-hop message transmissions such as
broadcasts incur little or no extra overhead on the torus network due to specialized hardware-
support for dynamic cut-through and message copy-forwarding.

The Tree network has a worst-case round trip message latency of about 5 microseconds
and 850 MB/s of bidirectional bandwidth per link (since each BG/P node can be sending and
receiving simultaneously on all its 3 links on this network, the peak aggregate bandwidth per
node is 5.1 GB/s). There is no DMA engine support for the Tree network, particularly since
the communication on this network is usually global and blocking in any case.

The BG/P system has a set of dedicated I/O nodes which are used to communicate with
an external file system and host computers through a 10-Gigabit Ethernet interface. These I/O
nodes are independent and functionally different from the compute nodes, and their number is
configurable upto a maximum of 1 I/O node per 16 compute nodes, which is the configuration
with the best I/O performance. The use of the high-capacity GPFS file system on BG/P is of
special interest for I/O-intensive machine learning applications, since this file system supports
high-throughput concurrent, interleaved access to application files, and supports POSIX as well
as MPI-IO library calls.

Although BG/P applications can use a variety of programming models, the MPI message-
passing model is the preferred approach, particularly when application performance is the crit-
ical issue. In particular, the generic MPI communication primitives are customized to the
BG/P hardware by writing them in terms of the the Deep Computing Messaging Framework
(DCMF) layer for the point-to-point messaging, and the Component Collective Messaging In-
terface (CCMI) for collective communications, and the resulting hardware-optimized versions
of these generic primitives provide the best communication performance for MPI-based user

6

applications.
Application programs for BG/P are compiled using the gcc compiler, or alternatively using

the XL compilers for FORTRAN, C and C++ (however, the instruction generation for the dual
FPU units on the node processors was only supported by the XL compiler). The XL compilers
also support OpenMP directive for compiler parallelization, so that a hybrid programming model
is possible, with multithread parallelism being used on the SMP node processors, and MPI being
used for inter-node parallel communication and synchronization.

3.2 PML Model Distribution and Collection

The ParallelDistribute and ParallelCollectAndMerge functions are customized for distributed-
memory HPC platforms with a large number of processors p, so that these operations are
performed in log2 p phases, with significant parallelism in each phase. The implementation of
these collective operations is similar to that of the broadcast/reduce primitives in MPI, but with
PML-specific methods being used for matching and merging objects, and for object serialization
and materialization.

From a performance viewpoint, for large p, such an implementation of the required collective
communications, is far superior to the equivalent naive implementation in which each worker
processor directly communicates with the master processor, since the latter is essentially serial-
ized on the master processor, and is therefore clearly unsuitable for large p. Furthermore, the
individual communication steps in the former approach take place on a virtual binary-tree of
processors rooted at the master processor, and therefore the individual communication steps in
this collective operation can be scheduled to ensure a conflict and contention-free utilization of
the maximum interprocessor bandwidth and communication ports in the torus interconnection
network of BG/P.

3.3 PML Data Conversion and Data I/O

PML requires the input data files to be in the binary format, and a separate data conversion
utility is provided for other common text formats, such as comma-separated values (CSV) or
the attribute-relation file format (ARFF) used in WEKA (http://www.cs.waikato.ac.nz/
∼ml/weka/arff.html). This data conversion utility is also a parallel progam, as this otherwise
this step would be the computational bottleneck for massive data sets.

The input data file is partitioned row-wise among the processor nodes, and during each data
scan, the records in each partition are individually scanned, and the required data fields are
pushed to the corresponding model objects for updating the relevant model sufficient statistics,
as described in Section 2.1. In practice, for I/O efficiency, the input data is transferred from the
attached file system in large blocks comprising of several records, to in-memory file buffers on the
processor nodes. Furthermore, for large p, the individual partitions of the input data assigned
to each node processor are often small enough to be stored entirely within these in-memory
buffers, which obviates the need for any disk accesses after the first input data scan. The PML
Data I/O layer supports this block transfer and memory buffering of disk files for greater I/O
efficiency on distributed-memory HPC platforms.

7

3.4 PML Data Redistribution

Most machine learning algorithms implemented in PML only use the basic API described in
Figure 2.1, in which worker processes access only their independent partitions of the input data
in each data scan. However, a few algorithms (e.g., certain versions of SVM’s) require each
worker process to access the entire data set in each data scan.

In the latter case, the I/O costs can be dramatically reduced whenever the partitioned data
set fits entirely in the individual node processor memory, as described in 3.3. Starting with the
initial partitioning stored in the in-memory buffers, each data partition can be shuffled across
the set of p processors, so that at the end of the p shuffle steps, each processor has accessed the
entire data set, after the initial disk access I/O operation, only the faster internal network of the
HPC platform is used. In this way, each loop in Figure 2.1 is executed p times to effect a data
scan over the entire data set, and the only distinction is the the state in the worker processes is
retained between these p data scans, unlike in Figure 2.1, where the state of the worker processes
was initialized at the beginning, and the model objects were merged and destructed at the end
of each iteration.

3.5 Parallel Performance and Scalability

The parallel performance of PML applications on a distributed-memory HPC platform can be
characterized by two measures, viz., strong and weak scalability, whose definition and relevance
for machine learning applications is considered in this section.

If Tp denotes the measured execution time for a parallel application on p nodes, and Tb

denotes the equivalent baseline time, then the parallel speedup is defined by Sp = bTp/Tb, and
the parallel efficiency by Sp/p.

An objective measure for the baseline time Tb is the equivalent, optimized serial program
time on a single node (b = 1). However, this equivalent serial program is often not available
for performance benchmarking, and even when available, the execution time may be too long
for the massive data sets of interest. For these reasons, in practice, the baseline performance
is often obtained using the parallel program itself, with the smallest possible number of nodes
that yields a reasonable execution time. On Blue Gene/P, for many of the data sets that we
have examined, this baseline Tb is typically obtained with 16 or 32 nodes. The definitions of the
parallel speedup and parallel efficiency are then based on extrapolating the baseline performance
from b nodes to a single node.

For the strong scalability metric, the data size and various algorithm parameters are held
fixed as p is increased, so that the memory requirement per node decreases. In contrast, for the
weak scalability metric, the data size is also increased as p is increased, in such a way that the
memory requirement per node remains fixed.

The strong scalability analysis is relevant when p is increased in order to reduce the execution
time for a given problem of fixed size. Here, in the ideal case, the speedup Sp will be linearly
proportional to p, but the relative increase in the cost of the serial fraction of the problem, as
well as the increased overhead of communication, will lead to Sp eventually leveling off, and even
decreasing, as p is increased. In certain cases, there may be an apparently anomalous increase
in Sp, which is usually attributable to the dramatic improvement in the node computation
peformance as the data partitions on each node become small enough to fit entirely into a

8

higher level of the processor storage heirarchy (e.g., main memory for disk based data, or the
processor cache for main-memory based data, as the case may be).

On the other hand, the weak scalability analysis is relevant when p is increased, so that
larger problems can be modeled in a fixed execution time. For weak scalability, in the ideal
case, the speedup Sp stays close to 1 as p is increased, and although the ratio of communication
to computation remains fixed in a weak scalability analysis, the increased latency of global
synchronization, and the decrease in the bisectional bandwidth of the communication network,
as p is increased, will invariably lead to Sp dropping off below unity.

4 Transform Regression

The TREG algorithm (Pednault [13]) is described in this section, with an emphasis on its appli-
cability to a broad class of regression problems for massive data sets using the PML framework.

4.1 Overview

The input data record for regression modeling is denoted by {x, y}, where x = [x1, x2, . . . , xM],
and the covariates xj are such that xj ∈ R for continuous numeric features, or xj ∈ τj of
cardinality |τj | for categorical features. Similarly, y denotes the response field, which can take
values in R for ordinary, median, robust and quantile regression, in the set {−1, 1} for binary
classification and logistic regression, or in the set of non-negative integers {0,N+} for Poisson
regression.

The collection of N input data records in the ncv + 1 folds of the cross-validation and
validation channels, denoted by {yi, xi}N

i=1, is the training data for obtaining the regression
model. The regression function f̂(x) for the desired response mean E(y|x) is then obtained by
minimizing the appropriate loss function over this training data,

f̂(x) = arg minfL(f), (1)

where

L(f) = N−1
N∑

i=1

L(yi, f(xi)). (2)

Since the regression function f̂(x) from (1) and (2) may overfit the data, an unbiased estimate
of the resulting model accuracy is obtained by re-evaluating (2) on the NH data records in the
hold-out data channel.

Table (4.1) shows the loss functions L(f) for several applications, which include least-squares,
median and robust regression, binary logistic regression, SVM-based binary class estimation,
poisson regression and quantile regression. The loss functions in Table (4.1) are in all cases,
convex functions of the argument f over which the optimization in (2) is performed.

4.2 Motivation

In order to motivate the TREG algorithm, we consider Friedman’s Gradient Boosting (GB)
algorithm [6, 9], in which the regression function f̂(x) in (2) is obtained as a stagewise expansion

9

Response Type and Range Loss Function, L(y, f)
Least Squares regression, y ∈ R (y − f)2

Median regression, y ∈ R |y − f |

Robust regression, y ∈ R
{

(y − f)2, |y − f | < δ,
δ(2|y − f | − δ), |y − f | ≥ δ

Logistic two-class probability, y ∈ [−1, 1] log(1 + exp(−2yf))

Poisson regression, y ∈ {0,N+} −yf + exp(yf)

SVM (two-class), y = {−1, 1} max(0, 1− yf)

τ -Quantile regression, y ∈ (−∞, +∞)
{

τ(y − f), y − f > 0,
(τ − 1)(y − f), y − f ≥ 0

Table 1: Loss functions used in Transform Regression

of the form

fT (x) =
T∑

t=1

αtgt(x; θt). (3)

The functions gt(x; θt) in (3), which are often termed “weak learners” in gradient boosting termi-
nology, are typically selected from a family of low-order adaptive basis functions parameterized
by θt.

The stagewise computation of (3), as shown in Figure 4.2, consists of a two-step procedure
in each stage. In the first step, the parameters θt are estimated from a least squares regression
fit (4) to the pseudo-residuals of the loss function (2) evaluated at the previous stage. Then, in
the second step, the coefficient αt in (3), is obtained from a univariate line-search optimization
(5). The case of the squared-error loss function in Table (4.1) is special, since at each stage, the
pseudo-residuals rt,i are exactly the usual stage residuals yi− ft(xi), and the optimal coefficient
αt is exactly 1.

The following four aspects of the GB algorithm ([6]) are relevant for motivating the TREG
algorithm.

First, the stage basis functions g(x, θt) in (4) are themselves regression models obtained from
the stagewise squared-error loss function (irrespective of the overall loss function (2), which is
typically chosen from Table (4.1 based on the specific application). The use of the stagewise
squared-error loss function is computationally advantageous since the required g(x, θt) can be
computed in a rapid, modular fashion. Typically, the computed stage basis functions take a
very simple form, e.g., regression stumps of small depth, in which the parameters θ correspond
to the split conditions and response mean estimates in the leaf nodes of the regression stumps.
The stagewise squared-error loss function in (4) implies that g(x, θt) is the specific member of

10

Initialization: Let f0(x) = 0, t = 0.

Iteration: For t = 1 to T , let rt = (∂L(f)/∂f)ft−1(x) denote the stage pseudo-residuals.

1. Compute the stage basis function gt(x; θt) from the least squares problem

θt = arg minθ

N∑

i=1

(rt,i − gt(xi; θ))2. (4)

2. Compute αt by solving the univariate optimization problem

αt = arg minα

N∑

i=1

L(yi, ft−1(xi) + αgt(xi; θt)). (5)

3. Set ft(x) = ft−1(xi) + αtgt(x; θt), t = t + 1 and repeat.

Termination: Final model f(x) = fT (x).

Figure 2: Overview of Gradient Boosting algorithm

the stage basis-function family that is maximally correlated with pseudo-residual evaluated at
the previous stage t−1. However, one disadvantage of using regression stumps as the stage basis
functions is that even the simple response surface which just has a linear dependency on the
covariates, requires a large number of regression stump basis functions in (3) for a satisfactory
model fit.

Second, the univariate line optimization step in (5) does not have to be solved to optimality,
as the subsequent stages in (3) can always reintroduce the same basis function, so that in this
sense, the GB algorithm is ‘self-correcting.” In addition, the use of sub-optimal values for αt

may even be desirable, particularly in the earlier stages, in order to avoid early overfitting in
(3). This is very similar to the use of explicit shrinkage factors, which has been mooted in [6]
to avoid early-stage basis function overfitting.

Third, in Figure (4.2), the coefficients α1 through αt−1 in (3) are not readjusted, when the
new basis function g(x, θt) is added to the model in stage t of Figure (4.2). This is in contrast with
other statistical stagewise regression procedures, where the coefficients of the existing regressors
are always readjusted to reflect the addition or removal of regressors from the model.

Fourth, the choice of the basis function family g(x, θ) potentially leads to systematic errors
in the model fit, particularly in the case when the regression stumps are used, and where the
response surface has significant covariate interaction effects. For example, in (3), regression
stumps can only model additive effects in the covariates, and trees of depth 2 are required for
modeling first-order covariate interactions. For a given regression problem, the nature of the
response surface is invariably unknown, so that some experimentation is required in order to
find the right basis function set for gradient boosting. Similarly, if the “correct” basis function
family g(x, θ) for the required regression surface is not used, then the final gradient boosting

11

model will have systematic errors that cannot be removed by simply adding more stages to the
GB expansion (3).

The TREG algorithm is similar to the GB algorithm Figure (4.2), but with differences in
these four aspects mentioned above.

4.3 TREG Algorithm Description

There are many variations and subtleties in the implementation of the GB algorithm [5, 6, 15],
such as the choice of expansion basis functions, the use of learning rate parameters and data
sub-sampling for the stage computations, and the tuning of the finer details of the line-search
optimization procedures. In general, however, the overall GB procedure is quite unsuitable for
parallel computing with massive data sets.

The two main reasons for this are the fine-grained nature of the computations performed in
each individual stage, and the inherently sequential and I/O-inefficient nature of the stagewise
expansion procedure. Therefore, the TREG algorithm may be viewed as a modification which
provides a regression model of equivalent accuracy in most cases, while addressing the parallel
computing limitations in two ways; by increasing the computational granularity of each individ-
ual stage, and by reducing the number of overall sequential stages in the stagewise expansion.

Therefore, in TREG, the “weak learner” basis functions of the GB algorithm are replaced
by more complex “multivariate smoother” basis functions, which reduces the overall number of
stages in (3), since each TREG stage is potentially comparable to several stages of the equivalent
GB formulation. The specific multivariate smoothers used in TREG are carefully chosen to avoid
any possibility of overfitting in the computation of these more-complex stage basis functions, and
to have sufficient computational granularity so as to permit an efficient parallel implementation
of the stage calculations. In summary, in the TREG approach, the choice of the stage basis
function in the form of a multivariate smoother, makes it is possible to obtain an accurate
regression model with far fewer training data scans, and with far greater overall parallelism,
than would be possible in the fine-grained and sequential GB algorithm.

The specific stage basis function used in TREG relies crucially on the ability of PML frame-
work to set the outputs of predictive models as “computed fields” in an “extended” input data
record, which can then be used as dynamically-generated features for other predictive models,
which is used in the TREG algorithm, as described below.

The GB algorithm itself is an example of a feed-forward cascade, albeit with a very simple
structure, in which the output of the predictive model at the previous stage t− 1 (or more cor-
rectly, the pseudo-residual based on this output), is taken as the response variable for generating
the basis functions at stage t. In TREG, in addition to a similar usage of the previous-stage
output, all the previous-stage model outputs are also used in stage t as additional explana-
tory variables, so that the final TREG model involves a more complex feed-forward cascade of
composite model transformations compared to the GB algorithm.

The stagewise basis functions used in TREG are explicitly given by

gt(x,λ) =
M∑

j=1

λjhtj(xj ; f1, . . . , ft−1) +
t−1∑

j=1

λM+j ĥtj(fj ; f1, . . . , fj−1), (6)

12

which is a linear combination of certain M + t − 1 sub-basis functions with coefficients λ =
{λj}M+t−1

j=1 . Each sub-basis function in (6) is conceptually similar to the regression stumps used
as stage basis functions in the GB algorithm. However, piecewise-linear regression stumps are
used in (6), which subsumes the piecewise-constant regression stumps used in the GB algorithm
as a special case, and is especially useful for succintly modeling linear covariate dependencies
that are common in regression problems, for which a large number of basis functions would be
required in the GB algorithm for equivalent accuracy.

The notation htj(xj ; f1, . . . , ft−1) in (6) denotes a piecewise-linear regression stump, which
is computed using the pseudo-residual of the loss function computed at the previous stage
t− 1 as the response, and in which xj is the only explanatory variable used for splitting, while
{xj , f1, . . . , ft−1} are the only explanatory variables allowed in the segment regression models
(however in the case of categorical xj , this variable is used only as a splitting variable, and is
not included in the segment linear regression models). Therefore, for continuous xj , the relevant
sub-basis function in (6) can be written in the form

htj(xj ; f1, . . . , ft−1) =
Kt∑

k=1

(ak0j + ak1jf1 + . . . + ak(t−1)jft−1 + aktjxj)I([xj ∈ Γt,k]), (7)

where Kt is the number of leaf-node segments, Γt,k denotes the k’th leaf-node segment, and
I([xj ∈ Γt,k]) denotes the indicator function for leaf-node membership (the set of segments
{Γt,k} is a mutually-exclusive, collectively-exhaustive univariate partition of xj at stage t). For
categorical xj , these sub-basis functions (7) have the same form but will exclude the term with
coefficient aktj . The required piecewise-linear sub-basis functions (7) in (6) can be computed
independently in parallel, as described further below.

The sub-basis functions (7) are chosen so as to reduce the number of stages in the stagewise
expansion (3). First, the use of the outputs of the previous (t− 1) stages in (3) as explanatory
variables in the segment regression models {htj(xj ; f1, . . . , ft−1)}M

j=1 in (7), implicitly “orthog-
onalizes” against all the previous-stage, sub-basis functions, and in this way eliminates redun-
dancy from the expansion (3). Second, as a consequence of this, these previous-stage model
outputs are included as splitting variables for {ĥtj(fj ; f1, . . . , fj−1)}t−1

j=1 in (7), so that while the
previous-stage coefficients of these sub-basis functions in (3) are unmodified, there is an implicit
readjustment in the current stage that reflects the addition of each new sub-basis function gt(x)
at stage t to the overall model expansion.

These two refinements mentioned above, can be motivated by analogy with stepwise linear
regression procedures, in which new regressors are implicitly or expliicitly orthogonalized against
the existing regressors to avoid introducing redundant or collinear features into the regression
model. Furthermore, in these stepwise regression procedures, the coefficients of existing regres-
sors are also re-adjusted to reflect the addition (or removal) of regressors from the model. Thus,
(6) is a nonlinear generalization of these ideas, which can lead to a substantial reduction in
the overall number of stages in (3), with concomitant savings in the I/O and computational
costs, since in fact, the required stage computations for these refinements can be implemented
in parallel, without any extra data I/O overhead.

In particular, the second refinement above is of particular interest in reducing the systematic
errors for response surfaces f(x) with potential non-additive, covariate interaction effects that

13

may not be directly captured by the untransformed set of piecewise-linear basis functions used
in (3). In TREG, the resulting systematic errors can be reduced or even eliminated by incor-
porating the entire set of previous-stage basis functions as splitting variables in the sub-basis
functions {ĥtj(fj ; f1, . . . , fj−1)}t−1

j=1 at stage t, which not only provides a mechanism for implicit
readjustment of the coefficients of the previous stage basis function {f1, . . . , fj−1}, but in ad-
dition, the piecewise-linear regression tree transformations of the previous stage basis functions
implicitly introduces cross-product terms into the regression function corresponding to the non-
linear transformation of the sums of previous stage basis functions in (3). The resulting ability
of (3) to model non-additive covariate effects that may not have been explicitly included in the
the stage basis functions has been illustrated in (Pednault [13] using a synthetic example, and
a beuristic explanation for this property was given by analogy between (3) and the form of the
universal approximating functions in the Kolmogorov Superposition Theorem (a similar analogy
has also been used to motivate the form of multi-layer neural networks in Hecht-Nielsen [10]).
The use of input features that incorporate nonlinear transformations of the previous stage out-
puts in each stage in (3), and the resulting ability of this expansion to model regression functions
involving complex variable interactions, is the rationale for the name of the TREG algorithm.

Initialization: Let f0(x) = 0, t = 0.

Iteration: For t = 1 to T , let rt = (∂L(f)/∂f)ft−1(x) denote the stage pseudo-residuals.

1. Compute the M + t − 1 stage sub-basis functions (7), {htj(xj ; xj , f1, . . . , ft−1)}M
j=1

and {ĥtj(fj ; f1, . . . , fj−1)}t−1
j=1 with rt as response, using Section (4.4.1)

2. Compute the stage basis function (6), gt(x, λt) by solving the least-squares problem

λt = arg minλ

N∑

i=1

(rt,i − gt(xi,λ))2, (8)

using Section (4.4.2).

3. Compute αt by solving the univariate optimization problem

αt = arg minα

N∑

i=1

L(yi, ft−1(xi) + αgt(x,λt)), (9)

using Section (4.4.3).

4. Set ft(x) = ft−1(x) + αtgt(x,λt), t = t + 1 and repeat.

Termination: Final model f(x) = fT (x).

Figure 3: Overview of Transform Regression algorithm

The initialization and termination of the TREG algorithm Figure (3), along with the three
main steps in the iteration, comprising of the computation of the sub-basis functions (1), the

14

computation of the stage basis function (8), and the line optimization step (9), are all individually
described below.

4.4 TREG Expansion: Initialization and Termination

The expansions in Figure (3) can be initialized in alternative ways besides f0(x) = 0. For
example, in the least squares regression application, f0(x) can be set to the unconditional
response mean in the training data. In our implementation of TREG, f0(x) is taken as the linear
regression model based on the continuous explanatory variables, which can be computed as a
“side-effect” of the initial scan over input data which primarily for estimating the distributional
properties of the individual input data fields (this initial data scan is required for category
discovery, and for discretizing the continuous fields for the segmented tree algorithms used in
subsequent stages as described in Section (4.4.1)).

Similarly, several alternative criteria can be used for the terminating the stagewise expan-
sion in Figure (3), including user-specified criteria such as the maximum number of stages, or
the overall computational time. The preferred termination criterion, however, is based on the
estimates of the cross-validation loss (2) and the variance of this loss, which are obtained at each
stage during the expansion, and statistical significance tests can be used to determine whether a
given sequence of successive stages has lead to no significant decrease in this loss. The expansion
is then terminated and the stagewise expansion is pruned back to the number of stages with the
minimum cross-validation loss estimate.

4.4.1 Details of Sub-basis Function Computations

In PML, continuous-valued features xj are pre-discretized into intervals after estimating certain
“knot” points in the range of xj (by default, these knot points are based on the equi-spaced
quantiles of the empirical cumulative distribution of xj), so that each segment Γt,k in (7) is then
a collection of contiguous intervals in this discretization. For categorical-valued variables xj , the
feature values are unordered, and so each segment Γt,k is an arbitrary collection of one or more
category values in xj .

The computation of the stage sub-basis functions htj(xj ; f1, . . . , ft−1) (7) is shown in Fig-
ure 4, where the final segmentation Γt,k along with the corresponding segment linear models is
generated in a single pass over the training data using a parallel version of the Linear Regression
Trees (LRT) algorithm described in [14]. This parallelization of the LRT algorithm using the
PML API requires two extra steps, as shown Figure (4), and provides an illustrative example of
how existing serial machine learning algorithm can be incorporated into PML with some simple
modifications.

In Figure (4), the range of xj is assumed to be pre-discretized into the intervals ∆xjl =
(xj(l), xj(l+1)}). The data fields required for computing the LRT model corresponding to htj(xj ; f1, . . . , ft−1)
are denoted by ξt,j = {xj , f1, . . . , ft−1, rt} which consists of an input data feature xj and the
computed features f1 . . . ft−1. The response for each of these individual LRT models is the
pseudo-residual from the previous stage rt.

The LRT algorithm heuristically minimizes the negative log-likelihood for the linear Gaussian
model in the final segmentation Γt,k using the following procedure. For a given interval ∆xjl in
the pre-discretization of xj , the required sufficient statistics for the linear Gaussian model are

15

the sample counts Ntjl, and the multivariate sample means µtjl and covariance Stjl, computed
over the relevant data fields (rt, ξt,j) for all the data records whose values xj are in the interval
∆xjl). These sufficient statistics, which are computed separately for each of the ncv + 2 data
channels, can be obtained in a single input data scan. The only modifications required in the
data-parallel case, are that each node updates a local copy of the sufficient statistics over its
partition of the input data records, and these partial values are then combined to obtain the
global sufficient statistics for the entire data set. The updating and the merging formulas that
are required for the parallel computation of the sufficient statistics for µtjl and Stjl are given in
[14].

The final step in the evaluation of the sub-basis functions, which is typically very fast, is
performed serially on the master node. The initial segmentation is taken to be each interval
∆xjl in the pre-discretization of xj , and the incremental cholesky-based algorithm for solving
the normal equations as described in Section (4.4.2) (see also [14]), is used to obtain the linear
models within each segment. The sufficient statistics in the ncv cross-validation channels is
used to estimate the degrees of freedom for each segment linear regression models. The model
coefficients {alsj}t+1

s=0 with required degrees of freedom, as the model variance σlj for each segment
∆xjl, is then obtained from the aggregated data in the ncv channels. The sufficient statistics
in the validation-fold channel then provides an unbiased estimate for the squared residual error
ρ̃jl, so that the segment contribution of negative log-likelihood for the linear Gaussian model is
given by

Gtjl =
1
2

[
log 2πσ2

jl +
ρ̃jl

σl

]
, (10)

using the estimates σ2
jl and ρ̃jl for the model variance squared residual error for the segment

linear regression model.
Starting with this initial segmentation, a series of pairwise bottom-up combine steps is then

performed to obtain the final segmentation in (7). For continuous xj , the sufficient statistics of
adjacent segment pairs are combined if the resulting segment leads to a reduction in the negative
log-likelihood of the collection of segment linear Gaussian models. Specifically, if two adjacent
segments are denoted by subscripts L and R, and their combined segment by L+R respectively,
and if the corresponding negative log-likelihoods for the linear Gaussian model are denoted by
GL, GL and GL+R respectively, then

∆G = N(L+R)Gtj(L+R) − (NLGtjL −NRGtjR), (11)

is evaluated and the segment pairs for which ∆G is maximally negative are combined. This
bottom-up combine step typically does not increase the overall degrees of freedom in the col-
lection of segment models, e.g., if nL, nR and nL+R denote the degrees of freedom in the linear
models in the respective segments, then typically nL+R ≤ nL+nR+1. However, occasionally the
number of degrees of freedom increases with nL+R > nL +nR +1, and in that case, the segment
pair is not considered for combining. This bottom-up combine process is repeated successively
until there is no further decrease in ∆G, which then yields the required final segmentation Γt,j

for the feature xj in (7).
A similar bottom-up combine procedure is used if xj is a categorical feature, where starting

with the initial segmentation corresponding to each category level in τj , any two segments can

16

be succesively combined in the bottom-up combine procedure (unlike the continuous feature
case discussed above, where only adjacent segment groups in the discretization of xj could be
considered for combining).

Although the number of initial segment models in the LRT algorithm for obtaining all the
sub-basis functions in (7) can be very large, the dimensionality of the individual segment linear
regression models is quite small. Specifically, the number of features for each initial segment
model is the dimension of ξt,j or t + 2, where t is the number of previous stages in the TREG
algorithm. Typically, the maximum number of stages in TREG is 5 to 10.

B̆eginDataScan: Master node - For each initial segment {∆xjl}Lj

l=1 of each feature xj , initialize
the sufficient statistics {Ntjl, µtjl, Stjl} required for the LRT model for the response rt.

P̆arallelDistribute: Distribute the model ft−1(x), and the initialized segment sufficient statis-
tics.

D̆ataScan: Worker nodes - Scan the input data records, and update the local copies of the
sufficient statistics from the data values xj of each field in the input data record.

P̆arallelMerge: Merge and aggregate the sufficient statistics from the worker nodes on the
master node.

ĔndDataScan: Master node - For each feature xj , starting from the initial segmentation
{∆xjl}Lj

l=1, obtain the final segmentation Γt,j using the bottom-up combine process -

1. For each segment ∆xjl, estimate the number of degrees in the linear regression model
from the data in the cross-validation folds.

2. For each segment, combine the data in the cross-validation folds to estimate the
regression coefficients and model variance.

3. For each segment, estimate the squared error from the data in the validation foldand
compute the negative log-likelihood for the linear Gaussian model G.

4. Combine any pair of admissible segments that lead to the maximum decrease in the
negative log-likelihood for the linear Gaussian model in the combined segment.

5. Stop when there is no further improvement from combining and exit with the final
segmentation Γt,j .

OUTPUT: For each feature xj , the final segmentation for the sub-basis function htj(ξt,j) is
given by Γt,j .

Figure 4: Parallel one-pass algorithm for the piecewise-linear regression stumps used for the
sub-basis function computation (7) in TREG.

17

4.4.2 Details of Stage Basis Function Computations

Once the sub-basis functions are computed as described above, the coefficients {λj}M+t−1
j=1 in (6)

are obtained from the least-squares model (8).
The data fields required for (8) are given by ηt = {{ht,j}M

j=1, {ĥt,j}t−1
j=1, rt} (these are all

computed fields in terms of the sub-basis functions in Section (4.4.1) above). The required local
copies of the sufficient statistics are updated in a parallel data scan, and then merged into the
global sufficient statistics on the master node. This sequence is steps is exactly the same used
for the independent segment models in the LRT algorithm Figure (4), unlike the numerous but
small-dimensional linear regression models being solved in that case, here there is only one linear
regression model of potentially very large dimension.

The incremental Choleski factorization procedure described in [14] is used for the solution
of least-squares problem, and this procedure uses the sufficient statistics in the cross-validation
folds to estimate the number of degrees of freedom to be used in the linear regression model. For
each cross-validation fold, starting with a null model, a sequence of nested models is obtained
by using a greedy forward-selection procedure, in which features are sequentially added to the
model in order to best reduce the regression loss (8). The minimum of the cross-validation
estimate of the loss then determines the number of degrees of freedom in the linear model. A
variant of this is to select the degrees of freedom corresponding to the smallest model with a
cross-validation loss estimate that is within one standard error of the best value (the 1-SE rule),
and this incorporates some shrinkage to eliminate the possibility of overfitting while obtaining
stage basis function gt(x, λ) itself. Finally, the coefficients of the linear regression model with
the specified number of degrees of freedom is then estimated from the combined data on the
cross-validation folds.

4.4.3 Line Search Optimization Details

For the squared-error loss function in Table (4.1), the line optimization step (9) is not required,
since the optimum αt is always 1. For the other loss functions, (9) is equivalent to determining
the coeffient αt in a regression fit for a linear model with offset ft−1(x) with explanatory feature
gt(x, λt). In the case of the logistic or the poisson loss functions, this amounts to solving a
Generalized Linear Model for estimating the parameter αt. A more general approach, that is
applicable to all loss functions is univariate line-search optimization, for which robust algorithms
have been extensively developed in the nonlinear optimization literature, and can be readily used
with the GB algorithm [6], although for massive data sets, these algorithms will require multiple
input data scans.

In TREG, the two approaches that have been used to estimate αt, which can be implemented
with just a single input data scan, although with multiple data scans, these estimates can be
further refined if required.

The first approach, termed the “one-step multi-α” method, the objective function (9) is
evaluated on a grid of K values {αk}K

k=1 (typical values of K are 100), and αt is chosen as the
minimizer from this set,

αt = arg minαk

N∑

i=1

L(yi, ft−1(xi) + αkgt(xi,λt)). (12)

18

B̆eginDataScan: Master node - For the linear regression model with rt as response, and ηt =
{{ht,j}M

j=1, {ĥt,j}t−1
j=1} as explanatory fields, initialize the sufficient statistics {Nt, µt, St}.

P̆arallelDistribute: Distribute the models ft−1(x), the models ηt for the sub-basis functions,
and the initialized sufficient statistics.

D̆ataScan: Worker nodes - For every data record, update the local copy of the sufficient
statistics.

P̆arallelMerge: Merge the updated local sufficient statistics to obtain the global sufficient
statistics.

ĔndDataScan: Master node -

1. Compute a sequence of nested linear regression models from the data on the cross-
validation folds and estimate the optimal number of degrees of freedom from the
cross-validation loss.

2. Compute the linear regression model with the optimal degrees of freedom using the
aggregated data on the cross-validation channels.

OUTPUT: The final linear regression model for gt(x,λ).

Figure 5: Parallel one-pass Linear Regression algorithm used for the basis function computation
(8) in TREG.

19

The second approach, termed the “one-step Newton” method, can be used for twice-differentiable
loss functions (2), which require the derivatives of L(f) (2) evaluated at α = 0, given by,

Lα(ft−1) =
N∑

i=1

(
∂L(yi, f)

∂f

)

ft−1

gt(xi,λt),

Lαα(ft−1) =
N∑

i=1

(
∂2L(yi, f)

∂f2

)

ft−1

gt(xi,λt)2, (13)

using which, the one-step Newton estimate is given by

αt = − Lα(ft−1)
Lαα(ft−1)

. (14)

The “one-step Newton” is generally preferable to the the “one-step multi-α” when applicable,
as the selection of the initial set of grid values {αk}K

k=1 for the function evaluation in (12) can
be quite arbitrary.

B̆eginDataScan: Master node - Initialize the scores Lα(ft−1), Lαα(ft−1) in (13).

P̆arallelDistribute: Distribute the current model state ft−1(x), stage basis function gt(x, λt)
and initialized scores.

D̆ataScan: Worker nodes - For every record, update the local contribution to the scores.

P̆arallelMerge: Merge the updated local scores to obtain the global scores.

ĔndDataScan: Master node - Compute αt from the global scores using (14).

OUTPUT: The coefficient αt for stage t.

Figure 6: Parallel one-pass “one-step Newton” method used for the stage coefficient computation
(14) in TREG.

4.5 TREG Variable Importance Diagnostics

The relative influence of the various input data variables on the regression function f̂(x) is an
important consideration for many applications. Friedman [6] has discussed certain diagnostics
for the relative variable importance and partial variable dependencies in connection with the
GB algorithm, which can also be generally used for other complex ensemble models including
the TREG algorithm. However, the evaluation of these diagnostics is computationally expensive
and difficult to parallelize.

In TREG, therefore, a simple variable importance score is computed for each input data
variable xj , defined by

I(xj) =
1

NV

NV∑

i=1

(
f̂(xi)− f̂(x(j)i)

)2
, (15)

20

where xi denotes the i’th validation data record, and NV is the total number of validation
channel data records. In (15), x(j)i represents a modification in which the actual value for the
field xj in the input data is replaced by a value that is sampled from an approximation to the
empirical marginal distribution of xj . The importance ranking of the input variables is then
obtained by sorting the values of {I(xj)}M

j=1 according to their magnitude.
This variable importance ranking can be obtained in a single-pass parallel scan over the

validation data, although it has the disadvantage that correlation effects among the input vari-
ables are not taken into account, and therefore, any input variable that does not appear in the
regression function will have a low ranking by this measure, even if it is highly correlated with
the predicted response.

5 Transform Regression Performance and Results

In this Section, we describe computational results for the predictive model accuracy of the TREG
algorithm, and performance results for the scalability on Blue Gene/P.

5.1 Predictive Modeling Accuracy

TREG is intended to be a fast, flexible, general-purpose modeling procedure for massive data
sets, and it makes relatively few assumptions about the form of the model regression function.

The numerical results described in this section are therefore intended to amplify certain
aspects of the TREG model prediction accuracy, using a variety of data sets and applications.

The TREG results are informally compared against MART, which is a commercial imple-
mentation of the gradient boosting algorithms in Friedman [6], marketed by Salford Systems
(http://www.salford-systems.com). In these comparisons, consistent default settings are
used for all algorithms, which means for the most part, that MART used 6-node trees as basis
functions with 10-fold cross-validation, and TREG used 2-fold cross-validation with a stopping
criterion based on a maximum of 4 stages without significant improvement in the cross-validation
error. The synthetic data sets used here are based on generative models that are very similar to
those considered in the paper by Li and Goel [12].

5.1.1 Regression

Synthetic Data: We consider synthetic data sets generated using known regression functions in
the form,

y = f(x) + εN (0, 1), (16)

where x is a 20-dimensional vector of covariates. The continuous features x1 through x10 are
obtained by uniform sampling the interval (0, 1), and the 10 nominal features x11 through x20

by uniform sampling at four levels 1 − −4. The individual features are all uncorrelated, but
many of them are noise features in the generated data sets below.

Two specific regression functions are chosen for evaluation, viz.,

f1(x) = 10(x1 − 0.5)2 − x2 + sin 2πx2 − 3x3 + 1.5I([x11 ∈ {3, 4}]) (17)

21

which is an additive function of a covariate subset, and

f2(x) = exp (−x1 − x2 + 2x3) + 3(x4 − x5) + 2I([x11 ∈ {3, 4}] ∪ [x12 ∈ {1, 2}]) (18)

which is non-additive with high-order interaction effects between covariates in a subset of the
features.

The training and test data sets that are generated consist of of 5000 points each, and choosing
ε in 16 to be 0.8 yielded data sets with a roughly 2-to-1 signal-to-noise ratio. The squared-error
loss function was used for both MART and TREG.

In the additive case, the validation MSE for MART was 1.227 ± 0.021, and for TREG was
0.777 ± 0.015. The coefficient of determination for MART was 0.62, and for TREG was 0.77
respectively. The MART results required 144 stages, while the TREG results required only 8
stages. The MART result appears to have overfitted the additive regression function, which can
be confirmed by comparing with the equivalent MART results using 2-node stumps as stage basis
functions, for which the validation MSE was 0.671± 0.013 with a coefficient of determination of
0.801.

In the non-additive case, the validation MSE for MART was 0.690 ± 0.013 and for TREG
was 0.845± 0.017. The MART results required 287 stages, and the TREG results required only
7 stages. The coefficient of determination for MART was 0.815 and for TREG was 0.774. A
comparison with the MART results for 2-node stumps as stage basis functions, for which the
validation MSE was 1.049± 0.020) and coefficient of determination was 0.723, clearly indicates
that non-additive effects are important in this data set, and that TREG is able incorporate some
of these non-additive effects into the regression function, in spite of the fact that it does not
explicitly model these effects in the stage basis functions.

In summary, the TREG results are accurate in both the additive and non-additive cases,
without any further parameter tuning.
California Housing Data: The California housing data set (http://lib.stat.cmu.edu/datasets/)
consists of a continuous response variable and 8 continuous covariates. As in [12], the log re-
sponse was used for the modeling using the least-squares loss function, although ithout trimming
of the outlier values for the covariates used there. The original data set with 20640 records was
randomly partitioned into training and validation data sets consisting of 13960 and 6680 records
respectively. The validation MSE for MART was 0.01247 ± 0.0004 with 200 training stages,
and for TREG was 0.01276± 0.0004 with 5 training stages. The coefficient of determination for
MART was 0.798 and for TREG was 0.793.

5.1.2 Classification

Adult Data: The adult census data set (http://archive.ics.uci.edu/ml/datasets/Adult),
consists of a binary response and 15 covariates (both continuous and categorical). The training
and validation data sets consist of 36632 and 12210 records respectively.

Figure 7 compares the gains charts for MART logistic regression with TREG using various
loss functions (viz., squared error, logistic and support vector). Table 5.1.2 shows the model
quality results, including the misclassification error, and the Gini coefficient estimated from the
cumulative gains charts [8], and the results are quite comparable across the board. We note

22

Adult Data Set 36632 (12210)
MART TREG
logistic logistic least-squares support vector

Misclassification Error 0.131 0.141 0.140 0.147
Gini 0.836 0.819 0.823 0.785

Table 2: Model Quality Results for Adult Data Set

that the logistic models provide a direct estimate of the class probabilities, which is desirable in
certain applications.

0.4

0.6

0.8

1

0.4 0.6 0.8 1

logistic

squared error

support vector

MART

ideal

random

Figure 7: Lift curves for the adult data set. Only the parts with measurable differences in the
model lift curves are displayed.

Spambase Data: The Spambase data set (http://archive.ics.uci.edu/ml/datasets/Spambase),
consists of a binary response and 57 continous covariates. The original data set with 4603 records
is randomly partitioned to yield a training set of 3065 records and a validation set of 1536 records.

The resulting model quality results shown in Table 5.1.2 are quite comparable across the
board. The MART solution required 300 stages while the TREG solutions required 6 to 8
stages,

23

Spambase Data Set 3065 (1536)
MART TREG
logistic logistic least-squares support vector

Misclassification Error 0.068 0.050 0.051 0.051
Gini 0.963 0.960 0.946 0.946

Table 3: Model Quality Results for Spambase Data Set

5.2 Parallel Performance Results

In Section 3.5, the theoretical aspects of the parallel performance and scalability of PML appli-
cations was considered. The issues discussed there are relevant to the timing results presented
here for PML on the IBM Blue Gene/P parallel system.

In machine learning applications, the strong-scalability analysis is typically more relevant,
since the training data set sizes are usually fixed in advance. However, in certain cases, the
weak-scalability analysis may also be of interest, particularly when the larger training data set
is used to to assess the model stability, or to improve the confidence intervals on the model
parameter estimates.

In order to emulate both these situations, two synthetic data sets were generated for regres-
sion modeling; PERF1 with 50,000 rows and 50 covariate features, and PERF2 with 75,000 rows
and 100 covariate features. Since the parallel timing measurements for PML are roughly the
same for each iteration in Figure 3, it is sufficient to present the results for a single iteration
here (say, iteration 6).

Figure 8 shows the parallel timings for PERF1 and PERF2, and the proportion of time spent
in the communication and computation phases of the algorithm are also provided. As expected,
with increasing P , the time for the highly-parallel computational phase decreases. Similarly, as
expected, the time for the communication phase increases with increasing P , due to the increased
network diameter for communication, as well as due to the increase in surface-to-volume effects
which controls the relative amount of communication in the parallel implementation. Since
neither of these data sets could be run for the P = 1 case, using the P = 4 case as the base, the
speedups with P = 128 processors was 2.79 for PERF1, and 3.46 for PERF2.

Figure 9 shows the same results, but indicating the proportion of time spent in the the three
parts of the TREG iteration shown in Figure 3. The dominant fraction of the time is in the
computation of the stage sub-basis functions, with the computation of the stage basis functions,
and the line search optimization, being a much smaller fraction of the overall time. Although it
is possible to considerably reduce the time for the computation of the stage sub-basis functions
by limiting their number, the effects of such algorithmic modifications on the PML model quality
are uncertain, and this direction was not pursued at this point.

6 Summary

The PML software framework, described in this paper, has been used to implement several well-
known machine learning algorithms on parallel computer architectures to date. In particular,

24

PERF2 Data Set (75K x 100)

0

100

200

300

400

500

600

700

4 8 16 24 32 64 12
8

Number of Processors

T
im

e
(s

ec
s) Computation

Communication

PERF1 Data Set (50K x 50)

0
50

100
150
200
250
300
350
400

4 8 16 24 32 64 12
8

Number of Processors

T
im

e
(s

ec
s) Computation

Communication

Figure 8: Performance Results.

PERF1 Data Set (50K x 50)

0

50

100

150

200

250

300

4 8 16 24 32 64 12
8

Number of Processors

T
im

e
(s

ec
s)

Phase 3

Phase 2

Phase 1

PERF2 Data Set (75K x 100)

0

100

200

300

400

500

600

700

4 8 16 24 32 64 12
8

Number of Processors

Ti
m

e
(s

ec
s)

Phase 3

Phase2

Phase 1

Figure 9: Performance Results.

25

we have motivated and described the implementation of the TREG (Transform Regression)
algorithm in PML. The TREG algorithm is not only of intrinsic interest as a general-purpose
regression methodology, but it also exemplifies the use of many of the features and capabilities
of PML. The overall TREG methodology and implementation in PML is of interest in many
application domains involving massive data sets, for which existing methods in the literature
are likely to have limitations in terms of the achievable model accuracy and computational
performance.

26

References

[1] IBM Blue Gene Team, Overview of the IBM Blue Gene/P Project, Special Issue on Ap-
plications of Massively Parallel Systems, IBM Journal of Research and Development, pp.
199-220, Vol. 52(1/2) (2008).

[2] A. Dorneich, R. Natarajan, E. Pednault and F. Tipu, Embedded predictive modeling in a
parallel relational database, Proceedings of the 21st ACM Symposium on Applied Comput-
ing, Dijon, France (2006).

[3] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Giampapa, M. Blocksome,
A. Faraj, J. Parker, J. Ratterman, B. Smith, C. J. Archer, The Deep Computing Messaging
Framework: Generalized scalable message passing on the Blue Cene/P Supercomputer, Proc.
22nd Annual International Conference on Supercomputing, pp. 94-103 (2008).

[4] F. Provost and V. Kolluri, A survey of methods for scaling up inductive algorithms, Data
Mining and Knowledge Discovery, Vol. 3, pp. 131-169, (1999).

[5] J. H. Friedman, Stochastic gradient boosting, Computational Statistics and Data Analysis,
Vol. 38, pp. 367-378, (1999).

[6] J. H. Friedman, Greedy function approximation: A gradient boosting machine, Annals of
Statistics, Vol. 29, pp. 1189–1232 (2001).

[7] http://hadoop.apache.org (2005).

[8] D. Hand, Construction and Assessment of Classification Rules, John Wiley and Sons, New
York (1997).

[9] T. Hastie, R. Tibshirani and J. H. Friedman, The Elements of Statistical Learning, Springer-
Verlag, New York (2001).

[10] R. Hecht-Nielsen, Kolmogorov’ mapping Neural Network existence theorem, Proc. IEEE
International Conference on Neural Networks, Vol. 3, pp. 11–14 (1987).

[11] http://www.mcs.anl.gov/research/projects/mpich2/.

[12] B. Li and P. K. Goel, Additive regression trees and smoothing splines - predictive modeling
and interpretation in data mining, Contemporary Mathematics, Vol. 443, J. S. Verducci,
X. Shen, J. Lafferty (eds.), pp. 83-101 (2007).

[13] E.P.D. Pednault, Transform Regression and the Kolmogorov Superposition Theorem, Pro-
ceedings of the Sixth SIAM International Conference on Data Mining, Bethesda, Maryland
(2006).

[14] R. Natarajan and E.P.D. Pednault, Segmented Regression Estimators for Massive Data
Sets, Proceedings of the SIAM Second International Conference on Data Mining, Crystal
City, Virginia (2002).

[15] G. Ridgeway, Generalized Boosted Models: A guide to the GBM packagte, http://cran.r-
project.org/web/packages/gbm/vignettes/gbm.pdf (2007).

[16] E. Yom-Tov, U. Aharoni, A. Ghoting, E. Pednault, D. Pelleg, H. Toledano,
and R. Natarajan, An Introduction to the IBM Parallel Mining Toolkit,
http://www.ibm.com/developerworks/grid/library/gr-ipmlt/index.html (2007).

27

[17] E. Yom-Tov, E. Pednault, R. Natarajan, D. Pelleg, H. Toledano, E. Aharoni,
Y. Ben-haim, Parallel Machine Learning Toolbox: User Guide, available from
http://www.alphaworks.ibm.com/tech/pml.

28

