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FLOW BOX TILING METHODS FOR COMPACT INVARIANT
MANIFOLDS

MICHAEL E. HENDERSON†

Abstract. Invariant manifolds are important to the study of the qualitative behavior of dynam-
ical systems and nonlinear control. Good algorithms exist for finding many one dimensional invariant
curves, such as periodic orbits, orbits connecting fixed points, and more recently two dimensional
stable and unstable manifolds of fixed points. This paper addresses the problem of computing higher
dimensional closed invariant manifolds, for example invariant tori, using an approach that produces
a large system of coupled two point boundary value problems.

The algorithm described here is not limited to a particular dimension or topology. It does not
assume that a closed global section exists, nor that a splitting or parameterization of the manifold is
known á priori. A flow box tiling is used to construct a set of trajectory fragments on the manifold
which are used to pose a system of coupled two point boundary value problems for the manifold.

1. Introduction. Invariant manifolds are important to the study of the quali-
tative behavior of dynamical systems and nonlinear control. Good algorithms exist
for finding many one dimensional invariant curves, such as periodic orbits [6], [14],
orbits connecting fixed points [18], [11], and more recently two dimensional stable and
unstable manifolds of fixed points and periodic orbits [25].

A Closed Connected Invariant Manifold M(λ) is a compact
connected manifold with no boundary embedded in IRn which is in-
variant under a parameter dependant flow f(u, λ). That is, if

u ∈ IRn, λ ∈ IRp f : IRn × IRp → IRn

u(0) ∈ M(λ), and u′(t) = f(u(t), λ),

then

u(t) ∈ M(λ) for all t ∈ (−∞,∞).

Except in the case where M is the level set of an integral of the system (e.g.
in Hamiltonian systems), M(λ) will not persist in a neighborhood of λ unless it is
normally hyperbolic [17], [22]. We will assume that this is the case throughout.

In many practical cases the embedding space will be high dimensional, and so we
will try to avoid using the normal space of the manifold.

Numerical methods for computing periodic orbits use a Poincaré Section. Near the
periodic orbit trajectories cross the section transversally, and trajectories which begin
on the section return to the section. This approach has been applied to quasiperiodic
tori (Sec. 2), but only certain topologies of M and certain flows on those topologies
have such closed transverse sections, and corresponding smooth return maps.

The algorithm described below uses a flowbox tiling to construct a different type
of section, which does not assume a particular topology of the manifold, and applies
to a broad range of topologies and dimensions greater than two. (Sec. 3). The
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return map on this generalization is piecewise smooth, and will be approximated by a
large system of coupled two point boundary value problems (TPBVPs) (Sec. 4). The
coupling is not the usual coupling through boundary conditions, but involves interior
values. Solvers for this type of system of TPBVP’s do not exist at present, but require
a fairly straightforward modification of existing techniques. These modifications have
not yet been implemented, so we can show the initial flow box covering, and the
system of TPBVP’s, but not yet a solution of the system.

The parameter dependance is included so that this algorithm may be used with
continuation methods [2] and [19] (and others). These methods assume that for some
λ, M(λ) is known. This initial manifold is then used to compute M(·) at a nearby
value of λ. The process is repeated, eventually finding M(·) for λ ∈ Ω ⊂ IRp, some
finite subset of parameter space.

There are several challenges involved in formulating a system for a closed invariant
manifold. There is the size and structure of the linear systems which appear, the
problem of constructing an adequate mesh, and the usual concerns of consistancy and
stability, which [28] rightly highlight.

2. Background. There are several ways to write a set of equations defining
a closed invariant manifold. Below we briefly discuss three formulations and corre-
sponding numerical methods which are based on them. Excellent discussions of the
computational techniques are included in [28] and [30], and [33] provides a very good
background of the theoretical results. We summarize the computational methods here
so that similarites between existing approaches and the algorithm proposed here can
be appreciated.

2.1. The Hadamard graph transform. If φ(u, t) is the integral of the flow:

∂

∂t
φ(u, t) = f(u)

or

φ(u(0), t) = u(0) +
∫ t

0

f(φ(u(0)), τ)dτ,

then for any t,

M = φ(M, t).(2.1)

Graph transform methods assume that M can be expressed as a graph over some
domain U :

u ∈ M ⇔ u = g(s), s ∈ U.

Eq. 2.1 becomes

g(s(t)) = φ(g(s(0)), t),(2.2)

where s(t) is the integral of the flow projected onto U . Since M is a manifold it is
represented as a set of graphs (charts), and the argument can be extended when more
M consists of more than one chart.

If the invariant manifold is hyperbolic, then a contracting map can be constructed
from Eq. 2.2 with M as a fixed point. If M is an attractor, and a graph g0 can be
found in the basin of attraction of M , then letting t become large gives (Fig. 2.3).

as t →∞ g(s(t)) → φ(g0(s(0)), t).(2.3)
2
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Fig. 2.1. An invariant torus used to parameterize inner and outer surfaces which converge to
an invariant surface under the flow.

When M is normally hyperbolic but not an attractor this approach can be modified
by splitting Eq. 2.2 local to g(s(t)) into the stable and unstable directions orthogonal
to M . Eq. 2.3 can also be reformulated as a map by integrating over some small
interval in time [29]. Or the integrated form can be solved useing a Newton method
[27], [9].

The main issue for these methods (apart from performing the splitting) is the
distortion of the initial parameterization of g. The distortion is the mapping s(t),
and can be removed by reparameterizing g after an iteration.

2.2. The PDE formulation. The differential form of Eq. 2.2 is

∂g
∂s

∂s
∂t

=
∂φ

∂t
or, f(u) = uss′(2.4)

where s′ is the flow f projected on the tangent space of M . (see Fig. 2.2). The
columns of the matrix us ≡ Φ(u(s)) span the tangent space of M at u(s). We use
this notation Φ(u) rather than the more usual Tu(M) or TMu to avoid confusion
with subscripts used for differentiation. The function s′(t) may be eliminated using
“orthogonal projections” [26](

I − Φ(u)ΦT (u)
)
f(u) = 0.(2.5)
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Fig. 2.2. An invariant surface. The PDE formulation requires that everywhere on the surface
the flow direction lies in the tangent space of the surface.

If there is a splitting which makes the parameterization explicit, u = (r, θ) with

r′ = g(r(θ), θ)

θ′ = f(r(θ), θ),

then instead of ΦT (u)(u − u0) = 0 we can use θ = θ0 to parameterize M , and since
r′ = rθθ

′, Eq. 2.4 becomes

∂r
∂θ

f(r(θ), θ) = g(r(θ), θ).(2.6)

Meshing the manifold is non-trivial, and the locally hyperbolic nature (in the sense
of PDEs) of the equations can lead to instabilities orthogonal to the manifold [28].
Methods also vary somewhat in the parameterizations used normal and tangential
to the manifold. A common approach is to use a reference manifold (for example
M(λ−∆λ)):

f(u) = Φ(u)α(u)

ΦT (u)(u− u0) = 0
(2.7)

This uses the reference manifold to induce the parameterization of the unknown man-
ifold. Schilder, Osinga and Vogt [30] consider quasiperiodic tori, for which α(u) is
constant and is the vector of frequencies. For invariant tori the PDE can be posed a
square with periodic boundary conditions.

2.3. Methods which find an invariant curve of a return map. Periodic
orbits are closed invariant curves, and the computational approach used [15] (and
others) is based on the Poincaré section Σ. This is a co–dimension one surface which
the periodic curve crosses transversally, and which exists in some neighborhood of
that intersection point. The integral of the flow then produces a map from Σ to itself,
for which the periodic is a fixed point. This is equivalent to integrating the PDE
formulation above in the time direction to obtain the return map (since there is only
one trajectory it is hardly a PDE).

The generalization of the Poincaré section is a transverse section [24] pp. 53–55
and [23] pp. 55–58) (sometimes called a Poincaré surface of section [7]).

A Transverse Section is a set of codimension one surfaces on M
none of which is tangent to the flow.
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Fig. 2.3. A torus with three types global transversals. One is and open arc, one is a closed
curve, and one is a set of open arcs. Any point on the torus is connected to a point on the section
by a trajectory.

A Global Transverse Section is a transverse section such that
every point on M lies on a trajectory passing through a point on the
transverse section. (Fig. 2.3.)

The Poincaré section for a periodic orbit is a transverse section. The point of
intersection of the section with the periodic orbit is a global transverse section for the
flow on the orbit.

In cases where a global transverse section Σ exists on M a return map may be
defined by integrating the section forward with the flow. Each point on the section
may require a different integration time, which we will call τ(ξ), where ξ is a param-
eterization of the extension of Σ normal to M (Fig. 2.4). If the global section is ξ(s),
the return map is

ξ(σ(s)) = φ(ξ(s), τ(ξ(s))).(2.8)

This approach is used by van Veldhuizen [32] for quasiperiodic tori (where a
global section does indeed exist). The return map does not return mesh points to
mesh points (Fig. 2.5, ( σ(si) 6= sj) so an interpolation is needed.

3. Flow box tiling methods. The three approaches described above share
many features. We have already pointed out that the PDE formulation is the dif-
ferential version of the graph transform. The PDE formulation solves a hyperbolic
system, whose characteristics are trajectories. Without reparameterizing the s(t) are
trajectories, and each mesh point in the approximation of the graph moves along a
trajectory on M . Now, if the system is integrated along the characteristics, each is an
initial value problem. M is assumed to be compact, so each characteristic will return
near to either itself or another characteristic. In the case of quasiperiodic tori, and
when there is a global transversal, the return of the characteristics becomes a return
map, and the characteristics may be chosen to begin and end on an invariant curve
of the return map.
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Fig. 2.4. Two transverse sections l) The return map has a single fixed point. The invariant
manifold is a closed curve, and the intersection of the curve with the transverse section (a point) is
a global transverse section for the invariant curve. r) The return map has an invariant circle. The
invariant manifold is a torus, and the intersection of the torus with the section (a closed curve) is
a closed global transverse for the invariant torus.
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Fig. 2.5. A invariane circle and a set of points (0, 1, 2, ...) and their image under the map
(0′, 1′, 2′, ...). This mismatch is the result of the function σ(·) in Eq. 2.8, and means that an
interpolation must be done.

From a computational viewpoint meshing is simplest for the PDE formulation,
since mesh lines need not be related at all to the characteristices. For the integrated
version of the graph transform, and the invariant curve approaches some reparame-
terization is necessary. This is an adaptive mesh problem, and can be problematic.

The algorithm proposed below incorporates various features of the three ap-
proaches. It produces a nonuniform mesh which locally has mesh lines which are
trajectories. However, it allows the mesh to change, and so avoid the reparameter-
ization problem. Secondly, in the linear algebra which results from implementing
Newton’s method on this mesh has a structure which allows elimination along the
trajectries. This is similar to integrating trajectories to build a return map, but is
done only in the solution of the linear system. equations along the charateristics of
the PDE (trajectories).

3.1. Flow box coverings, tilings, and global sections which are sets of
disks. The formulation of a quasiperiodic torus as an invariant circle of a map does

6



Inset

Outset

Inset

Outset

Fig. 3.1. A flow box. The inset is mapped to the outset under the flow. (left) Orginal coordi-
nates. (right) The “straightened” flow box, using a coordinate system on the inset and time.

not easily apply to other flows on the torus, or to closed invariant manifolds with
different topolgies. Reeb flow on a torus [24], for example, does not have a closed
global transversal. The existance of closed global transversals is intimately related
to the topology of M and the flow [24]. In general it is not expected that a flow on
a closed manifold has a closed global transversal. The formulation described below
is based on finding invariant curves on a different kind of global transverse section,
which exists in a larger class of problems, and is constructed from a flow box tiling of
M [5]. The section exists whenever M can be covered by flow boxes, which holds if
there is a flow box neighborhood of each point on M . This is trivially true when M
contains no fixed points. It is also possible in some situations when fixed points are
present. (Sec. 7.)

A Flowbox is the image of a piece of a transverse section isomorphic
to a disk (the inset) translated using the flow onto another transverse
section (the ouset). See Fig. 3.1.

A Flowbox Covering is a set of flow boxes such that every point
on M lies in at least one flow box.

A Flowbox Tiling is a set of flow boxes such that every point on
M lies in one and only one flow box.

The flow box theorem [1] states that a flow box can be mapped to a coordinate
system where the trajectories are straight. Each point in the flow box lies on a
trajectory which passes through a point on the inset. The mapping which straightens
the flow box uses the coordinates of this point on the inset and time.

3.2. Covering M(λ) with flow boxes. We use flow boxes whose insets are
balls in a plane orthogonal to a central trajectory fragment ui(t), t ∈ [0, τi]. By
augmenting the central trajectory with the tangent space and a radius R (a “fat”
trajectory [21], Fig. 3.4) a set of trajectory fragments which covers M well can be
found. The radius controls the density and distribution of the fragments.
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u (t )j

u (t)i

i R (u (t),l  )0
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u (t)i

i

|t-t| < cR(u , l  )i 0

Fig. 3.2. l) Every point on M must be close to fragment of a trajectory. c) Two trajectory
fragments cannot be too close to one another. r) A fragment cannot come back too close to itself.

Inset 1 Inset 2 Inset 3

Outset 1 Outset 2 Outset 3

Inset a

Inset b

Outset a Outset b

Fig. 3.3. (l) A pair of adjacent flow boxes in a two dimensional flow. The width of the
boxes increases, and at some point a third box is inserted. (r) The same flow boxes in straightened
coordinates, showing the construction of a tiling from the covering.

A set of trajectories covers M well if

a) Minimum Density: For every u ∈ M(λ), there is a point on
a trajectory fragment ui(t) at some t ∈ [0, Ti], such that

|u− ui(t)| ≤ R(u, λ).

b) Maximum Density I.: For every pair of points on two dif-
ferent fragments ui(t), t ∈ [0, Ti] and uj(τ), τ ∈ [0, Tj ], with
i < j

|ui(t)− uj(τ)| ≥ R(ui(t), λ).

c) Maximum Density II.: For every pair of points on the same
fragment, ui(t), t ∈ [0, Ti] and ui(τ), τ ∈ [0, Ti] there is a con-
stant C > 0 such that if

|ui(t)− ui(τ)| ≤ R(ui(t), λ)
8



Fig. 3.4. A “fat” trajectory

Fig. 3.5. l) Part of a covering of the plane by fat trajectories. c) The envelopes of the balls
along the fat trajectories. r) Overlapping flowboxes constructed by modifying the envelopes.
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then

|t− τ | ≤ CR(u(t), λ).

To construct the trajectory fragments an initial point is used to integrate a fat
trajectory until it returns into one of the balls. If a parametric form exists for the
initial guess then an initial points on M are easily obtained, and if a global transversal
exists and is known initial points may be drawn from the transversal. This process
is repeated until there are no more initial points available. It was shown in [20] and
[21] how to obtain an initial point which either maximizes the outward flow from the
boundary of the collection of balls, or if no such point exists to obtain a point on
the boundary. Since M is closed this process must terminate if the radius is bounded
away from zero. This approach was used to construct the covering shown in Fig. 3.6,
which is close to a quasiperiodic torus, which has a closed global transversal.

A Fat Trajectory (u(t),Φ(t), R(t)) is a quadratic approximation

vi(t, s) = ui(t) +
∑

p

Φi
p(t)s

p +
1
2

∑
p,q

Ai
pq(t)s

psq + O(|s|3)

to a k–dimensional manifold on a trajectory u(t), with tangent space
spanned by the k orthonormal columns of Φ(t). The radius R(t) is
chosen small enough that for some small ε, which is an accuracy
parameter –

1
2
|Ai

jk(t)|R2(t) ≤ ε −→ R(t) ≤
√

2ε

|Ai
jk(t)|

.(3.1)

This relates the radius R(t) to the maximum distance ε between the
tangent space and the manifold (measured orthogonal to the tangent
space) and the minimum curvature |Ai

jk(t)|. It was shown in [21]
that the orthonormal basis evolves according to the flow

∂

∂t
Φi

j(t) =
∑

p

f i
,pΦ

p
j −

∑
p,q

Φp
r

∂fp

∂uq
Φq

jΦ
i
r(3.2)

An evolution equation can also be written for Ai
jk(t).

A cylindrical tube exists along the fat trajectory. Rewriting Eq. 3.1 for u ∈ M near
u(t) we have∣∣ΦT (t)(u− u(t))

∣∣ < R(t) −→
∣∣(I − Φ(t)ΦT (t)

)
(u− u(t))

∣∣ < ε

A flow box covering may be constructed from a fat trajectory covering of M . We
have the cylinder defined by the envelope of the balls along the fat ttrajectory, and a
flow box which has the ball at the beginning of the fat trajectory as inset. This flow
box may not lie outside the cylinder along the entire fat trajectory fragment. If it
does not, the radius of the inset may be increased until this requirement is met. Since
the cylinders cover M the flow boxes must also cover M (Fig. 3.5.)
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Fig. 3.6. A computed fat trajectory covering of the torus described in section 5. For this
covering there are 182 trajectories. The longest has 223 points, and the shortest has 4 points. There
are a total of 22,907 points.

3.3. Constructing a flow box tiling from a flow box covering. The fol-
lowing discussion is intended to motivate the forumulation presented in the following
sections. While the construction of a tiling from a covering is possible, it is unecessary
and likely to be computationally expense.

Suppose that at a particular set of parameter value a compact invariant manifold
M(λ) exists and that there is a flow box covering of M(λ). The sides of the flow boxes
(exempting the inset and outsets) consist of groups of trajectories, and can be quite
complicated. Rather than trying to explicitly represent these boundaries to build a
tiling, we use the Flowbox Theorem to map of the flow in the neighborhood of a
trajectory to a parallel flow), and use for the boundary of the overlapping flow boxes
cylinders about a “centerline” trajectory. The set of centerline trajectories make a
set of trajectory fragments on M , and we will represent the flow box tiling by these
fragments.

In principle a flow box tiling of M(λ) may be found from these tubular neighbor-
hoods of trajectory fragments. Choose one such flow box. The flow in a neighborhood
of the center trajectory can be mapped to a parallel flow. The tubular neighborhoods
become cylindrical neighborhoods. Using the same idea as in [20], but for cylinders
instead of spherical balls, each pair of cylinders is partitioned into pieces by the plane
containing the intersection of the cylinders. These pieces either lie entirely inside
the union of the pair of cylinders or entirely outside. If this process is repeated for
each tubular neighborhood which overlaps the chosen flowbox, and the overlapping
portions of the flowbox have removed, what results is a tiling, and in the rectified
coordinates the insets and outsets are polyhedral. See Figs. 3.7 and 3.8.

An important feature of this construction (which we will not perform explicitly)
is that the center trajectory is inside the truncated flowbox if the ratio of the radii of
overlapping tubular neighborhoods is in the interval [1/

√
2,
√

2].

3.4. Constructing a global section from a flow box tiling. Since tiled flow
boxes are disjoint the outset cannot lie inside another flow box, and so must lie on
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Fig. 3.7. A set of adjacent cylindrical flow boxes in a three dimensional flow in straightened
coordinates, showing the construction of a tiling from the covering.

a subset of the insets. If the flow is smooth, this composite mapping is a piecewise
smooth mapping from the union of all the insets to itself. If the insets are extended
a small distance orthogonal to M the extended insets are transverse to M , and the
intersection of M and the extended insets (the original set of insets), is a global section
for the flow on M . (See Fig. 3.9.)

4. A system of coupled two point boundary value problems approxi-
mating M(λ + ∆λ). To find M(λ + ∆λ) from M(λ) we proceed in much the same
way as for periodic orbits. We use the extended insets from M(λ) and perturb the
flow. Instead of constructing the mapping between the extended insets, and then
finding a set of invariant curves of the map we will find a set of trajectory fragments
on M(λ + ∆λ) which serve as centerline trajectories for a new set of covering flow
boxes for M(λ + ∆λ).

The set of initial points ui(0) ∈ M(λ) and fragment lengths τi > 0 uniquely define
the set of trajectory fragments on M(λ). Let vi and τ̂i be the corresponding set of
fragments on the perturbed manifold M(λ + ∆λ). To determine vi(0) ∈ M(λ + ∆λ)
and τ̂i we pose an initial value problem with a set of n (the dimension of points
on M) algebraic constraints and one integral phase condition. The first k algebraic
equations fix the projection of vi(0) onto Φ(ui(0)), the tangent space of M(λ) at
ui(0). In addition vi(1)−ui(1) must lie in the orthogonal complement of the flow at
ui(1), and vi(1) must lie on M(λ + ∆λ). Since M(λ + ∆λ) is unknown, we instead
approximate this M(λ+∆λ) using interpolation between nearby trajectory fragments.

We assume that ∆λ small enough so that M(λ+∆λ) is a graph ai(u, s) on Φ(u, λ)
in a neighborhood of u.

12



Outset

Inset

Fig. 3.8. Continuing the construction in the previous figure. The mapping from the inset to
the outset can be seen to be (in the straightened flow) a mapping from a polygonal (polyhedral) tiling
of the inset to a tiling of the outset.
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Fig. 3.9. l) A tiling of an invariant torus with flow boxes. (l) in the periodic domain., (r) In
three dimensions, with outsets extended off the torus. (b) the corresponding interval map.
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For si(t) ∈ IRk, |si(t)| ≤ R(t),

vi(t) = ui(t) + Φ(ui(t))si(t) + ai(ui(t), si(t)),

ΦT (ui(t))ai(ui(t), si(t)) = 0,

⇒ si(t) = ΦT (ui(t)) (vi(t)− ui(t)) .

The trajectory vi(t) must lie on M(λ + ∆λ), but it’s length τ̂i and projection
onto M(λ) are undetermined.

One choice is to require that the projection of the initial point vi(0) is ui(0):

si(0) = ΦT
i (ui(0)) (vi(0)− ui(0)) = 0.

The length of the trajectory fragment can be fixed by requiring that v(1) lie on a
section through ui(1) orthogonal the flow:

fT
i (ui(1)) (vi(1)− ui(1)) = 0.

This results in the following TPBVP for vi(t):

v′
i(t) = τ̂if(vi(t), λ + ∆λ) t ∈ [0, 1]

ΦT (ui(0)) (vi(0)− ui(0)) = 0,

fT (ui(1)) (vi(1)− ui(1)) = 0,[
I − Φ(ui(1))ΦT (ui(1))

]
(vi(1)− ui(1)) = ai (ui(1), s)

(4.1)

where s = ΦT (ui)(1) (vi(1)− ui(1)). The graph ai(ui(1), s) is of course not known.
Below we discuss how to approximate ai by interpolating between nearby trajectories.

For periodic solutions an integral phase condition performs much better than a
simple end condition. Given the similarities we therefor replace the second booundary
condition in Eq. 4.1 with an integral phase condition

∫ 1

0

fT (ui(t), λ) (vi(t)− ui(t)) dt = 0.

This determines τ̂i so that the correspondance in t between the two fragments is as
close as possible. The analogy to the invariant curve algorithms is lost, since there
is no fixed end section, but the the third condition in Eq. 4.1 remains unchanged,
except that si(1) can lie in the full tangent space.

14
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u  (1)i
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f(u (1))i

f (u (1)) (v (1)-u (1)) =0i i i
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Fig. 4.1. A trajectory fragment on M(λ+∆λ) and it’s relation (through the two point boundary
value problem) to the corresponding fragment on M(λ). The boundary conditions are on the left:
vi(0) projects onto ui(0), and on the right: vi(1) lies in Σ, and on v(s), where s is the orthogonal
projection of vi(1) onto the tangent space Φ(ui(1)) at λ

The final TPBVP is (Fig. 4.1.)

v′
i(t) = τ̂if(vi(t), λ + ∆λ) t ∈ [0, 1]

with si(t) = ΦT (ui(t)) (vi(t)− ui(t)) ,

k ΦT (ui(0)) (v(i0)− ui(0))) = 0

n− k
[
I − Φ(ui(1))ΦT (ui(1))

]
(vi(1)− ui(1)) = ai (ui(1), si(1))

1
∫ 1

0
fT (ui(t), λ) (vi(t)− ui(t)) dt = 0.

(4.2)

4.1. Interpolation. Since ai(ui(t), s) is not known, it must be approximated.
We have a distribution of points on M , so it is natural to use an interpolation using
nearby values of v. This requires that M(λ+∆λ) have a certain smoothness. Without
smoothness beyond some scale there is little hope of computing M , so this is not an
unreasonable assumption. If uj(tj), j ∈ Ji are a set of points near ui(1), then
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Fig. 4.2. Nearest neighbors of trajectory ends in the covering of the torus described in section
5 and shown in Fig. 3.6.

interpolants are usually of the form

ai(ui(1), s)=
∑

j

αj(s)ai(ui(1), sj(tj))

=
∑

j

αj(s)
[
I − Φ(ui(1))ΦT (ui(1))

]
(vj(tj)− ui(1))

The αj(s)’s are interpolation weights assigned to each vj(tj), with
∑

j αj(s) = 1.
The accuracy of the interpolation depends on the curvature of M(λ) at u, the width
and geometric arrangement of the “stencil” {uj(tj)}. Fig. 4.2 shows the stencils for
a few of the trajectories of the tiling shown in Fig. 3.6.

Several choices are available for interpolation on triangulations. Fig. 4.3 is a
sketch of Sibson’s method [31] which is implemeneted in CGAL [10]. Sibson’s method
constructs two Voronoi diagrams of the interior of the convexhull of the sj(tj). One
diagram excludes si(1), and the cell associated with sj(tj) we will call Vj . The second
diagram includes si(1) and the cell associated with sj(tj) will be Wj and the cell of
si(1) will be Wi. Then the weights are (Fig. 4.3)

αj =
vol(Wi

⋂
Vj)∑

j vol(Wi

⋂
Vj)

Other “natural neighbor” interpolants are discussed in [8]. These interpolants are
smooth within the convex hull of the neighbors, but only C1 over a Delaunay trian-
gulation of the points. Interpolants with higher degrees of smoothness can be found
in [16].
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Fig. 4.3. A sketch of Sibson’s natural neighbor interpolation. Each vertex a-e has a Voronoi
cell without the point to be interpolated. If the volume of these individual cells within the convex
hull of neighbors are Va etc., the weight of point a in the interpolation is Va/(Va + Vb + Vc + ...).

4.2. Solution Methods. The system posed for the invariant manifold is a set
of coupled TPBVP’s it is natural to use a continuation method based on collocation
methods (AUTO [13] or COLSYS [4]). to track the changes in the manifold. Note
however that the boundary conditions may involve points which are interior to the
trajectory fragment, or to adjacent fragments. Therefore boundary conditions of
the form bc(u(0),u(1), λ) = 0 will not suffice. Both AUTO and COLSYS use a
condensation of parameters and nested dissection to solve the bordered linear systems
(Fig. 4.4) to implement Newton’s method for solving the nonlinear system. We
would prefer not to destroy this structure. As written the system for the invariant
manifold has a Jacobian with the structure shown in Fig. 4.5. A rearrangement which
gathers the lengths τi of the fragments with the parameters λ and the boundary
conditions with the arclength constraints(Fig. 4.6 almost recovers the structure of
the original system. This is equivalent to casting the TPBVP’s for the fragments
as a TPBVP for a vector which is the concatenation (u0,u1, ...,un−2,un−1). The
only modification required is that the coupling of the interpolation of the right hand
boundary conditions. This means that those boundary conditions become sparse
rows in the Jacobian, much like integral constraints or the arclength constraints. In
addition shorter trajectories require fewer points than longer ones, and solvers assume
that all compoent TPBVPs have the same discretization.

4.3. Making a step. In order to make a continuation step we need to obtain the
same information we had for M(λ). That is, we need a set of well spaced trajectory
fragments and tangent spaces at t = 1 for each fragment. The solution of the TPBVP
gives a set of trajectory fragments, and the tangent space at t = 1 can be found
from the interpolant which was used for the boundary condition at t = 1. Some
fragments are likely to become too close together and others too far apart. We use
fat trajectories again to create a new covering. This time however, the trajectory is
known, so only the flow for the tangentspace is needed, and we integrate backward in
time, since the tangent space is estimated at t = 1.

To eliminate trajectories that are too close together one may step along each
trajectory in turn and end trajectories which come too close. At the same time, since
curvatures will have changed, the size of the balls along the trajectories need to be
adjusted, and new balls inserted or removed from the trajectory to ensure that the
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Fig. 4.4. The layout of the Jacobian in AUTO’s formulation of a TPBVP.

trajectory is covered once the radii are adjusted. These two procedures, and the
movement of trajectories away from each other, will open gaps in the ball covering
of M(λ + ∆). Identifying interpolation points and creating new fat trajectories will
close these gaps and the algorithm may continue.

5. A partial example – an invariant torus. As an example we compute an
invariant torus in a simple system from [3]. The system is

x′0 = x0 + 0.55y0 − (x2
0 + y2

0)x0 − λ(x0 + y0 − x1 − y1)

y′0 = −0.55x0 + y0 − (x2
0 + y2

0)y0 − λ(x0 + y0 − x1 − y1)

x′1 = x1 + 0.55y1 − (x2
1 + y2

1)x1 + λ(x0 + y0 − x1 − y1)

y′1 = −0.55x1 + y1 − (x2
1 + y2

1)y1 + λ(x0 + y0 − x1 − y1)

This system is a pair of coupled nonlinear oscillators, with λ controlling the strength
of the coupling. This gives us the initial invariant torus, at λ = 0, which is the product
of the two oscillatory motions. As λ increases the torus develops sharp folds, which
with other methods require some kind of adaptive meshing.

A covering for the invariant torus at λ = 0.05 is shown in Fig. 3.6. As an example
of the TPBVP’s, for trajectory fragment 76 the right end boundary condition depends
on the points
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x lt0 0 x t1 1 x tn-2 n-2 x tn-1 n-1

Interpolation BC

Fig. 4.5. The layout of the Jacobian in AUTO’s formulation of the trajectory fragments in the
system for the invariant manifold.

Trajectory 76
x0 y0 x1 y1

u76(0.000000) 0.984153 0.000000 0.046339 1.002124
φ0 -0.039520 0.000000 -0.997967 0.050006
φ1 (0.023109 -0.999631 -0.001625 -0.014176
u76(1.000000) 1.003289 0.037685 0.802945 0.586386
φ0 0.010329 -0.291224 -0.559801 0.775684
φ1 0.050356 -0.955017 0.151557 -0.249859
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Fig. 4.6. A reaarrangment of the Jacobian in AUTO’s formulation of the trajectory fragments
in the system for the invariant manifold.

x0 y0 x1 y1

u30(0.000000) 1.004652 0.000000 0.818318 0.563085
φ0 -0.003910 0.000000 -0.566333 0.824167
φ1 0.013697 -0.999626 -0.019544 -0.013365
u32(0.000000) 1.004465 0.000000 0.795029 0.595615
φ0 -0.005445 0.000000 -0.597650 0.801738
φ1 0.013730 -0.999625 -0.019030 -0.014093
u70(1.000000) 1.002803 0.049669 0.832593 0.543868
φ0 0.014661 -0.271879 -0.522082 0.808253
φ1 0.061428 -0.960005 0.128701 -0.240923
u70(0.995586) 1.000464 0.078529 0.816493 0.568841
φ0 0.021212 -0.270781 -0.545275 0.793019
φ1 0.089121 -0.958049 0.136207 -0.235877
u76(0.995613) 1.001234 0.066518 0.785648 0.610509
φ0 0.017415 -0.290159 -0.582060 0.759402
φ1 0.077962 -0.953416 0.159228 -0.244046
u80(1.000000) 1.002366 0.047948 0.768485 0.631512
φ0 0.011733 -0.302262 -0.600193 0.740440
φ1 0.060623 -0.950992 0.172546 -0.249319

For this covering there were 182 trajectories. The longest had 223 points, and the
shortest had 4 points. There were a total of 22,907 points. So the linear system is size
22, 907+182+1 = 23, 090, with 182 blocks ranging in size from 2×4 to 221×223 with
2 × 182 + 1 = 364 “full” rows (which are quite sparse) for the boundary conditions
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Fig. 5.1. The support for the interpolation boundary condition for trajectory 76. The positions
shown do not reflect the actual relative positions of the points.

and pseudo-arclength constraint.

6. Summary. The algorithm described in this paper represents a compact in-
variant manifold M(λ) as the solution of a system of coupled TPBVPs. A fat trajec-
tory covering of M(λ), if it exists, implies that there is a flow box covering of M(λ).
The flow box covering in turn generates a flow box tiling of M(λ), which is associated
with a piecewise smooth return map from the set of insets of the tiling to itself. In-
stead of finding invariant curves of this return map we find a single point on the inset
of each flow box tile. The mapping of the point to the outset of the tile is a TPBVP,
and if an interpolation is used to approximate the invariant set of the return map we
arrive at the system of coupled TPBVPs.

There are of course parallels to existing methods. Interpolation boundary condi-
tions are used for finding invariant circles for invariant quasiperiodic tori [32]. The
system of coupled TPBVPs may also be interpreted as a characteristic of a PDE on
a complicated domain (“Manhattan Towers” [5]).

The flowbox tiling provides a natural approach to generating a quality mesh on
the manifold. This mesh has the benefit that the mesh lines are trajectories, and the
linear system which results can be reduced in size by elimination along the trajectories.
This is roughly equivalent to the construction of the return map.

Beyond the construction of the initial covering and posing of the system of the
two point boundary value problems (TPBVPs) , this algorithm has not yet been
implemented. Although the system is similar to the form usually used for TPBVPs
there are significant differences that appear to prevent any existing code for TPBVPs
being used. The system may be posed as a single TPBVP, in the example of Sec. 5
this would be a first order ODE for points u ∈ IR4∗182, but the boundary conditions
are not functions just of u(0) and u(1), they involve values at various interior points as
well. In addition, the mesh on each ODE should be different - the difference in length
of the trajectory fragments can be significant and the required points for interpolation
need to be included in the meshes. The author is not aware of any package that will
handle these two requirements, although the techniques used by collocation codes
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u (t)i
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Fig. 7.1. A discontinuity in derivative propagating along a trajectory, and one of the two
associated balls.

such as AUTO and COLNEW could be easily modified.

7. Extensions. No constraint has been placed on the smoothness of M(λ), al-
though we need at least continuity. Discontinuities in derivatives propagate along
trajectories, so that the set of such singular points on M(λ) form an a set of invariant
manifolds. We will require that these be a finite number of these singular invariant
sub-manifolds, that they be co-dimension 1 on M(λ), and that they have finite vol-
ume. The assumptions listed above involving spherical neighborhoods are generalized
so that on each singular invariant sub-manifold there are two radii functions R+

i and
R−

i , and instead of using spherical neighborhoods for the constraints on closeness and
minimal separation, two half spherical neighborhoods are used, each on the appropri-
ate side of the invariant sub-manifold (this is the motivation of the requirement that
they be co-dimension one). With these generalizations, and a covering of the sub-
manifolds by trajectories exactly like the covering of M(λ) the following arguments
and algorithms apply.

If a ball is placed about each fixed point, and all fixed points are hyperbolic, then
the surface of the ball can be decomposed into subsurfaces which are transverse to
the flow and bounded by the codimension 1 curves where the flow is tangent to the
surface of the ball and the intersections of the surface and the stable and unstable
manifolds of the fixed point.
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