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ABSTRACT
Modern, adaptive software systems must often adjust or re-
configure their architecture in order to respond to continuous
changes in their execution environment. Efficient autonomic
control in such systems is highly dependent on the accuracy
of their representative performance model. In this paper, we
are concerned with real-time estimation of a performance
model for adaptive software systems that process multiple
classes of transactional workload. Based on an open queue-
ing network model and an Extended Kalman Filter (EKF),
experiments in this work show that: 1) the model parameter
estimates converge to the actual value very slowly when the
variation in incoming workload is very low, 2) the estimates
fail to converge quickly to the new value when there is a
step-change caused by adaptive reconfiguration of the ac-
tual software parameters. We therefore propose a modified
EKF design in which the measurement model is augmented
with a set of constraints based on past measurement values.
Experiments demonstrate the effectiveness of our approach
that leads to significant improvement in convergence in the
two cases.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
performance,model

Keywords
estimation,filter,queueing theory,parameters

1. INTRODUCTION
Today’s software systems must continuously self-reconfigure

their components to adapt to run-time changes in the host
and network environments [1]. This is especially the case for
Internet based online applications that operate in a highly
dynamic environment with fast changing user workloads and
browsing patterns. Changes may also occur in the virtual-
ized system platform that runs the software application [2].

Figure 1: Architecture of Adaptive Software System

This paper considers such Adaptive Software (AS) systems [3,
4, 5] that process transactional user workload of request/ re-
sponse type such as HTTP workload. Each transaction in
an AS system that uses the server’s resources differently can
be classified into different classes. The quality of a soft-
ware system is often measured in terms of its performance
which can be for example, end to end response time from
a user’s point of view. A performance model of a system
can be used for predictive analysis of the system, e.g., for
response time prediction at hypothetical workloads. Perfor-
mance model of an AS system can be useful for autonomic
control, if it is updated in real-time to reflect the changes in
the software system parameters [1]. However, performance
modeling of an AS system is a challenging task. Classi-
cal queueing theory based performance models require the
knowledge of parameters such as service times and network
queueing delays for different classes of transactions. These
parameters are used to compute and predict performance
metrics such as average transaction response time, average
number of jobs/transactions waiting to be processed, etc.
There are existing techniques that make use of simulations
and manual caliberations to compute similar performance
metrics [6]. However, none of these techniques can be prac-
tically applied if the service times and network queueing de-
lays are unknown. Instrumenting software applications with
probes in order to actually measure the service time and de-
lay parameters can be intrusive, requires extensive manual
coding [7] and is time consuming. In fact, the source code
of a standard, commercialized e-commerce software system
may not even be accessible. Moreover, instrumentation is
an iterative procedure and is difficult to pursue in a dynam-
ically changing environment [7]. This is often the case for
an AS system that undergoes continuous changes that can



lead to time-varying service times and delays. These system
parameters must therefore be estimated using only readily
available measurement data. AMBIENCE [8, 9] which is a
research prototype tool developed at IBM Research, makes
use of a powerful Inferencing algorithm to estimate a service
time and network queueing delay based performance model.
Inferencing allows one to compute the service time and de-
lay parameters from readily available measurement data on
end-to-end response times, CPU utilizations and workload
arrival rates. It however models service time and delay us-
ing stationary model parameters and cannot be used for AS
systems with time-varying parameters.

Performance models can play an important role in accu-
rately driving the necessary dynamic changes in an AS sys-
tem. For instance, at runtime, software systems can better
adapt to the changes in execution environment if an under-
lying performance model of the system is known. A per-
formance model updated in real-time can be combined with
model predictive control [10] to achieve autonomic control
of a software system. Figure 1 shows the architecture of an
example AS system studied in this paper. Reliable control of
a software system in order to achieve the desired objective is
critically dependent on the service time and queueing delay
parameters that characterize the system. While study of op-
timal control strategies is a separate research area in itself,
robust control can only be achieved if the system model pa-
rameters accurately reflect changes in the software system at
runtime. Since autonomic control of a software system may
lead to reconfiguration of its architecture at run-time, the
underlying model parameters may not remain constant and
can vary with time. It is thus important to accurately track
the time-varying parameters of an AS system in real-time.
Note that we do not study any kind of control mechanism
in this work and focus only on model parameter estimation.

1.1 Related Work
A prototype implementation of a performance manage-

ment system for multi-tiered web applications deployed on
clustered web servers is decribed in [11]. The management
system allocates server resources dynamically in order to
optimize the expected value of a system-wide utility func-
tion. Authors there use a closed queueing network model
to predict the response time of requests for different re-
source allocations. However, the model parameters (num-
ber of clients and think time) are estimated by solving inde-
pendent, static optimization problems at each measurement
point. Urgaonkar et al. [12] develop another closed queue-
ing network model of a multi-tiered system. Estimates of the
model parameters, such as visit ratios and load-dependent
service times, are obtained off-line through analyzing various
measurement logs in the system. Their methodology lacks a
sound analytical model for parameter estimation. Pacifici et
al. [13] consider the problem of dynamically estimating CPU
demands of applications using CPU utilization and through-
put measurements. Using a linear model, they formulate the
problem as a multivariate linear regression problem and ana-
lyze measurement data. However, their experimental results
demonstrate that the approach is viable only for a rough es-
timation of the dynamically changing CPU demands.

Real-time performance modeling using Kalman filters [14]
is an emerging area of research and only few related papers
can be found in literature. To the best of our knowledge,
only Zheng et al. [15, 16, 17] have demonstrated the effective
use of an Extended Kalman Filter (EKF) [14] for tracking
time-varying parameters of an AS system, for the purpose of
real-time performance modeling. Though they provide theo-

retical insights for system models based on both closed and
open multiclass queueing networks, their experimental re-
sults are only for the single class case. Colleagues of Zheng
in [1] have studied real-time adaptive control of an auto-
nomic computing environment. Two types of controllers
are studied: threshold controller and feed-forward controller
based on a Kalman filter model. The later is again based on
the EKF design for performance modeling proposed in [15,
16, 18]. Once again only a single class of workload traf-
fic is considered for the experimental results in [1]. Other
colleagues of Zheng in [2] have studied model based auto-
nomic server virtualization, but use system identification
techniques instead of a Kalman filter. To summarize, none
of the existing related work has investigated performance of
Kalman filters in a multi-class workload environment.

1.2 Main Results and Contribution
The contributions of this work are twofold. First, we

demonstrate that straight-forward application of EKF is in-
adequate in a multi-class setting. We present experiments
to show that for an open queueing network model of the
software system, an EKF design in the lines of the work
in [15, 16, 17] performs poorly for two important scenarios:
1) the model parameter estimates converge to the actual
value very slowly when the variation in incoming workload
is very low, 2) the estimates fail to converge quickly to the
new value when there is a step-change in software parame-
ters caused by adaptive reconfiguration of the software ar-
chitecture. We argue that these anomalies occur due to the
under-determined nature of the estimation problem for mul-
tiple classes of workloads. We therefore address this issue by
modifying the EKF design by augmenting the measurement
equation with a set of constraints based on past measure-
ment values. Experiment results demonstrate that use of
this modified EKF leads to significant improvement in con-
vergence in the two cases. This is thus the second main
contribution of our work.

2. SYSTEM DESCRIPTION
A high level description of a three-tiered AS system and

its management is depicted in Figure 1. The first tier hosts
gateway management components, the second tier hosts a
web server and the adaptive software applications and the
third tier comprises database services. The second tier con-
sists of several server nodes that host the various applica-
tions. An adaptive software is deployed as an application
in an application server that provides the necessary runtime
environment. Several application servers may run on a given
node and several instances of a given application may coexist
at the same time. Incoming requests (workload) from users
arrive at the first tier where they are routed to an appro-
priate node in the second tier. Servicing these requests by
an application may trigger further requests to the database
tier. The completion of a request triggers a response back
to the user.

Two important performance concerns in such an AS sys-
tem are resource utilization and quality of service in terms
of response time. Several mechanisms are usually in place to
alleviate such concerns. Let us focus on two broad categories
of mechanisms that we call Cell Management and Deploy-
ment Management. The latter is concerned with placement
of application instances in nodes, as well as database parti-
tioning and replication. Cell management is concerned with
the overall operation of the multi-tier system cell. Efficient
cell and deployment management requires knowledge of per-
formance models in order to predict performance and ensure



optimal resource utilization through control. Control mech-
anisms such as configuration management, QoS and resource
optimization, application placement control and database
management are integral components of the cell and deploy-
ment managers. Other control mechanisms such as admis-
sion control, concurrency control and distribution control
(or load balancing) are components of the first tier gateway
manager. Monitoring agents running on various server nodes
collect measurements that are fed to the cell and deployment
management components. These measurements can be used
to update the performance model of the system, which can
in turn be employed by the various controller components.

The ‘performance modeling’ component is a key aspect of
the cell manager since most of the control operations and
resource optimization settings are based on a representative
model of the system. Such models need to be dynamically
updated in real-time to reflect the changing cell characteris-
tics, be it resources, applications or user demand. In other
words, real-time control of an AS system requires a real-time
update of the performance model.

3. EXTENDED KALMAN FILTER DESIGN
We present here an EKF design in the lines of the work

in [15, 16, 17]. It is assumed that the reader is aware of the
general theory of Kalman filtering. The reader is referred
to [14] for the same. Kalman filter provides the required
framework for estimating model parameters in a real-time
fashion by representing them as the state of an AS system.
Kalman filter is a minimum mean square error (MMSE) es-
timator that estimates the state from a series of incomplete
and noisy measurements. It minimizes the covariance of es-
timation error and operates by propagating both the mean
and covariance of state estimates through time. We propose
an open queueing model based EKF design for estimating
service time and network queueing delay parameters of a sin-
gle node, running a single application and processing three
different classes of traffic. It is sufficient to consider a single
node and three traffic classes to demonstrate the problems
that are encountered in the AS system of Figure 1 with mul-
tiple classes of workload. Such a single node system is shown
in Figure 2.

The system in Figure 2 is treated as a dynamical system.
Measurements on workload arrival rate and transactional
response times for each of the three user classes and CPU
utilization of the node are gathered at a sampling interval
of T seconds. These time series data are the input to the
filter. Workload arriving at the software system may be
fast changing and non-stationary. Assume that T is small
enough (few seconds) so that the arriving workload can be
considered stationary during this sampling interval. Then
the stationary, queueing theory based performance models
hold during this sampling interval. If we consider the state
of the system to comprise service time and network delay,
then an EKF can be used to compute a time series estimate
of this state.

For three classes indexed as class a, b and c and a single
node, we define the system state x as,

x =
[
sa sb sc da db dc

]T
, (1)

where, sa, sb and sc are service times at the server node
for classes a, b and c, respectively, and da, db and dc are
network delays for the three classes. Based on an M/G/1
open queueing network model with processor sharing (PS)
service discipline [19], the measurement model [14] z = h(x)

is defined as,
Ra

Rb

Rc

u

 =


sa

1−u + da

sb

1−u + db

sc

1−u + dc

1
P

(λasa + λbsb + λcsc)

 (2)

where, Ra, Rb and Rc are response times of the three classes,
u is the CPU utilization averaged over all CPUs of the only
node and P is the number of CPUs. If each sampling interval
is denoted by k then we may assume the following dynamics
for state evolution,

xk = Fkxk−1 + wk,

where, Fk is the state transition model which is applied to
the previous state xk−1 and wk is the process noise which
is assumed to be drawn from a zero mean, multivariate nor-
mal distribution with covariance Qk, i.e., wk ∼ N (0,Qk).
The iterative measurement equation [14] for Kalman filter
is taken to be,

zk = Hkxk + vk,

where, Hk is the observation model which maps the true
state space into the observed space and vk is the observation
noise which is assumed to be zero mean, Gaussian white
noise with covariance Rk, i.e., vk ∼ N (0,Rk). Since the
measurement model in Equation 2 is non-linear in terms
of the system state parameters (due to utilization u in the
denominator), we must use the ‘Extended’ version of the
Kalman filter [14]. The corresponding Jacobian matrix of
the measurement model is given by,

H =
∂h

∂x
=


1−u+λasa

P
(1−u)2

0 0 1 0 0

0
1−u+λbsb

P
(1−u)2

0 0 1 0

0 0
1−u+λcsc

P
(1−u)2

0 0 1
λa

P
λb

P
λc

P
0 0 0


and Hk can be computed as,

Hk =

[
∂h

∂x

]
x̂k|k−1

.

We may now use the standard EKF theory [14] to track
the system state over time. One of the major advantages
of Kalman filter is that it is a recursive estimator. This
means that only the estimated state from the previous time
step and the current measurements are needed to compute
the estimate for the current state. In the following EKF
algorithm, the notation x̂n|m represents the estimate of x
at time n given observations up to and including time m.
The state of the filter itself is represented by two variables:

1. x̂k|k is the estimate of state at time k given observa-
tions up to and including time k.

2. Pk|k is the error covariance matrix (a quantitative mea-
sure of estimated accuracy of the state estimate).

The Kalman filter algorithm has two distinct phases: Predict
and Update. The predict phase uses state estimate from the
previous time interval to produce an estimate of the state
at current time interval. In the update phase, measurement
information at the current time interval is used to refine this
prediction to arrive at a new, more accurate state estimate,
again for the current time interval. These two phases are
given as,



Figure 2: AS system with single server node and three

workload classes

Predict:

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F T
k + Qk

Update:

ỹk = zk − h(x̂k|k−1)

Sk = HkPk|k−1HT
k + Rk

Kk = Pk|k−1HT
k S−1

k

x̂k|k = x̂k|k−1 + Kkỹk

Pk|k = (I − KkHk)Pk|k−1

A more detailed description of the two phases and nota-
tion can be found in [14]. The filter design proposed above
was implemented as a stand-alone Java application. Mea-
surements gathered during experiments were fed in to this
application to obtain service time and delay estimates. The
experimental results are presented later in Section 5.

4. EXPERIMENTAL SETUP
In this section, we describe the experimental setup that

was used to conduct the experiments. Figure 2 shows the
single-node AS system with three user workload classes con-
sidered for our experimental setup. It consists of a web-
based environment including a synthetic HTTP traffic gen-
erator at the client machine and an IBM WebSphere Virtual
Enterprise cell [20] with a single server node. The architec-
ture of an IBM WebSphere cell is similar to that shown in
Figure 1. The actual application under consideration is a
micro-benchmarking servlet that simulates an adaptive soft-
ware application.

4.1 Simulated Adaptive Software
Details of how the servlet simulates an adaptive software

are as follows. Each HTTP request/transaction is served
by the micro-benchmarking servlet that alternates between
computing and sleeping. Servlet parameters controlling the
behavior of the execution of a request are: the total amount
of computation (specified in terms of the number of loops
over some arithmetic computation), duration of computa-
tion between sleeps and the duration of sleep. These param-
eters may be fixed or drawn from some probability distribu-
tion. The parameters can be provided in the HTTP request
and are configurable through the synthetic traffic generator
tool. Given values of these servlet parameters translate into

values of service time and delay parameters. The actual
translation function is not of importance as it may vary for
different software systems. Adaptivity of a software system
was simulated by manually changing the servlet parameters
through an HTTP request, that resulted in modified values
for the service time and delay parameters.

4.2 Traffic Generator
The traffic generator is written in Java and generates

HTTP requests of different types. A configurable number
of parallel threads simulate the web clients. The think time,
defined as interval between the receipt of a response from
server node and submission of a subsequent request, is spec-
ified by a probability distribution. We used the sum of a
fixed bias (125 msec) and an exponentially distributed time
with mean 125 msec. Load on the system can by altered
by varying the number of clients. Changing the parame-
ters may be performed manually or programmatically. In
the LVW experiment of Section 5.1, the parameters were
not changed and kept fixed, resulting in a stationary work-
load. In the SSP experiment of Section 5.2, an additional
component of the traffic generator was activated that re-
sulted in sinusoidal waves in the workload. This additional
component took as input the amplitude (maximum number
of clients), the phase in degrees (allowing different request
flows to have different phases) and the periodic length (for
the time duration of a sinusoidal cycle).

4.3 System Architecture and Hardware
The micro-benchmarking servlet was deployed as an appli-

cation in the IBM WebSphere cell (see Figure 1) that con-
sisted of a single server node and additional management
nodes: Cell, Deployment and Gateway manager. Monitor-
ing agents ran on the server node for collecting statistical
measures in a non-intrusive manner, without the need to in-
strument the application. In our experiments we measured
workload arrival rates, response times of requests and CPU
utilization of the server node. Once the micro-benchmarking
servlet is deployed, the server node ceases to interact with
the Deployment Manager. This ensures that management
nodes do not interfere with request/transaction processing
activity at the server node. IBM WebSphere platform ver-
sion 6.1 (ND 6.1.0.17) (XD 6.1.0.3) was used for our exper-
iments.

The traffic generator tool ran on a client machine with a
single Xeon 2.8 GHz Intel processor, 512 KB cache and 2
GB RAM. Three different types of transaction classes were
generated during the experiments. Each class was denoted
by a different class ID in the HTTP request and was gener-
ated using different values for the traffic generator param-
eters. The classes were simply named as Class a, Class b
and Class c. The servlet application ran on a server node
with a single Xeon 3.06 GHz Intel processor, 512 KB cache
and 2 GB RAM. The servlet processed different classes of
transactions differently, through unique values of servlet pa-
rameters that resulted in unique values of service times and
delays for each class.

5. PROBLEMS WITH MULTIPLE CLASSES
OF WORKLOAD

It is demonstrated here that the use of EKF (in the lines
of the work in [15, 16, 17]) for tracking model parameters
of an AS system with multiple classes of workload has con-
vergence problems. For this purpose, two different types of
experiments were conducted:



Figure 3: Workloads for LVW experiment

Figure 4: Response times for LVW experiment

Figure 5: CPU utilization for LVW experiment

Figure 6: Workloads for SSP experiment

Figure 7: Response times for SSP experiment

Figure 8: CPU utilization for SSP experiment



Figure 9: Service time estimates for LVW experiment

Figure 10: Network delay estimates for LVW experiment

Figure 11: Service time estimation error for LVW experi-

ment

Figure 12: Network delay estimation error for LVW ex-

periment

Figure 13: Improved service time estimates (LVW)

Figure 14: Improved delay estimates for LVW experiment

Figure 15: Improved service time estimation error for

LVW experiment

Figure 16: Improved delay estimation error for LVW ex-

periment



Figure 17: Service time estimates for SSP experiment

Figure 18: Network delay estimates for SSP experiment

Figure 19: Service time estimation error for SSP experi-

ment

Figure 20: Network delay estimation error for SSP exper-

iment

Figure 21: Improved service time estimates (SSP)

Figure 22: Improved delay estimates for SSP experiment

Figure 23: Improved service time estimation error for SSP

experiment

Figure 24: Improved delay estimation error for SSP ex-

periment



1. Low Variation in Workload (LVW) experiment: As
part of gateway management in an AS system (Fig-
ure 1), one of the goals of a typical admission control
mechanism is to ensure a smooth workload profile (see
[21] and references there-in). The mechanism would
attempt to remove spikes in the incoming user request
rate leading to a smooth workload with low variations
in the admitted request rate. This was the motivation
for conducting the LVW experiment in which the ad-
mission control lead to a workload with low coefficients
of variation for the three classes.

2. Step-change in System Parameters (SSP) experiment:
Reconfiguration of the software architecture, compo-
nents and functions in an AS system in order to ac-
commodate sudden changes in the execution environ-
ment can lead to step-changes in the service time and
queueing delay parameters. This was the motivation
for conducting the SSP experiment in which the servlet
parameters were altered to simulate adaptive reconfig-
uration.

5.1 Low Variation in Workload (LVW) Exper-
iment

Consider the scenario when the coefficient of variation for
inter-arrival time of incoming workload is much less than
one. Such was the case for the LVW experiment whose work-
load profile is shown in Figure 3. The three different time
series depict the transactional workload for classes a, b and
c. Their coefficients of variation are 0.176, 0.143 and 0.104
for classes a, b and c, respectively. Figures 4 and 5 show
the response time and CPU utilization measurements. All
three measurements were taken as per recommendations for
the sampling time T provided in [15, 16, 17] papers. The
three sets of data were fed in to the Java implementation of
the filter proposed in Section 3 to estimate service time and
network delay parameters for the three classes. Figures 9
and 10 show the computed estimates. The flat horizontol
lines in both plots are the expected, actual values of service
time and delay, as a result of the chosen servlet parameters
for the compute-sleep micro-benchmarking servlet. The fil-
ter was tuned based on the recommended values for Q and
R matrices provided in [15, 16, 17] papers. In spite of fol-
lowing the tuning recommendations, both service time and
delay estimates in Figures 9 and 10 tend to converge to the
actual values very slowly. Even after 6000 seconds of elapsed
time the estimates for all classes have not reached the ac-
tual values. As a quantitative measure of the performance
of the filter, Figures 11 and 12 show the variances in estima-
tion error which are essentially the diagonal elements of Pk|k
matrix as time step k evolves. Clearly the variances do not
converge and instead gradually increase and only slightly
decrease thereafter. Qualitatively, non-convergence of the
variances to a low steady-state value indicates the ‘badness’
of the estimates [14].

5.2 Step-change in System Parameters (SSP)
Experiment

Consider here the scenario when there is a step-change
in the actual parameters caused by adaptive reconfiguration
of the software. Such an adaptive reconfiguration allows
the software to adapt to changes in the incoming workload,
execution environment, etc. We carried out the SSP exper-
iment in which this step-change was simulated by manually
exchanging the servlet parameters twice between two of the
classes a and c. Instead of a mere exchange, the parameters

for the two classes could have also been changed to other
different values. However, exchange of parameters was done
for the sake of simplicity and easy presentation.

Figures 6, 7 and 8 show the workload, response time and
CPU utilization measurements for this experiment. Notice
the periodic and high varying nature of the workload. Fig-
ures 17 and 18 show the service time and delay estimates
using the EKF proposed in Section 3 along with their ex-
pected actual values depicted by the flat lines. Notice the
manually introduced step-change in the actual values, twice.
The filter was again tuned based on the recommended val-
ues for Q and R matrices and measurement sampling in-
terval chosen as per [15, 16, 17]. In Figures 17 and 18 it
is seen that in the beginning of the experiment the service
time and delay estimates converge to their expected values
much faster than in the LVW experiment discussed previ-
ously. Thus, having a high varying workload improves the
tracking of parameters by the filter. The service time and
delay estimates also follow the switch in actual values at
around 3000 and 4800 seconds of elapsed time. However, af-
ter the switch the estimates take a while to get close to the
new values. Though the Kalman filter detects and tracks
the switch in parameters, the convergence of estimates to
new values is quite slow. Figures 19 and 20 show the vari-
ances in estimation error that converge to low values, but
exhibit a saw-tooth type increase and decrease pattern. The
variances do not converge to a steady-state value and could
be further improved.

5.3 Problem Analysis
Let us carefully analyze the convergence problems dis-

cussed in the foregoing discussion. For the single class case,
Zheng et al. [15, 16, 17] demonstrated through experimen-
tal results that their Kalman filter is well able to track the
step-change in parameters without any convergence prob-
lems. For a single class they used response time and CPU
utilization measurements to estimate service time and user
think time (instead of network delay). Thus they used two
different measurements to estimate two different unknowns.
This would work fine since they were trying to estimate as
many unknowns as the known measurable quantities.

In general, if we have c classes then we would have 2c
unknowns to be estimated, i.e., service time and delay (or
think time) parameters for each class. Whereas, the number
of measurements available would be only c+1, i.e., response
time for each class and CPU utilization for the single server
node. User request rate measurements can not be used in
the left hand side of the measurement model (Equation 2)
to increase the total number of knowns to 2c+ 1 instead of
c + 1. Each measurable or known quantity corresponds to
a constraint on the state in the measurement model. For
a single class (c = 1), there would be sufficient measur-
able knowns to estimate the unknown variables. However,
for multiple classes (c ≥ 2) this would lead to an under-
determined system since the number of measurable knowns
would be less than the number of unknowns. This would re-
sult in lack of unique solution for the filter estimates at each
time step. The filter would fail to compute a unique esti-
mate for the service time and delay parameters and instead
propose feasible but undesirable solution estimates. This
explains the undesirable estimates obtained in both the ex-
periments, leading to slow convergence towards the actual
expected values.

Comparing the LVW experiment with the SSP experi-
ment, we observed in Section 5.2 that high varying work-
load in the latter improved the tracking of parameters. High



varying workload has the possibility to generate higher num-
ber of linearly independent set of measurements at each time
step k, as compared to low varying workload (see [22] and
references there-in). This would work towards reducing the
under-determined nature of the estimation problem and even-
tually lead to a reduced set of feasible solutions. This ex-
plains the improvement in parameter tracking in the SSP
experiment.

6. MODIFIED FILTER DESIGN & IMPROVED
RESULTS

The under-determined nature of the estimation problem
discussed in previous section can be addressed by increas-
ing the number of observations in the measurement model.
This can be done by using measurements from recent past
to construct constraints on the current state xk and aug-
menting them as perfect measurements (see Section 7.5.2 in
[14]) to the measurement model. Assuming that the state
vector remains stationary over the past l1 + l2 + · · · + lN
sampling intervals, the state at time k must perfectly sat-
isfy (i.e., without noise) the measurement equation based
on measurements from the last l1 + l2 + · · · + lN sampling
intervals. Here, N is the number of constraints and each
li, i = 1..N is the number of sampling intervals whose mea-
surements are averaged to build each of the N constraints.
The measurement model for time step k can thus be aug-
mented with a set of constraints Dxk = d in the following
manner,

[
zk

d

]
=

[
Hk

D

]
xk +

[
vk

0

]
(3)

where,

d = [d1 d2 · · · dN ]T and D = [D1 D2 · · · DN ]T .

Here,

di = z̄li =
1

li

q∑
j=p

zk−j ∀ i = 1..N

where,

p = 1 +

i−1∑
r=1

lr and q =

i∑
r=1

lr.

Similarly,

Di = H̄li =
1

li

q∑
j=p

Hk−j ∀ i = 1..N

where, p and q are defined above. Instead of augmenting the
constraints as perfect measurements with zero measurement
noise, it is also possible to generalize further and consider
them as noisy measurements with a non-zero noise term in
Equation 3. Also note that this augmented measurement
model of Equation 3 is different from the standard theory
on constrained Kalman filtering in Section 7.5.2 of [14]. The
difference being that here we use actual measurements from
recent past to construct the constraints instead of relying on
any a-priori knowledge about constraints on the state space.
The EKF design proposed in Section 3 was modified to in-
corporate the augmented measurement model of Equation
3. LVW and SSP experiments were repeated with this mod-
ified EKF design. The obtained results are presented after
we provide some insights for choosing the values of N and
each li.

6.1 Insights for choosing N and each li

The main purpose of incorporating additional constraints
is to have at least as many linearly independent knowns or
observations as the number of unknowns. The number of
unknowns in our problem will always be 2c. With one more
additional set of constraints, i.e., N = 1, the number of ob-
servations will become 2(c + 1). This is sufficient to have
a determined system if at least 2c of these 2(c + 1) obser-
vations are linearly independent. From our experience with
various experiments we have observed that this is usually the
case, i.e., N = 1 additional constraint is usually sufficient.
In some experiments it was observed that N = 1 was not
enough and two additional set of constraints were required
for improved results.

Choice of each li is very specific to a given experiment.
It depends on the rate of change of the software system
parameters (due to their time-varying nature) and the sam-
pling interval T . In fact, some systems may require updating
the value of li at each time step k. Deriving an explicit ex-
pression for the optimal choice of li is a separate research
problem in itself and is outside the scope of this paper.

For the experimental results that follow, values of N and
li were chosen intuitively through empirical observation of
results. They are given in this table,

Experiment N l1 l2
LVW 2 4 3
SSP 1 3 n/a

Table 1: Values chosen for the constrained EKF

6.2 Improved LVW Experiment Results
Figures 13 and 14 show service time and delay estimates

for the LVW experiment using the modified EKF. N = 2
additional constraints were used for results in these figures.
Observe the relatively fast convergence of estimates to the
actual values as compared to Figures 9 and 10. The ad-
ditional constraints in the augmented measurement model
increase the number of linearly independent knowns. This
tends to reduce the under-determined nature of the estima-
tion problem and the filter converges to the desirable, unique
solution much faster. The fluctuations of estimates around
the actual values in Figures 13 and 14, reflect changes in
the server node due to any background processes, context
switching and fluctuating CPU cycles consumed for mem-
ory management.

With the modified EKF, estimates reach close to their
actual expected values within around 700 seconds. Compare
this number with Figures 9 and 10 where the estimates do
not converge to their actual values even after 6000 seconds.
The order of improvement here is more than 8X in terms
of the time to converge. This is substantial improvement
with the modified EKF design. Figures 15 and 16 show
the improvement quantitatively, in terms of the variances in
estimation error that converge to very low and steady-state
values.

6.3 Improved SSP Experiment Results
Figures 21 and 22 show service time and delay estimates

for the SSP experiment using the modified EKF. N = 1 ad-
ditional constraint was sufficient this time since the high
varying workload already contributed towards generating
higher number of linearly independent set of measurements
at each time step k [22]. Service time estimates here con-



verge to the new actual values only about 200 seconds after
the 2nd switch in parameters which occurs at around 4800
seconds of elapsed time. Compare this with Figure 17 where
it takes more than around 1200 seconds. Similarly, delay
estimates converge to the new actual values in only about
300 seconds in Figure 22 as compared to more than approxi-
mately 1400 seconds in Figure 18. Thus, for SSP experiment
the order of improvement is about 4X to 6X in terms of the
time to converge. Figures 23 and 24 show the quantitative
improvement in terms of the variances in estimation error
that converge to very low and steady-state values.

The results presented here confirm that our modified EKF
design is very effective in solving the convergence problems
encountered with the original EKF design. Our modified
design is crucial for a successful implementation of EKF for
real-time performance modeling of AS systems that process
multiple classes of workload.

7. CONCLUSION
Real-time performance modeling for AS systems is an

emerging area of research. Prior work has demonstrated the
effective use of Extended Kalman filters for tracking (es-
timating) model parameters in a system with single class
of workload. However, in this work we have presented ex-
periments that demonstrate the in-effectiveness of prior ap-
proaches for multiple classes of workload. We have further
proposed a simple yet powerful modification to the existing
filter design. Our modification eliminates the problems en-
countered with the original filter design, with a very high
degree of improvement. To the best of our knowledge, ours
is the first attempt to propose such a modification. Results
presented in this paper can have a significant impact in im-
proving the performance of Kalman filters for the purpose
of real-time performance modeling of AS systems.
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