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Abstract—We consider a network of dynamical systems whose
trajectories we wish to control by applying stimuli to a subset
of systems. We study the minimum number of systems to
control and which systems to control and provide sufficient
conditions and necessary conditions for successful control. These
conditions are given in terms of graph theoretical properties of
the underlying network. For instance, we show that for the cycle
graph, the best way to achieve control is by applying control to
systems that are approximately equally spaced apart.

I. INTRODUCTION

In recent years, there is much research activity to study

synchronization in complex networks of nonlinear dynamical

systems [1]–[5]. In these studies criteria are derived that

ensure all dynamical systems are synchronized to the same

behavior. An important area of study is how these criteria are

related to the topology of the network [6]–[9]. In this case

there is generally no external forcing; the dynamical systems

only interact with each other. A related research area is the

problem of control in such complex networks [10]–[16], where

forcing is applied to a subset of dynamical systems in order

to bring the entire network to follow a specific trajectory. In

particular, it was shown that by forcing the behavior of a few

systems control can be achieved. In this paper we continue this

investigation and present new results. In particular, we attempt

to answer the following questions; how many systems should

be controlled and which systems should be controlled?

II. NOTATIONS AND DEFINITIONS

We consider weighted graphs (V, E, W ) where each edge

e ∈ E has a positive weight 0 < we ∈ W . The Laplacian

matrix of a graph is defined as a zero row sum matrix L such

that Lij = −wij where wij is the weight of the edge (i, j)
and Lij = 0 for all other i 6= j. This implies that Lii is the

(weighted) degree of vertex i. We will also consider augmented

weighted graphs defined as (V, E, W, C) where there is a value

ci ∈ C associated to each vertex i. Such graphs are depicted

in Fig. 1 where we denote an augmented graph (V, E, W, C)
by assigning a label wi to each edge and adding an arrow

with label ci pointing into each vertex i. The Laplacian of an

augmented graph is defined as L′ = L + diag(c1, c2, · · · , cn)
where L is the Laplacian matrix of (V, E, W ). For a Hermitian

matrix A, we ordered its eigenvalues as: λ1(A) ≤ λ2(A) ≤
· · · ≤ λn(A). For matrices A and B, we write A � B is

A − B is positive semidefinite.

We consider a network of n coupled dynamical systems

whose state equations are written in the following form:

Fig. 1. Augmented weighted graph.

dxi

dt
= f(xi, t) −

∑

j

AijD(t)(xi − xj) (1)

where xi is the state vector of the i-th system. The scalar

Aij ≥ 0, i 6= j denotes the coupling coefficient between the i-

th and the j-th system. The total number of systems is denoted

by n (i.e. 1 ≤ i ≤ n). The matrix D(t) describes the linear

coupling between two systems which is the same between

any pair of systems. By setting Lij = −Aij for i 6= j and

Lii =
∑

j Aij , this can be rewritten as:

dxi

dt
= f(xi, t) −

∑

j

LijD(t)xj (2)

Note that the matrix L = {Lij} is a zero row sum matrix with

nonpositive off-diagonal elements. The underlying topology of

the network is expressed as the weighted graph such that A and

L are its adjacency matrix and Laplacian matrix respectively.

We say the system in Eq. (1) synchronizes (globally) if

‖xi − xj‖ → 0 as t → ∞. Conditions for global and

local synchronization have been obtained using a variety

of techniques [17]–[21]. In many cases, the synchronization

conditions depend on the nonzero eigenvalues of L.

III. CONTROL IN NETWORKS OF DYNAMICAL SYSTEMS

We consider the scenario where in order to control the

network in Eq. (2), forcing terms are applied to a subset of

systems to drive the entire network to follow a prescribed

trajectory. In particular, we consider linear control of the form:

dxi

dt
= f(xi, t) −

∑

j

LijD(t)xj − ciD(t)(xi − u(t)) (3)

where u(t) is the desired target trajectory and ci > 0 if control

is applied to the i-th system and ci = 0 otherwise. We define

P as the set of systems where such control is applied, i.e.,

i ∈ P ⇔ ci > 0. We call P the set of controlled systems and

denote the number of controlled systems as p = |P |. We write

C = diag(c1, . . . , cn).



When a large control signal is applied with ci → ∞ for

i ∈ P , this implies that xi → u(t), i.e. the states of the i-th

system is forced to approach the trajectory u(t).
Let us assume that u(t) is a trajectory of the individual

dynamical system in the network, i.e.

du(t)

dt
= f(u(t), t) (4)

Then Eq. (4) is a virtual system [13] and by setting xn+1(t) =
u(t), we obtain a network of n + 1 dynamical systems with

state equations

dxi

dt
= f(xi, t) −

∑

j

L̃ijD(t)xj (5)

where L̃ is related to L as

L̃ =















L11 + c1 L12 . . . L1n −c1

L21 L22 + c2 L23 . . . L2n −c2

...
...

. . . Lnn + cn −cn

0 0















and the control problem is reduced to a synchronization

problem. Control is achieved in Eq. (3), i.e. every system’s

state vector xi follows the trajectory u(t) if the extended

system in Eq. (5) synchronizes. We next look at how properties

of L and L+C are useful in deriving a criterion for achieving

control in Eq. (3).

IV. CRITERIA FOR ACHIEVING CONTROL AND GRAPH

TOPOLOGY

In [15] the following was shown using the results in [22]:

Theorem 1: If the following conditions are satisfied:

1) L is symmetric,

2) (y−z)T V (f(y, t)−f(z, t)−αD(t)(y−x)) ≤ −µ‖y−
z‖2 for some α, µ > 0, a symmetric positive definite

matrix V and all y, z, t.

3) V D(t) is symmetric positive definite for all t, and

4) λmin(L + C) ≥ α,

then control is achieved, i.e. xi(t) → u(t) for all i as t → ∞.

Let us assume that the first 3 conditions in Theorem 1 are

satisfied and focus on the last condition: λmin(L+C) ≥ α. In

the rest of this paper, we will use λm = λmin(L+C) to denote

the effectiveness of the control and study what properties of

L and C contributes to maximizing (or minimizing) λm. Note

that if L is the Laplacian matrix of the graph (V, E, W ),
then L + C is the Laplacian matrix of the augmented graph

(V, E, W, C).
In particular, we are interested in the following formulation.

For a given network of dynamical system (Eq. (3)), where the

underlying topology is expressed as a weighted graph with

Laplacian matrix L, we choose how many systems to apply a

control signal, which systems to apply it to and how large the

control gain ci is. We describe this by specifying the coupling

matrix C = diag(c1, . . . cn).
What can be say about the matrix C such that control of

the network in Eq.(3) is achieved? Based on the discussion

above, we can attack this problem by looking at conditions

for C such that λmin(L + C) ≥ α. Of particular interest is

how it depends on the values of p and P .

The following simple Lemma establishes the monotonicity

of λmin, i.e. adding more edges or more control will not

decrease λm.

Lemma 1: Consider two augmented graphs

G1 = (V, E1, W, C) and G2 = (V, E2, U, F ) where

C = (c1, . . . cn), F = (f1, . . . fn), W = (w1, . . . wn), and

U = (u1, . . . un). If ci ≤ fi and wi ≤ ui for all i then

λmin(L1) ≤ λmin(L2) where L1 and L2 are the Laplacian

matrices of the augmented graphs G1 and G2 respectively.

Proof: First note that L′
2 − L′

1 is symmetric positive

semidefinite where L′
1 and L′

2 are the Laplacian matrices of

the weighted graphs (V, E1, W ) and (V, E2, U) respectively.

The result then follows from the fact that L′
1 is symmet-

ric and thus by Courant-Fischer theorem λmin(L′
1 + C) =

minx 6=0
xT (L′

1
+C)x

xT x
≤ minx 6=0

xT (L′

2
+F )x

xT x
= λmin(L

′
2 + F ).2

Let c = minci 6=0 ci. Consider the case p = n. As C � cI ,

this implies that λmin(L+C) ≥ λmin(L+cI) = λmin(L)+c =
c. Therefore λm can be made arbitrarily large by choosing c

large. This means that if all systems are controlled, control can

be achieved by making the control gains ci > 0 large enough.

However, the scenario is very different if ci = 0 for some

i, i.e. some systems do not receive any control and p < n. As

we show below, even if the nonzero ci are arbitrarily large,

λmin(L+C) will still remain bounded. The following Lemma

lists lower and upper bounds for λmin.

Lemma 2:

λ2(L)
(

1 +
√

1 + λ2(L)
∑

i
ci

)2

n + 1

≤ λmin(L + C) ≤

∑

i ci

n
(6)

If p < n, then

λmin(L + C) ≤ λp+1(L) (7)

Proof: The proof of Eq. (6) can be found in [23]. Eq. (7)

is a consequence of Weyl’s eigenvalue interlacing inequality

[24] and the fact that λi(C) = 0 for i > p. 2

Eq. (7) suggests that if some system did not receive any

control (p < n), then control may not be possible if the

eigenvalues of L are small, even if the nonzero control

gain coefficients ci are arbitrarily large. This gives us some

information on how many systems forcing need to applied to.

For instance, if λmin(L + C) needs to be larger than a value

γ in order to achieve control, where γ ≥ λp+1(L), then it is

necessary to apply control to at least p systems.

Definition 1: The isoperimetric ratio r(V ′) of a subset of

vertices V ′ ⊂ V is defined as the number of edges between

V ′ and V \V ′ divided by the number of vertices in V ′.

Theorem 2: If ∅ 6= V ′ ⊂ V \P , then λmin(L+C) ≤ r(V ′).

Proof: Let v be a vector with vi = 1 for i ∈ V ′ and

vi = 0 otherwise. Then λmin(L + C) ≤ vT (L+C)v
vT v

= r(V ′).
2

Corollary 1: If p < n, then λmin(L + C) ≤ p.



Proof: Let V ′ = V \P . Then |V ′| = n−p and the number

of edges between V ′ and V \V ′ is at most p(n − p). 2

We will show in Section V that this bound is achieved for

the complete graph, when c → ∞.

Corollary 2: If p = n− 1, i.e. only one ci is equal to zero,

then λmin(L + C) ≤ δ, where δ is the degree of the vertex i

such that ci = 0.

Corollary 3: If p < n, then λmin(L + C) ≤ δmax where

δmax is the maximal vertex degree.

The first inequality of Lemma 2 relates λmin(L + C) to

the algebraic connectivity λ2 of the underlying graph with

Laplacian matrix L. The next result relates λmin of the Lapla-

cian matrix of an augmented weighted graph to the algebraic

connectivity λ2 of a related weighted graph. Consider an

augmented graph G. Construct a graph H by taking two copies

of G minus the augmented edges C and add a new vertex v0.

For each i ∈ P , add an edge of weight ci from v0 to vertex

vi of each copy of G. This is shown schematically in Fig. 2.

Fig. 2. The weighted graph H is generated from the augmented weighted
graph G by connecting two copies of G via an additional vertex v0.

Theorem 3:

λmin(L(G)) ≥ λ2(L(H))

Proof: Let v be the unit norm vector that minimizes

L(G), i.e vT L(G)v = minx 6=0
xT L(G)x

xT x
= λmin(L(G)). Let

wT = (vT , 0,−vT ), where v and −v corresponds to the

two copies of G and 0 corresponds to vertex v0. Since
∑

i wi = 0 and wT w = 2, the Courant-Fischer theorem

shows that wT L(H)w ≥ 2λ2(L(H)). It is easy to see that

wT L(H)w = 2vT L(G)v and the conclusion follows. 2

Corollary 4: For an augmented graph G with n vertices and

P 6= ∅,

λmin(L(G)) = λmin(L + C) ≥ 2cm

(

1 − cos

(

π

2n + 1

))

where cm = mini∈P {ci, 1}.

Proof: We only need to look at the case ci = 1 for all

i ∈ P , as the other cases are similar. In this case H is a graph

with 2n+1 vertices. In [25] it was shown that for a graph with

n vertices, λ2(L) ≥ 2
(

1 − cos
(

π
n

))

and the result follows.2

The bound in Corollary 4 is tight. For instance, for the

path graph Pn with c1 = 1, ci = 0 for i > 1, we have

λmin(L + C) = 2
(

1 − cos
(

π
2n+1

))

(see e.g. [26], [27]).

For the complete graph with Laplacian matrix L, Lemma 2

shows1 that if
∑

i ci is bounded for all n, then λmin(L+C) →
∑

i ci

n
as n → ∞.

1See also [23].

V. LOCALIZATION OF CONTROL AS c → ∞

For a fixed 1 ≤ p < n, we study how the choice of P , i.e.

the set of vertices for which ci is nonzero, affects λmin(L+C).
In particular, we are interested in the configuration that max-

imizes or minimizes λmin(L + C). In [16] some preliminary

studies were done to determine these configurations and it

was shown that in many cases a configuration that minimiz-

ing the (average) distance from P to V \P also maximizes

λmin(L + C). In particular, for p = 1 and c = 10, it was

shown that this is true for all graphs with 6 or less vertices,

with counterexamples in graphs with 7 vertices.

In this section we study the scenario as c → ∞ since it

allows us to explicitly find configurations P which maximizes

or minimizes λmin(L + C) for certain classes of graphs.

For a fixed set of indices P , let C(P, c) be the diagonal

matrix such that ci = c for i ∈ P and ci = 0 otherwise.

Define κ(P ) = limc→∞ λmin(L + C(P, c)), ηmax(p) =
sup|P |=p κ(P ) and ηmin(p) = inf |P |=p κ(P ).

Theorem 4: If P 6= ∅, then κ(P ) ≥ ηmin(P ) ≥ λ2(L)
4n+1 .

Proof: Follows from Eq. (6). 2

Lemma 3: Let L′ be the principal submatrix corresponding

to the indices V \P . Then κ(P ) = λmin(L
′).

Proof: Let v be a unit eigenvector of L + C(P, c)
corresponding to λmin(L+C(P, c)). It is clear that for i ∈ P ,

vi vanishes as c → ∞. Let w be the subvector of v restricted

to V \P . Then wT (L + C(P, c))w = wT L′w and this also

minimizes wT L′w among all unit vectors w and thus is equal

to λmin(L′). 2

A. Optimal configurations

1) Cycle graphs:

Theorem 5: For a cycle graph of n vertices and p < n,

ηmax(p) = 2−2 cos
(

π
⌈n

p
⌉

)

and ηmin(p) = 2−2 cos
(

π
n−p+1

)

.

Proof: We show that the configuration P which attains

ηmax and ηmin is the configuration which spreads out the most

and the least respectively. It is clear that L′ is block diagonal

with the block submatrices of the form:










2 −1
−1 2 −1

. . .
. . .

. . .

−1 2











(8)

This is a Toeplitz matrix whose smallest eigenvalue is equal

to 2− 2 cos
(

π
m+1

)

where m is the order of the matrix. Thus

the largest (smallest) value for κ(P ) is achieved when these

submatrices are as small (large) as possible. This implies that

to maximize κ(P ), P should be as dispersed as possible in

order to “cut” the cycle graph into as many small pieces as

possible. Since |P | = p, it will cut the graph into p pieces. If

P is placed as evenly around the cycle as possible, then the

largest piece is of length ⌈n−p
p

⌉ = ⌈n
p
⌉−1. The corresponding

Toeplitz matrix has its smallest eigenvalue equal to ηmax(p) =

2 − 2 cos
(

π
⌈n

p
⌉

)

. The submatrix is the largest possible if all

elements of P are adjacent on the cycle graph, in which case

the submatrix is of order n − p. 2



2) Path graphs:

Theorem 6: For a path graph of n vertices, ηmax(p) = 2−

2 cos
(

π
⌈n

p
⌉

)

and ηmin(p) = 2 − 2 cos
(

π
2(n−p)+1

)

if p < n.

Proof: The proof is similar to that of Theorem 5, except

that in this case L′ is block diagonal with blocks of the form

Eq. (8) and of the form (perhaps after a simultaneous row and

column permutation)










1 −1
−1 2 −1

. . .
. . .

. . .

−1 2











(9)

Note that for P being internal vertices of the path graph (i.e.

those vertices with degree 2), this splits L′ into p + 1 blocks

with p − 1 blocks of the form Eq. (8) and 2 blocks of the

form Eq. (9). For matrices of the form Eq. (9) the smallest

eigenvalue is equal to 2 − 2 cos
(

π
2m+1

)

(see [26], [27]), i.e.

the same as a matrix of the form Eq. (8) of order 2m. Thus the

optimal splitting into submatrices is such that the blocks of the

form Eq. (9) are about half the size as the blocks of the form

Eq. (8). This means that ηmax is obtained for a configuration

that splits it into p − 1 blocks of the form Eq. (8) of order

≈ n−p
p

and 2 blocks of the form Eq. (9) of order ≈ n−p
2p

. As

for ηmin the biggest block is created when all vertices of P

is on one side of the graph, resulting in a single block of the

form Eq. (9) of size n − p. 2

It is interesting to note that ηmax(p) is the same for path

graphs and cycle graphs. Computer experiments show that

ηmax(1) is attained for a configuration such that the vertex in

P minimizes the distance to V \P 2 for all graphs of 7 vertices

or less. For graphs with 8 vertices, there is a graph where the

ηmax-maximizing configuration P is not in the graph center.
3) Complete graphs: It is clear that for the complete graph,

only the cardinality p of the set P and not the set of P

itself affects λmin(L + C). It is easy to see that the principal

submatrix corresponding to V \P is LK
n−p +pI where LK

n−p is

the Laplacian matrix of the complete graph of n − p vertices

and thus ηmax(p) = ηmin(p) = κ(P ) = λmin(LK
n−p+pI) = p

for p < n.

VI. FUTURE RESEARCH

Consider the problem where the goal is to find the matrix C

such that λmin(L+C) is maximized under the constraint that
∑

i ci = B for some constant B. First note that λmin(L+C) ≤
B
n

by Lemma 2. If p is not fixed, then the answer is clear:

set p = n and ci = B
n

for all i. In this case λmin(L + C) =
λmin(L) + B

n
= B

n
. An interesting question is to determine

how to allocate and assign ci when the set P is fixed (with

|P | < n) in order to maximize (or minimize) λmin(L + C).
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