
RC24894 (W0911-025) November 4, 2009
Computer Science

IBM Research Report

Enhanced Inferencing:
Estimation of a Workload Dependent Performance Model

Dinesh Kumar, Li Zhang, Asser Tantawi
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Enhanced Inferencing: Estimation of a Workload
Dependent Performance Model

Dinesh Kumar, Li Zhang, Asser Tantawi
IBM T.J. Watson Research Center, Hawthorne, NY, USA

{kumardi,zhangli,tantawi}@us.ibm.com

ABSTRACT
Performance modeling of software systems is vital for pre-
dictive analysis of their performance and capacity planning
of the host environment. Robust performance prediction
and efficient capacity planning highly depend on an accu-
rate estimation of the underlying model parameters. AM-
BIENCE, which is a prototype tool developed at IBM Re-
search, makes use of the powerful Inferencing technique to
generate a workload-independent parameters based perfor-
mance model. However, modern software systems are quite
complex in design and may exhibit variable service times and
overheads at changing workloads. In this work, we extend
the Inferencing technique for generating workload-dependent
service time and CPU overhead based performance models.
We call this extended form as Enhanced Inferencing. Imple-
mentation of Enhanced Inferencing in AMBIENCE shows
significant improvement of the order of 26 times over Infer-
encing. We further present a case study where Enhanced
Inferencing provides a quantitative performance difference
between consolidated and partitioned software system in-
stallations. Ability to carry out such evaluations can have
significant impact on capacity planning of software systems
that are characterized by workload-dependent model param-
eters.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Queueing Theory, Inferencing, Estimation

Keywords
service time, CPU overhead, performance prediction

1. INTRODUCTION
Performance modeling is a crucial step in capacity plan-

ning of computer software systems. Performance models of

complex software and hardware architectures can be very
helpful in accurately predicting their performance for vary-
ing traffic patterns and workloads. In this paper, we are con-
cerned with performance modeling of transaction-based, dis-
tributed software systems that process transactional work-
load of request/response type, such as HTTP workload. An
example being an e-commerce based online shopping system.
User workload processed by this system includes authenti-
cation transactions such as login, and business transactions
such as browsing a catalog, searching for products, adding
items to a shopping cart, proceeding to check out, etc. Each
of these transactions use the e-commerce system resources
differently and can be classified into different classes. Fig-
ure 2 in Section 2 depicts an example transaction-based,
distributed software system. The 12 icons on left represent
12 different transaction classes that are generated by the
‘Client’ machine. These transactions are processed by the
‘Web/CQ’ machine that hosts a Webserver (e.g., Apache)
and the ClearQuest [2] application. Processing of these
transactions may trigger further requests to the ‘DB’ ma-
chine that hosts a database.

Classical queueing theory based performance models [5]
require the knowledge of parameters such as service times
for different transaction classes and CPU overheads for dif-
ferent machines. These parameters can be used to compute
and predict performance metrics such as average transaction
response time, average number of jobs/transactions waiting
to be processed, etc. There are other existing techniques
that make use of simulations and manual caliberations to
compute similar performance metrics [17]. However, none
of these techniques can be practically applied if the service
times and CPU overheads are unknown. Instrumenting soft-
ware applications with probes in order to actually measure
the service time and overhead parameters can be intrusive,
requires extensive manual coding [1] and is time consuming.
In fact, source code of a standard, commercialized software
system may not even be accessible. Moreover, instrumenta-
tion is an iterative procedure and is difficult to pursue in a
dynamically changing environment (see [8] and references
there in). The system parameters must therefore be esti-
mated using only readily available measurement data. AM-
BIENCE [18, 6], which is a prototype tool developed at IBM
Research, makes use of a powerful Inferencing algorithm [7]
to estimate a service time, delay and CPU overhead based
performance model. Inferencing allows one to compute these
three parameters from readily available measurement data
on end-to-end response times, CPU utilizations and work-
load arrival rates. It does not require any instrumentation

Figure 1: Rough service time estimates

or modification of the software system. Inferencing however
models service time and CPU overhead as constant param-
eters, independent of the workload.

Modern software systems must continuously self-reconfigure
their components to adapt to run-time changes in the host
and network environments [12]. This is especially the case
for Internet based online applications that operate in a highly
dynamic environment with fast changing user workloads and
browsing patterns. However, autonomic reconfiguration [12]
in modern software systems can lead to workload-dependent
service times and overheads (see [3, 16] and references there
in). Moreover, state of the art transaction-based software
systems are quite complex in design. They may incur extra
processing overheads when mean transactional workload is
high, as compared to when it is low. Due to this end-to-end
transactions may incur variable service times depending on
the total arriving workload (discussed in detail in Section-
3). As an example, for a single transaction class, Figure
1 shows rough service time estimates from measurements
gathered from a software system similar to that of Figure 2.
The service times clearly show a linear dependence on the
workload arrival rate. More evidence and discussion can be
found in [8, 3] and references there in. As a consequence,
Inferencing may not work reliabily for workload-dependent
parameters since it assumes constant model parameters.

1.1 Related Work
A prototype implementation of a performance manage-

ment system for multi-tiered web applications deployed on
clustered web servers is decribed in [9]. The management
system allocates server resources dynamically in order to
optimize the expected value of a system-wide utility func-
tion. Authors there use a closed queueing network model to
predict the response time of requests for different resource
allocations. However, service time parameters of the queue-
ing network model are obtained using an ad-hoc approach
based on the argument that response time at each node is
close to the service time on the same node when workload
is light. Approximating response time at light workload
as a measure of the service time lacks a sound analytical
and theoretical basis. This approach may not work with
multiple classes of transactions. The reason being that ex-
periments with hypothetically light workloads for different
classes, whether individually or all classes collectively, may
not incorporate the interaction between multiple classes of
transactions. Since presence or absence of a particular class
of transaction may impact service time of another, this may
lead to incorrect service time estimates. Moreover, light load
response time approximation is not a feasible approach for

software systems with workload-dependent parameters.
Urgaonkar et al. [16] develop another closed queueing net-

work model of a multi-tiered system. Estimates of the model
parameters, such as visit ratios and load-dependent service
times, are obtained off-line through analyzing various mea-
surement logs in the system. Their methodology lacks a
sound analytical model for parameter estimation. Pacifici et
al. [8] consider the problem of dynamically estimating CPU
demands of applications using CPU utilization and through-
put measurements. Using a linear model, they formulate the
problem as a multivariate linear regression problem and an-
alyze measurement data in order to extract realistic traffic
properties. With this approach however, they admit facing
several practical issues such as insignificant flows, co-linear
flows, space and temporal variations, etc. They present sev-
eral ad-hoc techniques to deal with these issues. Their exper-
imental results demonstrate that the approach is viable only
for a rough estimation of the dynamically changing CPU de-
mands. They provide many future work guidelines to deal
with various other issues that they were not able to ad-
dress in their work. Authors in [15, 10] disclose a method
for estimating the response time of a typical transaction re-
quest. However, they do not have any mathematical basis
for the estimation of response time and rely solely on simple
measurement data. Moreover, they do not explicitly model
service time. The work in [14] creates profiles for applica-
tion resource consumption based on OS level measurements.
It uses regression techniques to correlate CPU resource, re-
mote invocation overhead and inter-component communica-
tion versus the request load. However, it requires kernel
level modifications to collect usage data. Authors in [13]
express response times as linear combinations of the service
times with the coefficients derived from measured utiliza-
tions and request volumes. It then applies various regression
techniques to estimate the response times based on data col-
lected from different time intervals. This approach can not
be used to predict the resource utilizations for given request
arrival volumes. It also does not address the possible non-
linear scaling behaviors between resource utilizations and
request volumes due to workload-dependent service times.

Authors in [11] use simple curve fitting (regression) tech-
niques to fit the utilization and response time curves inde-
pendent of each other. Although it is relatively easy to pick
the family of curve for utilization, the significant non-linear
behavior of response times makes it a challenging task to
select their curve family. Furthermore, modeling and fit-
ting the utilization and response time independent of each
other clearly misses the intrinsic linkage and coupled rela-
tionship between the two. On the other hand, Inferencing
first employs a queueing theory based model that relates the
utilization and response time, and then uses a least-squares
framework for estimating the model parameters.

To summarize and to the best of our knowledge, even
though performance modeling has been a research topic since
long time, no systematic and analytically sound method-
ology for estimating workload-dependent service times and
CPU overheads has been published in literature before. Most
of the techniques cited above, including the Inferencing al-
gorithm [7], consider only constant service times and over-
heads. Moreover, all above cited techniques (except Infer-
encing) either require instrumentation of the software sys-
tem, lack a sound analytical model and require ad-hoc tech-
niques, or are based on simple regression techniques failing

to link the response time and utilization metrics.

1.2 Summary of Contribution
In this work, we extend the Inferencing technique for gen-

erating workload-dependent service time and CPU overhead
based performance models. We call this extended form of
Inferencing as Enhanced Inferencing. Enhanced Inferencing
works by increasing the degrees of freedom of the perfor-
mance model parameters and representing service times and
overheads as functions of the sum of total arriving workload.
Different functional representations are possible depending
on the nature of the software system. In particular, they
may be polynomial functions of either the simple sum of
workload, the exponential of sum of workload or the loga-
rithm of sum of workload. Degrees of the chosen polynomi-
als represent the amount of increase in degrees of freedom
for the service time and CPU overhead parameters. To the
best of our knowledge, ours is the first attempt to propose a
method for performance modeling of software systems that
process multiple classes of transaction and exhibit workload-
dependent characteristics.

Rest of the paper is organized as follows. In Section 2, we
first provide a brief background in which the notation used
in this paper is introduced and the Inferencing technique is
summarized. It is also shown that Inferencing does not give
good results for an example software system with workload-
dependent service times. In Section 3, further motivation
for workload-dependent performance modeling is provided
and Enhanced Inferencing is presented. Some insights for
choosing the right number of experiments is discussed. Im-
plementation of Enhanced Inferencing into the AMBIENCE
tool is shown to provide significantly improved results for
the same example software system. Section 4 provides a
case study with a consolidated and partitioned software sys-
tem. We finally conclude in Section 5.

2. BACKGROUND
Consider a single transaction class processed by a single

server machine. Transactions with similar characteristics are
grouped into a single class. For example, transaction classes
may include transactions for searching, buying, logging in,
etc. Buying transaction class may include transactions that
are responsible for purchasing a particular product and so
on. Different transaction classes typically have different ser-
vice requirements. The single server machine is modeled as
an M/G/1 queue with Processor Sharing (PS) service dis-
cipline [5]. Then from queueing theory it is known that for
an open model [5] of an M/G/1 queue with PS service dis-
cipline,

R =
s

1− u , (1)

where,

u = λ s. (2)

In the above formulae, s is the service time of given trans-
action class, R is its response time, λ is the arrival rate of
all such transactions and u is the server utilization. The
above equations can be repeatedly applied to a given soft-
ware system that includes multiple server machines and mul-
tiple classes of transactions.

2.1 Notation

All entities, ·̃, with a tilde on their top are actual aver-
age values of readily available measurement data that can
be obtained by conducting suitable experiments with the
software system. Let there be K transaction classes and M
physical machines in a given system topology. Let C denote
the index set of all transaction classes that may have differ-
ent service requirements. Let L denote the index set of all
physical machines that are part of a given topology. Let the
rate at which total workload of a class c ∈ C transaction ar-
rives from an external source into the network (through any
machine) be denoted by γ̃c. Let the rate at which workload
of a class c ∈ C transaction arrives at machine i ∈ L from
with in the network be denoted by λc

i . It represents the ef-
fective workload of class c arriving at machine i, where as
γ̃c denotes the total workload of class c being generated by
an external source. Denote, λc = [λc

1, λ
c
2, . . . , λ

c
M]. Also, in

the vector γc = [0, 0, . . . , γ̃c, . . . , 0], γ̃c is located at the jth
position (j ∈ L) when class c transactions enter the network
through machine j. One may then compute the effective
workloads by solving the open Jackson network traffic bal-
ance equations [5] given by,

∀c ∈ C, λc = γc(I − P c), (3)

where, P c = [P c
ij] is the traffic routing probability matrix,

i.e., probability that a class c flow leaves machine i and goes
to machine j is given by P c

ij . It is assumed that P c is well
defined for a given network architecture, i.e., the values P c

ij

are given.

2.2 Inferencing
Here we briefly describe the Inferencing technique from

[18, 6] that allows one to generate a service time, network
delay and CPU overhead based performance model. The
three model parameters are assumed to be constant and in-
dependent of the arriving workload. Consider the case of
stationary workload or assume that measurements are taken
from the system when arriving workload stays within a given
stationary regime. Let sc

i denote the service time of class c
transaction at machine i, dc

net denote the total network delay
incured by class c transaction and ocpu

i denote the total CPU
overhead at machine i. The queueing theory based formu-
lae described earlier in Equations 1 and 2 can be repeatedly
applied to estimate the model parameters using Inferencing
technique as follows. For any given system topology, expres-
sions for response time, Rc, of traffic class c and utilization,
ui, of machine i can be written as,

∀c ∈ C,
∑
i∈L

αc
i

sc
i

1− ũi
+ dc

net = Rc, (4)

∀i ∈ L,
∑
c∈C

λc
i

Pi
sc

i + ocpu
i = ui, (5)

where, αc
i = λc

i/γ̃
c and Pi is the total number of processors

(CPUs) in machine i. One may then seek to minimize the
sum of squares of relative errors between the analytical en-
tities given by Equations 4 and 5 and their corresponding
mean measurement values obtained from experiments con-
ducted with the real software system. The corresponding op-
timization problem will comprise a quadratic objective func-
tion in the set of variables {sc

i , d
c
net, o

cpu
i , ec, ei|c ∈ C, i ∈ L},

min
∑
c∈C

(
ec

R̃c

)2

+
∑
i∈L

(
ei

ũi

)2

, (6)

Figure 2: Consolidated topology for ClearQuest software system

Figure 3: Utilization scaling with Inferencing

Figure 4: Response time scaling with Inferencing

with the following set of linear constraints,

∀c ∈ C, Rc + ec =
∑
i∈L

αc
i

sc
i

1− ũi
+ dc

net + ec = R̃c, (7)

∀i ∈ L, ui + ei =
∑
c∈C

λc
i

Pi
sc

i + ocpu
i + ei = ũi. (8)

ec and ei are slack variables and denote the error in response
time and utilization, respectively. The above optimization
problem is a standard Quadratic Programming (QP) prob-
lem with a linear set of constraints [4]. It can be solved using
standard optimization algorithms for QP such as those de-
scribed in [4]. The solution to this optimization problem
will give us the service times, sc

i , network delays, dc
net, and

CPU overheads, ocpu
i , required as part of the solution to the

Inferencing problem.

2.3 Conducting Experiments
In the previous sub-section, it was assumed that measure-

ments are taken from the software system when arriving
workload stays within a given stationary regime. These mea-
surements will include average response times R̃c for each
class c ∈ C, average CPU utilizations ũi for each machine
i ∈ L and average arrival rates λc

i computed from γc for
each c ∈ C, i ∈ L. A single experiment can thus be carried
to gather these measurements in order to construct a single
set of constraints given by Equations 7 and 8. The Infer-
encing optimization problem can be solved along with this
single set of constraints to obtain the solution for model pa-
rameters. In a similar manner, multiple experiments can be
conducted at varying stationary regimes of workload to for-
mulate multiple sets of constraints given by Equations 7 and
8. The Inferencing optimization problem can then again be
solved with these multiple sets of constraints to obtain the
solution for model parameters. This time however, the solu-
tion will be representative of the constant model parameters
valid across variable workloads for which the multiple exper-
iments are conducted. In the following discussion, insights
for deciding the number of experiments to be conducted are
provided.

Consider the linear system of equations formed by Equa-
tions 4 and 5. Assume Rc and ui there are replaced by
their known measurable values from experiments. In gen-
eral, if there are K classes and M machines then there will
be KM + K + M unknown variables in that system, i.e.,
service time (sc

i) for each class at each machine (KM vari-
ables), delay (dc

net) for each class (K variables), and CPU
overhead (ocpu

i) for each machine (M variables). For every
experiment conducted, the number of linearly independent
available measurements will be K + M , i.e., response time
(Rc) for each class and CPU utilization (ui) of each ma-
chine. Thus, a total of r experiments will lead to a system
of (K +M)r equations as per Equations 4 and 5. Workload
arrival rate measurements are simply considered as known
entities and will not increase the total number of equations.
In order to obtain a unique solution for the KM+K+M un-
known variables, exactly the same number of equations are
required. In other words, the following relationship must
hold, (K + M)r = KM + K + M . This implies that the
number of experiments required to obtain a unique solution
is given by,

r =

⌈
KM

K +M
+ 1

⌉
. (9)

Any number of experiments less than that defined by Equa-
tion 9 will lead to an under-determined system of equations
and hence multiple solutions. Any number of experiments
more than that defined by Equation 9 will lead to an over-
determined system of equations and possibly no solution.
However, Equation 9 only provides a guideline for decid-
ing the number of experiments to be conducted. In reality,
greater number of experiments may be required, or lesser
may be sufficient. Actual measurement data is always noisy
due to background processes and other unpredictable factors
with in the software system. This may result in experiment
data sets that are not linearly independent, requiring addi-
tional experiments to be carried out. Alternatively, noisy
data may reduce the set of feasible solutions. In the least-
squares estimation problem this may eventually lead to a
unique optimal solution in spite of an under-determined sys-
tem with lesser number of experiments. The fact that the
system of equations formed by Equations 4 and 5 may not
be exactly solved using noisy measurement data for Rc and
ui, is the exact reason why a least-squares estimation frame-
work was setup in the previous sub-section.

2.4 Inferencing Example
Consider the ClearQuest software system of Figure 2. De-

tails of this system were described earlier in Section 1. We
are interested in generating a performance model of this sys-
tem using AMBIENCE tool which uses the Inferencing al-
gorithm. For this, 5 different experiments were carried out
at 5 different transactional workloads. Though Equation
9 requires only 4 experiments, one additional experiment
was carried out due to reasons cited in the above discus-
sion. The workload intensities were 370 sessions/hour, 633
sessions/hour, 813 sessions/hour, 896 sessions/hour and 925
sessions/hour, in all cases the workload comprising a cer-
tain proportional mix of the 12 transaction classes. Mea-
surements obtained from these experiments were input into
AMBIENCE and the model was built to infer (estimate) the
various service times, CPU overheads and network delays.
Once these model parameters are estimated, AMBIENCE
plots CPU utilization and response time scaling curves based
on Equations 4 and 5. Figures 3 and 4 show the CPU uti-
lization and response time scaling charts, respectively. The
dots in the charts represent average utilization and response
time measurements for different machines and transaction
classes, respectively, at different workloads. The lines in the
charts are utilization and response time predictions gener-
ated by the model, based on Equations 5 and 4, respec-
tively, using the infered (estimated) service times and CPU
overheads. On x-axis ‘Load Scale’ represents ratio between
the transactional workload for different experiments and the
base workload. The experiment with smallest workload is
considered as the base workload experiment and is indicated
in the heading on top of the chart. Thus, for the 370 ses-
sions/hour experiment the Load Scale is 1.0. In Figure 3
we see that the model predicted utilization is linear in vari-
ation and matches well with the measured utilization for
‘Client’ and ‘DB’ machines. Observing Equation 5, this in-
dicates that the service times and CPU overheads for these
two machines are constant and workload independent. How-
ever, for ‘Web/CQ’ machine we see that the model predicted
and measured utilizations do not match well. Since service
times are modeled as constant parameters in Inferencing, the
model predicted utilizations do not scale non-linearly (see

Equation 5) to match the non-linear trend in the measure-
ment points. The non-linear variation in utilization mea-
surement points indicates that the actual service times may
be workload dependent. In Figure 4, we again see that the
model predicted and measured response times match well
for some transactions, but not for others.

3. ENHANCED INFERENCING
As discussed in Section 1, complex design of state of the

art software applications may lead to variable service times
depending on the total arriving workload. This is because
computer machines may incur extra processing overheads
when mean transactional workload is high as compared to
when it is low. In a multi-tasking operating system envi-
ronment, higher average transactional workload may cause
increased context-switching of various application modules
and components in the CPU and memory. Over a given
period of time the CPU may end up spending more time
in context-switching than processing the actual transaction
jobs. This may lead to a slower transaction processing rate
by the CPU and increased service times for a given trans-
action class. In other words, it may lead to a slower server.
Also, higher transaction workload processed by the NIC
(Network Interface Card) can force it to generate higher
number of interrupts at the CPU for data transfers between
the NIC and main memory. This will cause fewer CPU cy-
cles being allocated to the processing of actual transaction
jobs and the CPU will spend more time in serving the in-
terrupts. Service times of transactions will be further af-
fected due to this phenomenon. It is clear from the results
in Section 2.4 and the above discussion that we must con-
sider service times and CPU overheads as some function of
the arriving workload and not constants. In other words,
service time for a particular transaction class at a given ma-
chine and total CPU overhead in a particular machine must
be modeled so that they can take greater values at higher
mean workloads as compared to at lower mean workloads.
We therefore extend the Inferencing technique to incorpo-
rate arriving workload dependent service times and CPU
overheads and call it Enhanced Inferencing.

Enhanced Inferencing works by increasing the degrees of
freedom of the service time and CPU overhead model param-
eters and representing them as functions of the workload.
We have empirically observed that the rate at which service
times increase with increasing arriving workload does not
follow a uniform trend. It rather depends on the complex
modular design of software application systems, configura-
tion of application deployment environment, etc. We have
futher observed that the rate of increase of service times
and CPU overheads is usually either a polynomial, exponen-
tial or logarithmic function of the arriving workload. The
empirical evidence is provided through a case study in Sec-
tion 4. Based on this evidence and observation, intuitively
it would then make sense to consider the service times and
CPU overheads as increasing polynomial, exponential or log-
arithmic functions of the total arriving workload. Moreover,
we have observed that the sum of arriving workload over
all transaction classes works as a fairly good approxima-
tion in order to incorporate dependence of service times and
CPU overheads on the entire workload vector. This mo-
tivates us to consider them as polynomial functions of ei-
ther the simple sum of workload, the exponential of sum of
workload or the logarithmic of sum of workload. However,

note that this dependency on arriving workload may also
be characterized as, service times and CPU overheads be-
ing functions of any arbitrary or generic representation of
the workload vector. In other words, the service times and
CPU overheads may be expressed as sc

i (f({λc
i |c ∈ C})) and

ocpu
i (g({λc

i |c ∈ C})), respectively, for any given functions
f and g. Here, as an example we consider these functions
to be f({λc

i |c ∈ C}) =
∑

c λ
c
i and g({λc

i |c ∈ C}) =
∑

c λ
c
i .

Therefore, denoting x =
∑

c λ
c
i , for a given transaction class

c the service time at machine i is expressed in one of the
following ways,

sc
i (
∑

c

λc
i) = sc

i (x) = ac
0,i + ac

1,ix+ ac
2,ix

2 + · · ·+ ac
n,ix

n

(10)

sc
i (
∑

c

λc
i) = sc

i (x) = ac
0,i + ac

1,ie
x + ac

2,ie
2x + · · ·+ ac

n,ie
nx

(11)

sc
i (
∑

c

λc
i) = sc

i (x) = ac
0,i+a

c
1,i log x+· · ·+ac

n,i(log x)n (12)

where, n is the degree of the chosen polynomial. Note that
one may choose either one of the formulations in Equations
10, 11 or 12 for each computer machine i, separately. How-
ever, service times of all transaction classes in a given ma-
chine will have identical formulations. Similarly, the total
CPU overhead at machine i may be expressed in one of the
following ways,

ocpu
i (

∑
c

λc
i) = ocpu

i (x) = bc0,i + bc1,ix+ bc2,ix
2 + · · ·+ bcm,ix

m

(13)

ocpu
i (

∑
c

λc
i) = ocpu

i (x) = bc0,i + bc1,ie
x + bc2,ie

2x + · · ·+ bcm,ie
mx

(14)

ocpu
i (

∑
c

λc
i) = ocpu

i (x) = bc0,i + bc1,i log x+ · · ·+ bcm,i(log x)m

(15)
where, m is the degree of the chosen polynomial. Again,
either one of the formulations in Equation 13, 14 or 15 may
be chosen for each computer machine i, separately. We may
now rewrite Equations 4 and 5 as,

∀c ∈ C,
∑
i∈L

αc
i

sc
i (
∑

c λ
c
i)

1− ũi
+ dc

net = Rc (16)

∀i ∈ L,
∑
c∈C

λc
i

Pi
sc

i (
∑

c

λc
i) + ocpu

i (
∑

c

λc
i) = ui (17)

The optimization problem will again comprise a quadratic
objective function, but this time in the set of variables {ac

p,i,
bq,i, d

c
net, e

c, ei | p ∈ {0, 1, . . . , n}, q ∈ {0, 1, . . . ,m}, c ∈
C, i ∈ L},

min
∑
c∈C

(
ec

R̃c

)2

+
∑
i∈L

(
ei

ũi

)2

, (18)

with the following set of linear constraints,

∀c ∈ C, Rc +ec =
∑
i∈L

αc
i

sc
i (
∑

c λ
c
i)

1− ũi
+dc

net +ec = R̃c, (19)

Figure 5: Utilization scaling with Enhanced Inferencing

∀i ∈ L, ui +ei =
∑
c∈C

λc
i

Pi
sc

i (
∑

c

λc
i)+ocpu

i (
∑

c

λc
i)+ei = ũi.

(20)
The model now has increased degrees of freedom through
the multiple constant coefficients in the polynomials defined
above. But, the main advantage of our approach is that
the above optimization problem still remains a standard
Quadratic Programming (QP) problem with a linear set of
constraints [4]. Any increase in computational complexity
for this new QP problem over that of Inferencing is lim-
ited by the degrees of the chosen polynomials. It can still be
solved using standard algorithms for QP [4]. The solution to
this problem will give us the service time and CPU overhead
polynomial coefficients, ac

p,i and bq,i, and network delays,
dc

net, required as part of the solution to the Enhanced Infer-
encing problem. Note that Inferencing described in Section
2.2 is only a particular case of Enhanced Inferencing with
constant, zero-degree polynomials.

3.1 Choosing Function Type and Degree
The choice of function type and its degree for Enhanced

Inferencing is not hand-picked. It rather depends on the de-
sign complexity and transaction processing characteristics
of the software system under consideration. Some software
systems may exhibit a simple polynomial variation in the
model parameters, while others may exhibit an exponen-
tial or logarithmic variation. Given the type of variation,
some software systems may exhibit a higher order variation,
while others may exhibit a lower order variation. Degrees
of the chosen polynomials, n and m, represent the required
amount of increase in the degrees of freedom for the service
time and CPU overhead parameters. The exact type and
degree of variation which is appropriate for a given software
system can be naturally derived from the solution to the
QP problem. To begin with, an arbitrary function type and
an arbitrarily high value (e.g., 5 or 6) is chosen for the de-
grees. The QP problem is solved with this choice. Then,
depending on the software system characteristics and mea-
surement data, the residual error, i.e., the minimal value of
the objective function of Equation 18, will be acceptable or
not based on a given error tolerance. If the residual error is
not acceptable then the optimization algorithm is iterated

over other choices of function types. The function type that
yields minimal residual error is the optimal choice. The so-
lution vector with the optimal choice of function type will
yield non-zero values for the lower order coefficients ac

p,i and
bq,i, and possibly zero or close to zero values for the higher
order coefficients. In this manner, appropriate values of the
degrees, n and m, can be inherently derived from the ex-
perimental data and they will be dictated by the processing
complexity of the software system and the solution to the
QP problem itself.

3.2 Conducting Experiments
We provide here insights for deciding the number of ex-

periments to be conducted for Enhanced Inferencing. This
discussion is in the lines of Section 2.3. Due to Equations
10 through 15, there will be a total of n+ 1 coefficient vari-
ables for each service time and m+1 coefficient variables for
each CPU overhead. Therefore, for enhanced inferencing if
we have K classes and M machines we will have a total of
(n+ 1)KM +K + (m+ 1)M unknown variables to be esti-
mated, i.e., n + 1 coefficients (ac

p,i) of service time for each
class at each machine ((n+1)KM variables), delay (dc

net) for
each class (K variables), and m+1 coefficients (bq,i) of CPU
overhead for each machine ((m+ 1)M variables). However,
for every experiment conducted, the number of linearly in-
dependent available measurements will still be K +M , i.e.,
response time for each class and CPU utilization of each ma-
chine. Thus, a total of r experiments will again lead to a
system of (K +M)r equations as per Equations 16 and 17.
Workload arrival rate measurements are still simply consid-
ered as known entities and will not increase the total number
of equations. Again, in order to obtain a unique solution for
the (n+ 1)KM +K+ (m+ 1)M unknown variables, exactly
the same number of equations are required. This implies
that the number of experiments required is given by,

r =

⌈
(n+ 1)KM +K + (m+ 1)M

K +M

⌉
. (21)

Similar to the arguments provided in Section 2.3, Equation
9 should not be considered accurate for deciding the num-
ber of experiments. In reality, greater or lesser number of
experiments may be required.

Figure 6: Response time scaling with Enhanced Inferencing

The above discussion is clearly related to the insights pro-
vided in Section 3.1. The choice of number of experiments
given by Equation 21 is dependent on the derived degrees
of polynomials or functions. In turn, the derived values of
degrees and function types depend on the chosen set of ex-
periments and measurement data. Each independently con-
ducted experiment yields a different set of measurement data
due to background noise and other unpredictable factors
with in the software system. Though it can be envisaged
to perform greater number of experiments than required
before-hand, the exact choice of the subset of experimen-
tal data will lead to an iterative procedure for solving the
Enhanced Inferencing problem. For a given error tolerance,
this procedure can be automatized with in the AMBIENCE
tool using standard conditional logic and loops.

3.3 Example Revisited with Enhanced Infer-
encing

AMBIENCE tool was modified to implement the Enhanced
Inferencing algorithm described above. Service times and
CPU overheads are now represented by the polynomial co-
efficient vectors instead of zero-degree constant values. We
regenerated a performance model for the example discussed
previously in Section 2.4 using the modified AMBIENCE
tool. Same set of experimental data was used as in Sec-
tion 2.4. Even though 6 experiment data sets are required
as per Equation 21, 5 sets turned out to be sufficient for
obtaining a unique solution (see discussion in Section 2.3).
The automatized iterative procedure resulted in the choice
of ‘exponential’ function types and a degree of n = 1 and
m = 1 for both service time and CPU overhead curves.

Figure 5 shows the CPU utilization scaling chart for the
regenerated performance model. We see that the model
predicted utilization is now non-linear in variation for the
‘Web/CQ’ machine and qualitatively, matches well with the
measured utilization. For the ‘Client’ and ‘DB’ machines the
utilizations match well just like before. Figure 6 shows the
response time scaling chart for different transactions. This
time we see that model predicted and measured response
times match well for all the transaction classes. This up-
dated model resulted in a residual error of 0.081, where as
the original Inferencing based model of Section 2.4 resulted
in a residual error of 2.145. Quantitatively, this leads to a

highly significant improvement of the order of 26 times or
about 96% decrease in residual error. We see that with En-
hanced Inferencing the AMBIENCE tool gives significantly
better results.

4. A CASE STUDY
Here we present another case study in relation to the

example studied in Sections 2.4 and 3.3. Similar to the
consolidated topology shown in Figure 2 where the Web-
server and ClearQuest application are deployed on a single
machine, Figure 7 shows a partitioned topology with the
Webserver and ClearQuest application deployed on two sep-
arate machines. The modified AMBIENCE tool with En-
hanced Inferencing was employed to generate a performance
model for the partitioned topology of Figure 7. Data from
5 different experiments carried out at 5 different transac-
tional workloads was used. The workload intensities were
684 sessions/hour, 1087 sessions/hour, 1292 sessions/hour,
1360 sessions/hour and 1432 sessions/hour, in all cases the
workload comprising the same proportional mix of 12 trans-
action classes as in Sections 2.4 and 3.3. Figures 8 and 9
show CPU utilization scaling charts corresponding to perfor-
mance models for the consolidated and partitioned topolo-
gies, respectively. Figure 8 is a simple replot of Figure 5 with
the base workload experiment changed to 633 sessions/hour
instead of 370 sessions/hour in Figure 5. Notice the change
in load scales on x-axis for the various measurement points
due to the change in base workload experiment. The base
workload in Figure 9 is also set to 633 sessions/hour and
not 684 sessions/hour. These changes were done to make
Figures 8 and 9 easily comparable.

As mentioned earlier in Section 3.3, the overall utiliza-
tion for ‘Web/CQ’ machine in the consolidated topology
scales exponentially (Figure 8). The CPU overhead is in-
fered to be a degree 1 polynomial in exponential of sum
of total arriving workload. Explicitly, it is estimated as,
0.2966 + 0.00267exp(sum of arrival workload). We also ob-
serve that the ‘Web/CQ’ machine reaches 100% utilization
bottleneck at about 950 sessions/hour. For the performance
model of the partitioned topology, the overall utilizations for
‘Web’ and ‘CQ’ machines are infered to scale quadratically
(see Figure 9). The CPU overheads are infered to be degree 2

Figure 7: Partitioned topology for ClearQuest software system

Figure 8: Utilization scaling for ‘Web/CQ’ machine in the consolidated topology

Figure 9: Utilization scaling for ‘Web’ and ‘CQ’ machines in the partitioned topology

polynomials in simple sum of total arriving workload. They
are explicitly estimated as, 0.07851+0.008728(sum of arrival
workload)2 and 0.01251+0.000992(sum of arrival workload)2

for the ‘Web’ and ‘CQ’ machines, respectively. Also note in
Figure 9 that each of the ‘Web’ and ‘CQ’ machines reach
100% utilization bottleneck at about 1680 sessions/hour.

We notice above that separating the Webserver and Clear-
Quest application and deploying them on two different ma-
chines instead of a single one, can increase the transac-
tion processing capacity of the system from about 950 ses-
sions/hour to 1680 sessions/hour. Moreover, we can explic-
itly quantify the CPU overhead scaling variations as dis-
cussed above. The fact that different function types were
obtained for different system topologies, serves as empiri-
cal evidence for our discussion in the second paragraph of
Section 3. Such a performance evaluation study of a soft-
ware system to predict its performance under consolidated
and partitioned topologies can be extremely helpful for ca-
pacity planning purposes. Since the Webserver and Clear-
Quest application show a clear transition from exponential
to quadratic scaling behavior in terms of the CPU overhead,
this study could not have been carried out accurately with
out employing Enhanced Inferencing.

5. CONCLUSION
Enhanced Inferencing is a novel approach for performance

modeling of software systems with workload-dependent pa-
rameters. It is based on simple least-squares estimation, but
makes use of a queueing theory model to incorporate the
critical interdependence between response time and utiliza-
tion metrics. Dependence of service time and CPU overhead
model parameters on total arriving workload in various nat-
ural forms: polynomial, exponential and logarithmic, allows
Enhanced Inferencing to be used for a wide variety of soft-
ware systems with varying design complexities. It is thus
a generic modeling methodology that can be readily used
for transaction-based systems to produce a reliable and ac-
curate performance model. The modified AMBIENCE tool
with Enhanced Inferencing has considerable potential to im-
prove the accuracy and efficiency of capacity planning with
minimal intervence.

6. REFERENCES
[1] Application Resource Measurement - ARM.

http://www.opengroup.org/tech/management/arm/.

[2] IBM Rational ClearQuest. http://www-
01.ibm.com/software/awdtools/clearquest/.

[3] R. Bekker, S. C. Borst, O. J. Boxma, and O. Kella.
Queues with workload-dependent arrival and service
rates. Queueing Syst. Theory Appl., 46(3-4):537–556,
2004.

[4] Z. Dostál. Optimal Quadratic Programming
Algorithms. Springer, 2009.

[5] D. Gross and C. M. Harris. Fundamentals of Queueing
Theory (Third Edition). Wiley-Interscience, 1998.

[6] Z. Liu, C. H. Xia, P. Momcilovic, and L. Zhang.
AMBIENCE: Automatic Model Building using
InferEnce. In Congress MSR03, France, 2003.

[7] Z. Liu et al. Method and apparatus for automatic
model building using inference for it systems. US
Patent no. 7296256.

[8] G. Pacifici, W. Segmuller, M. Spreitzer, and
A. Tantawi. Cpu demand for web serving:
Measurement analysis and dynamic estimation.
Performance Evaluation, 65(6–7):531–553, June 2008.

[9] G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef.
Performance management for cluster based web
services. IEEE Journal on Selected Areas in
Communications, 23(12):2333–2343, December 2005.

[10] Z. Qin et al. Application response time prediction. US
Patent no. 6393480.

[11] D. Saghier et al. Method for modeling system
performance. US Patent no. 7107187.

[12] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu.
A real-time adaptive control of autonomic computing
environments. In CASCON ’07: Proceedings of the
2007 conference of the center for advanced studies on
Collaborative research, pages 124–136, 2007.

[13] C. Stewart, T. Kelly, and A. Zhang. Exploiting
nonstationarity for performance prediction. In EuroSys
’07: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,
pages 31–44, New York, NY, USA, 2007. ACM.

[14] C. Stewart and K. Shen. Performance modeling and
system management for multi-component online
services. In NSDI’05: Proceedings of the 2nd
conference on Symposium on Networked Systems
Design & Implementation, pages 71–84, Berkeley, CA,
USA, 2005. USENIX Association.

[15] T. Turicchi et al. Method for service level estimation
in an operating computer system. US Patent no.
2002/0082807.

[16] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer,
and A. Tantawi. Analytic modeling of multitier
internet applications. ACM Transactions on The Web,
1(1):1–35, May 2007.

[17] L. Zhang, Z. Liu, A. Riabov, M. Schulman, C. Xia,
and F. Zhang. A comprehensive toolset for workload
characterization, performance modeling, and online
control. Computer Performance Evaluations,
Modelling Techniques and Tools (Springer-Verlag
LNCS), 2794:63–77, 2003.

[18] L. Zhang, C. Xia, M. Squillante, and W. M. III.
Workload Service Requirements Analysis: A Queueing
Network Optimization Approach. In 10th IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications
Systems (MASCOTS), 2002.

