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Abstract

The scale, scope and complexity of the manufacturing operations in a semiconductor fab provide some
unique challenges in ensuring product quality and production efficiency. We describe various analytical tech-
niques, based on data mining, process trace data analysis, stochastic simulation and production optimization,
that have been used to address these manufacturing issues, motivated by the following two objectives. The
first objective is to identify sub-optimal process conditions or tool settings, that potentially affect the pro-
cess performance and product quality. The second objective is to improve the overall production efficiency
through better planning and resource scheduling, in an environment where the product mix and process flow
requirements are complex and constantly changing.

1 Introduction and Background
This paper describes certain analytical techniques that have been used for process-quality and
production-efficiency applications in semiconductor fabs. These techniques, although broadly ap-
plicable, have been motivated, developed and applied in specific projects at the IBM 300mm fab
located in East Fishkill, New York.

A semiconductor fab is a highly capital-intensive and technologically-sophisticated manufac-
turing facility, where the “front-end” wafer processing operations in the overall chip making pro-
cess are carried out. The corresponding “back-end” operations, which involve further packaging,
assembly and testing of the individual chips on these processed wafers before final product release,
may take place in a separate manufacturing facility.

Specifically, a fab consists of ultra-clean rooms and mini-environments, where a series of pro-
cessing steps are performed, layer by layer, on the surface of cylindrical silicon wafers of size up
to 300mm in diameter, in order to produce a collection of integrated circuit (IC) devices on each
wafer. The industrial operations involved in the wafer processing are numerous, and to provide



context, we list a few of these operations here, along with their oft-used or standard acronyms:
cryogenic aerosol cleaning (AERP), atomic layer deposition (ALD), chemical mechanical pla-
narization (CMP), chemical vapor deposition (CVD), furnace heating (FRN), insulator deposi-
tion (INS), ion-implantation (ION), liner deposition (LNR), photo-lithography (LTH), molecular
beam epitaxy (MBE), metal layers (MTL), plasma etching (PE), plating (PLT), reactive ion etching
(RIE), rapid thermal processing (RTP) and ultra-violet processing (UVP).

For each individual wafer, the overall processing in the fab typically involves hundreds of
steps, whose sequence and settings will often be modified ex tempore, based on the results of
the intermediate metrology and electrical tests carried out on the wafers between the processing
steps. Once the wafer processing is completed, the final testing of the IC devices on the wafer is
performed, and the wafer yield is characterized in terms of the proportion of the devices on the
wafer that meet the design specifications. This wafer yield is the most important product-quality
metric for evaluating the overall success of the sequence of processing steps performed on the
individual wafer.

From a manufacturing operations perspective, a semiconductor fab is characterized by a high
degree of complexity, with respect to short-term and long-term factors, including for example,
the specific sequence of manufacturing operations for each wafer, the processing conditions for
each such operation, the optimal allocation of constrained resources such as process tools and
technicians in a dynamic production environment, and the pro-active and retro-active analysis of
the data that is collected on a massive scale from the individual process tools and wafer test devices.

One important concern in the fab is the operational monitoring and control of the product
quality. The individual wafer processing steps are themselves complex, and they also have complex
interactions with other processing steps in the manufacturing sequence. Therefore, discerning the
impact of the various processing conditions in each individual step on the final product yield, can
be a highly uncertain exercise involving intangibles, and the required engineering understanding
often emerges through significant trial-and-error and accumulated expertise on each product line.
As a result, the product yields are typically much lower and more variable during the early stages
of a new product line, when compared to a more mature product line.

Another important concern in the fab is the overall production efficiency. Even for a stable
and well-characterized product line, the overall processing time for wafer lots is invariably much
greater than the sum of the individual raw processing times for the steps in the prescribed manufac-
turing sequence. The factors responsible for this low production efficiency include, for example,
the sub-optimal scheduling of critical equipment in a complex production environment, the over-
heads of excessive defect testing and rectification, and the manufacturing bottlenecks created by
planned and unplanned tool maintenance events.

These two important concerns, viz., the individual product quality and the overall production
efficiency, which parenthetically may often lead to competing objectives that require careful op-
erational trade-offs, are in general, managed in the fab environment in a myriad ways; e.g., by
determining optimal combinations of process tools and process settings, by flagging quality con-
trol measurements for engineering attention, by relating the operating conditions of process tools
with aberrant quality or maintenance issues, and by scheduling processes, process tools, and main-
tenance to improve plant productivity.

The analytical projects described in this paper are motivated by the two concerns listed above,
and their broad objective is to augment and inform the abilities of both the process engineers
to improve and maintain product yields, and the production managers to reduce and eliminate
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manufacturing bottlenecks.
The summary of this paper is as follows. Section (2) describes the Enhanced Data Mining So-

lution (EDMS) which supports the diagnosis of the fab processing operations and identifies manu-
facturing scenarios involving tools and processes that are associated with systematic variations in
test performance or device yield.

Section (3) describes Trace Data Analysis Solution (TRACER), for extracting insight from
massive amount of process trace data, and to develop predictive models for the local and down-
stream performance of process tools, often in conjunction with the test performance or device yield
data.

Section (4) describes the Work-In-Progess simulator (WIPSim), which models many aspects
of the fab to provide operational line support, and to assess the various options for operations
management in consonance with the demand requirements, capacity constraints and other process-
specific manufacturing rules.

Section (5) describes the Maintenance Scheduling Solution (MSS), which uses the results from
WIPSim in Section (4) to generate maintenance schedules for the process tools in the fab, so that
the planned as well as the estimated unplanned maintenance events can be carried out with minimal
tool downtime and disruption of the production efficiency.

Section (6) concludes with a summary, along with our perspective on the important future
research directions.

2 Enhanced Data Mining Solution (EDMS)

2.1 Motivation and Overview
In this section, we describe EDMS, which is an automated system for improving product yield
and quality based on the continuously-collected manufacturing data in the fab, such as the tool
usage history profile and the process and test measurements, and which in toto comprises of tens
of thousands of features. The use of this manufacturing data is an enhancement that considerably
extends the traditional product yield and quality considerations in the fab, which are typically
measured in terms of final-product testing metrics, such as the power consumption or the operating
frequency of the chips in each wafer or wafer lot.

A unique aspect of the EDMS methodology, is the inference of patterns in terms of binary
regression rules that isolate significantly higher or lower production performance values, relative
to the overall mean, for certain tools or combinations of tools used in a particular manufacturing
step, followed by a subsequent filtering of these rules by knowledge-based constraints, which
greatly increases the possibility that the empirically-validated rules will be interesting enough to
warrant further investigation by the process engineers. The installation of this system in the IBM
300mm fab has lead to numerous opportunities for product yield and process improvement, with a
significant return on investment.

Given the process complexity and the long manufacturing times for each batch of semicon-
ductor wafers, it is not surprising that considerable effort has been made to collect and analyze
manufacturing data to identify patterns and root causes for improving productivity [12, 13]. For
acute tool failures, manufacturing engineers have numerous techniques to immediately determine
the source of failure, but for process yield improvement, many of the opportunities are far more
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subtle [14], [8], and there is great interest in mining the process data prior to final testing [1, 11].
As noted in Section 1, the fraction of the manufactured chips that will fail at the intermediate and
final test stages, may be especially large during new product introduction, or during process modi-
fications in existing product workflows. The large volume of collected data, which consists of tens
of thousands of measured values for each wafer, suggests the possibility of using automated an-
alytical techniques for identifying and extracting interesting patterns, which include for example,
any unusually high or low product or process yields, or any superior or substandard performance
characteristics in terms of product chip speed or power consumption.

The central theme of the EDMS approach is fault diagnosis, and the important requirement
that the results of the EDMS analysis be transparent and understandable to the process engineers
who maintain and monitor the production line, is achieved by using a specialized form of a binary-
clause regression rule. For example, as illustrated in Figure 1, a typical binary-clause regression
rule shows a condition in which there is a marked contrast the mean value of the wafers in the
data sample. In Figures 1 and 2, Implanter A1 and Furnace B1 are tools; Extension Implant and
Oxidation are process steps; n-ion is a measurement characteristic of chip power consumption and
speed, and both low and high values of n-ion are indicative of aberrant performance. Figure 1 has
only one condition, while Figure 2 has multiple conditions; however, in practice, some multiple
conditions can be difficult to rationalize in terms of tool behavior, and therefore EDMS currently
limits rules to a maximum of two conditions.

Average median-n-ion for all 292 wafers is 823.4.

IF (Implanter A1 is used for Extension Implant)
THEN (Average median-n-ion for 58 wafers is 801.9)

OTHERWISE (Average median-n-ion for 234 wafers is 828.7)

Figure 1: Typical Rule

Average median-n-ion for all 292 wafers is 823.4.

IF (Implanter A1 is used for Extension Implant)
AND (Furnace B1 is used for Oxidation)

THEN (Average median-n-ion for 43 wafers is 793.6)
OTHERWISE (Average median-n-ion for 249 wafers is 828.6)

Figure 2: Typical Paired Rule

The rules have several descriptors, such as the number of wafers covered, or the contrast in the
target value from the overall population mean. These descriptors are further used as constraints
and filters for identifying the set of acceptable or potentially acationable rules. While predictive
modeling methods, such as decision trees [7], can generate an implied set of covering rules from
the manufacturing data, however, the generated rules are usually inadequate for the application for
a variety of reasons. For example, the rules may be too complex; they may cover too few wafers
to be of practical interest; or they may just reflect the standard operating environment in the fab
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(which may be transient and non-stationary, with substantial probabilistic effects). Finally, there
are also significant time and personnel constraints in the fab, which limit the number of diagnostic
rules that can be followed up on by the process engineers. In general, the rules that will be of
greatest interest, are therefore those that cover a substantial number of wafers, and furthermore,
which can be backed up and supported by a graphical display of the relevant time-series data on
the candidate tool or process to facilitate the further evaluation and resolution of the rule diagnosis.
For example, Figure 3 illustrates the supporting time series in support of the rule in Figure 1.

A problem may be detected when a relatively large number of wafers deviate significantly from
the overall mean value. If a pattern is discovered relative to specific tools, then the induced rule
may be a diagnosis of a potential problem with those tools. The resolution of this problem may
then lead to opportunities for improving the overall target, such as product quality and yield. For
example, the operational parameters of a specific tool, such as under-performing Implanter A1 in
Figure 1, may be compared to similar tools to isolate a difference in process settings that can be
adjusted, after a detailed investigation to ascertain if this will lead to clear-cut improvements.

Mathematical Sciences Department, IBM Research        IBM confidential
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Figure 3: Time Series for Pattern in Figure 1

2.2 Analytical Methods - Binary Regression Rules
To reiterate, EDMS is based on generating binary regression rules to distinguish patterns of high or
low target values, and these rules, which are limited to a specified maximum number of conditions,
are then filtered by constraints on the rule coverage (e.g., minimum numbers of wafers or wafer
lots in the rule), or significance (e.g., minimum allowable deviations of target values from the
overall mean values). The limitation on the maximum number of rule conditions, and typically
only singletons or pairs are allowed, is because of the difficulty in operationally exploiting patterns
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of greater complexity. The general form of the binary regression rule is given by

If X and Y are satisfied; Then value = a; Otherwise value = b. (1)

A data mining method is used to induce these rules from sample data, and Figure 4 provides an
overview of the specific learning method that we have used in EDMS, which is similar to regression
trees in the CART algorithm [5].

1. Grow binary regression tree to depth k (shallow tree).

2. Cross-validate to get best size tree.

3. Each path to a terminal node is a potential rule.

4. Generalize rules by extracting subsets of paths.

5. Filter rules.

Figure 4: Overview of the learning method for rule induction

In the semiconductor fab, the opportunities associated with larger numbers of wafers are gener-
ally more significant than those associated with a few outliers. Therefore, in growing the regression
tree, the absolute-deviation criterion is used in the tree splitting, rather than the usual squared-error
criterion which tends to emphasize outliers. Similarly, the regression trees are restricted to rel-
atively shallow depth, e.g., 4 levels of splits, since the various constraints on the eventual rules
derived from this tree, such as the length of the rules, or the minimum numbers of wafers and
wafer lots that are covered by the rules, typically will not be satisfied at the deeper levels of the
tree. Tree induction methods have been extensively studied, and a standard algorithm can be used
for Steps 1 and 2 in Figure 4 to produce a tree with a tested and stable performance. However, since
the objective of EDMS is diagnosis rather than prediction, the resulting tree is only an intermediate
structure from which binary regression rules are inferred.

Each path from the root to a leaf node of the induced tree is a potential regression rule which
is comprised of the conjunction of the node split conditions on that path. However, as mentioned
above, depending on the application, it is often beneficial to restrict the rules to 2 or fewer condi-
tions. Figure 5 describes a procedure for extracting a rule R from the path traversed beginning at
root node 1 and ending at node k, where k may be a terminal or non-terminal node, which poten-
tially generating rules for every leaf and non-leaf node in the tree. However, instead of starting at
the root node, the rule can also be assembled by starting at the last node on the path and gradually
adding parent nodes, which is the reverse of how the path was generated, and in each case, when
the target value in rule R is close to the value in the complete path to node k, the procedure halts.
A candidate rule’s deviation is the difference between the mean target value for all wafers in the
sample (the root node) and the target value for the rule (the conclusion node), and heuristically, a
rule is deemed to be close when its deviation is within 10% of the full path’s deviation. When the
maximum length is exceeded, the procedure halts and no rule is extracted.

In summary, the application of these procedures results in stable, empirically-tested rules,
which are also compact enough to be easily understandable by the process engineers who must
be convinced of the ”usefulness” of the rule, in order to justify the investment of time and effort
in further investigation. The preliminary set of rules obtained in this fashion are further refined by
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1. Number the nodes on the path from root node 1 to last node k

2. i = k; R = φ; j = max length

3. R = {Node i} AND R

4. if (deviation(R) is within 10% of full-path deviation) Stop

5. i = i− 1; if (i = 1) Stop

6. if (k − i > j){R = φ; Stop}
7. Go to 3

Figure 5: Method for rule extraction and generalization (φ denotes the empty rule; {Node i} de-
notes the condition at the Node i; the AND operator adds conditions to the rule).

a set of filters, and the most interesting rules are those that meet all the thresholds posed by the
filters. Table 1 lists some of these rule filters.

Filter Threshold
Minimum number of wafers covered 25
Minimum number of lots covered 5
Target deviation units above global mean 5
Target deviation units below global 5

Table 1: Rule filters

2.3 Cost Benefits of EDMS
From the cost-saving perspective, the value of an EDMS diagnostic rule can be measured much
more objectively than in most applications. Any reductions in product yield and quality for a period
of time directly translates into losses that can be quantified in terms of the total lost sales. Thus
the early detection and diagnosis of a highly significant opportunity using EDMS can be evaluated
in terms of the actual amount of money saved. The aggregate savings from using EDMS to date,
have been of the order of many millions of dollars.

3 Trace Data Application (TRACER)

3.1 Motivation and Overview
In this section, we provide a conceptual overview of the capabilities of TRACER, which is a simple
yet coherent framework for developing applications based on the off-line analysis of process trace
data (PTD). A more detailed exposition of the TRACER framework with further technical details
may be found in [20]. In addition, the figures in this section are actual outputs or views generated
by the the TRACER framework utilities, but the details of the process/sensors, which are incidental
to the discussion, are suppressed.
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Modern manufacturing tools are equipped with numerous sensors that record a variety of chem-
ical, physical, and mechanical process measurements, typically to provide feedback to the oper-
ators or the process control mechanisms on the tools. Consider, for example, a manufacturing
process for a given wafer on a RIE tool consisting of multiple steps, e.g., Step 1: Over the course
of 20 seconds, raise the chamber’s temperature to 200 deg.; Step 2: Keep the chamber’s tempera-
ture at 200 deg. for 30 seconds; Step 3: Over the course of 60 seconds raise the temperature to 300
deg; etc.; in this case, the PTD consists of the time series that are recorded in each sensor during
each individual step.

The aggregate volume of PTD collected in this way can be quite large. For example, let N1

denote the average number of processes conducted on a single wafer in a manufacturing day, N2

the average number of sensors in the chambers that execute these processes, and N3 the average
number of steps in each such process. The total number of time series traces collected per wafer per
manufacturing day, can be estimated as N1N2N3, which is O(103) or more under typical operating
conditions in a fab. Furthermore, this time-series data, as a consequence of being compiled from
a variety of sensors and tool processes, is also heterogeneous with disparate units and scales of
measurement. Therefore, the task of identifying the trace signals that are of potential interest from
an applications viewpoint is a formidable challenge for any statistical analysis framework.

The two important characteristics of PTD from an applications context are, first, this data is
generally available for all wafers from all processes, and second, this data provides a window
into the fundamental physico-chemical processes that the wafers undergo in the corresponding
manufacturing step. These two characteristics should be contrasted with the testing and metrology
data, which are typically only available for only a small fraction of the wafers, due to the cost and
time associated with obtaining this data for the entire product batch. However, the complementary
nature of the product measurement data suggests the potential for combining it with the PTD
to obtain further insights into the tool status, tool operating characteristics, and product quality
performance, as a function of the given manufacturing step.

A major challenge in analysing the PTD is its inherent stochastic nature, which is a complex
consequence of multiple source factors, such as the random drifts and failures in the associated tool
components; the pre-conditioning effects of the previous processes in the workflow, and previous
manufacturing usage of the tool; the status of the tool in its routine maintenance cycle; the idiosyn-
cratic behaviors with respect to particular products; the errors in setup and configuration of the
control software, recipe specification and installed hardware; and any drifts, failures, or calibration
errors in the sensors themselves. The identification and interpretation of these source factors from
the PTD is complex, due to this large multiplicity of source factors. Furthermore, the operational
significance of these individual source factors depends on the application context, and this signifi-
cance can range from normal maintenance events to critical failures requiring immediate attention.
Despite these inherent challenges, there are a host of applications that can greatly benefit from the
analysis of the PTD, as described below.

3.2 The TRACER Framework
3.2.1 Preliminaries

Let C = {C1, C2, . . .} denote the set of tool chambers under consideration, with Cx = {C1,x, C2,x, . . .}
denoting the set of sensors in chamber Cx. Further, let P = {P1, P2, . . .} denote the set of pro-
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cesses under consideration, with each chamber executing a given subset of these processes, and let
Py = {P1,y, P2,y, . . .} denoting the set of steps associated with process Py. Then, for each wafer
being processed in chamber Cx via process Py, the set of associated trace data is the Cartesian
product Cx × Py, and each component in this Cartesian product represents a distinct set of time
series measurements reported for each wafer being processed. For example, if C1,x represents the
temperature sensor in chamber Cx, and if P1,y represents the first step in process Py, then the rele-
vant trace data in this component is the time series of temperature measurements obtained at some
appropriate sampling rate from the temperature sensor during this first step.

Although the entire time series data can also be considered, for simplicity and practicality
currently in the TRACER framework, each time series is converted to a single summary statistic,
e.g., the time series median. Therefore, for a specified time period denoted by the index d (e.g., the
first week of August 2009), the trace data associated with sensor Ci,x and process step Pj,y consists
of a vector of these summary statistics for all wafers processed by this chamber via this process
during this time period, which is termed the Trace Data Vector (TDV), and denoted by V d,x,i,y.j .
The size of V d,x,i,y.j is denoted by Nd,x,y, which is the number of wafers that are processed in the
same chamber, process and time context.

Finally, consider a specific product measurement (e.g., CD thickness) denoted by the index k,
that is taken after the completion of process Py (as mentioned earlier, these measurements may only
be taken over some subset Nd,x,y,k of the processed wafers), and denote the corresponding vector
of product measurements by Md,x,y,k. For simplicity, we will assume that the vector Md,x,y,k has
the same dimension as V d,x,i,y.j , namely Nd,x,y elements, and the wafers for which the k-th product
measurement is not available, are represented by missing values in Md,x,y,k.

3.2.2 Objectives and Scoring Framework

The TRACER project has the goal of developing a versatile framework to address various appli-
cation objectives in PTD analysis. Originally, three general objectives were defined; improving
tool stability, improving tool matching, and gaining new insights on tool operation. For example,
tool stability may be identified from the TDVs, which reflect instabilities in various ways, ranging
from gradual drifts to abrupt transitions in the process statistics, as shown in Figure 6. Similarly,
tool matching may be identified by comparing the reported TDV on a given tool with the TDVs
for nominally identical tools executing the same process, which again may be reflected in various
ways, as shown in Figure 7. Finally, gaining new insights on tool operation can be carried out
by examining the dependencies between TDVs and the associated product quality measurements,
from a similar perspective.

The core observation in the development of the TRACER framework is that at the abstract level,
all three objectives mentioned above (as well as some other objectives not discussed here) involve
scoring each TDV in terms of its importance in the context of the given objective. For example,
in the context of improving tool stability, a scoring function, S1(V

d,x,i,y.j) should quantify the
stability of chamber Cx for process Py during the time period d. Similarly, for gaining insights
regarding tool operation, the scoring function S2(V

d,x,i,y.j,Md,x,y,k) should quantify the level of
dependency between V d,x,i,y.j and the associated product measurements Md,x,y,k.

Therefore, this notion of a scoring function on the TDV is simple yet general enough to sup-
port a variety of applications, although, two concerns should be emphasized. First, this approach
is focused on univariate statistical analysis; namely, each TDV is analyzed independently, and in-
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Figure 6: TDVs may reflect instabilities in various ways including gradual drifts and abrupt tran-
sitions.

Figure 7: TDVs may reveal various types of tool mismatches between nominally identical tools in
terms of mean and variance.
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teractions effects involving multiple TDVs are not considered. Second, even with this limitation
of univariate analysis, if the chamber Cx is equipped with 50 different sensors and the process
Py involves 20 different steps, then 1000 different TDVs must be scored for this chamber-process
pair. (This assumes that we use a single summary statistic per trace time series data, e.g., the
median. However, it is often important to consider multiple summary statistics, e.g., the mean
and the variance of the time series data, which will add another constant factor to the number of
TDVs being analyzed.) The supervising process engineer, who may be responsible for 100 such
chamber-process pairs, may however only be able to manually review a tiny fraction of the 100,000
TDVs in this simple example.

The key ideas in the TRACER methodology are therefore designed to address these two con-
cerns outlined above.

3.2.3 TRACER Chamber/Process Smart Heat Maps

A primary observaton in the development of the TRACER framework was that the overall status
of chamber Cx executing process Py can be communicated via a single heat-map table where the
rows represent Cx sensors and the columns represent Py steps, as shown in Figure 8. Each cell in
this heat map is color coded to indicate the level of interest that should be associated with the cor-
responding combination of a chamber’s sensor and process-step. The actual color is determined in
terms of the underlying analytics, which are tailored to the particular objective under consideration.
For example, if the underlying analytics are designed to detect unstable signals the corresponding
heat map will highlight TDVs that reflect presumed tool stability issues. Alternatively, if the un-
derlying analytics are designed to reveal TDV mismatches, then the corresponding heat map will
highlight presumed issues associated with tool matching.

Assuming the effectiveness of the analytics layer, the TRACER chamber/process report then
enables the supervising engineer to rapidly review thousands of underlying TDVs in a single view,
with the operationally significant signals clearly highlighted. By clicking through the cells in the
heat map, the associated detail reports for the relevant TDVs can be accessed, as illustrated in
Figure 9.

Although the TRACER framework typically uses only univariate analysis (with each TDV
being analyzed independently) the heat-map representation implicitly reveals some of the data
interactions. For example, if the detected problem is related to a particular process step, the relevant
heat-map column is highlighted, while if a problem is associated with particular set of sensors, the
relevant heat-map rows are highlighted. In addition, each detail report contains links to other detail
reports related to the same process step, in case the two corresponding TDVs were found to have a
statistically significant dependency. Finally, the ordering of the rows and columns in the heat maps
can reflect the use of cluster analysis and/or domain knowledge.

The perspective in this heat-map report is from the chamber/process point of view, not from
the wafer point of view. However, an immediate concern is that statistically significant signals
highlighted in this heat-map view may not necessarily be of operational significance. For example,
an unstable TDV detected by this framework may either represent significant tool stability issues
that require immediate attention, or some normal behavior related to a recent maintenance event.
Thus, it seems crucial to provide some means of distinguishing, at least approximately, between
the statistically significant signals that are also operationally significant, and those that are not.
This classification is carried in the TRACER framework as described in Section 3.2.4 below.
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Figure 8: The TRACER chamber/process heat-map report, in which rows represent chamber sen-
sors while columns represent process steps. Each cell is color-coded according to the underlying
analytic score (scaled to a finite range, typically 0 to 1). The underlying score determines the tool
issues highlighted in this report – tool stability issues, tool matching issues, relationship of trace
data to performance data, or any other meaningful objective. The TRACER analysis is carried out
over two time periods – ”current data” versus ”past data” and three heat maps are generated: one
for the past data, one for the current data, and a third for the difference between the two. Thus,
the TRACER difference heat map is designed to highlight TDVs with some statistically abnormal
behaviors that are only observed in the current data, and therefore more likely to reflect ongoing
problems with tool operation.
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Figure 9: By clicking on a particular cell in the heat map, the detail report of the underlying PTD
is obtained. Each detail report also contains links to other detail reports in the same step, if the
dependency between the respective TDVs is statistically significant.
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3.2.4 The TRACER difference heat map

One possible approach for detecting operationally-significant signals is to compare the examined
PTD to the PTD under ideal manufacturing conditions - the latter is often termed the “golden”
PTD in the literature [19]. However, such a characterization is non-trivial and time-consuming,
since it is required for each and every process.

In the TRACER framework, an alternative approach was taken, which is based on the notion of
dynamic reference data. Specifically, the TRACER analysis is carried out over two time periods,
usually in succession; e.g., the data collected over the last two weeks (”current data”) versus data
collected over the two weeks preceding that (”past data”). Thus, for each chamber/process pair,
three heat maps are generated: one for the past data, one for the current data, and a third for the
difference between the two, as shown in Figure 8. Specifically, let Spast(V

d,x,i,y.j), Scurr(V
d,x,i,y.j)

respectively denote the scores associated with the i, j cell in the past and current heat maps, and
assume for simplicity, that the relevant scores are in the range 0 to 1. Then, the score of the corre-
sponding cell in the difference heat map is simply given by

[
Scurr(V

d,x,i,y.j)− Spast(V
d,x,i,y.j) + 1

]
/2.

As a result of its construction, the TRACER difference heat map is designed to highlight TDVs
with some statistically abnormal behaviors that are only observed in the current data, and which
may reflect problems with tool operation. For example, if the trace data associated with some of
the sensors are constantly drifting, this phenomenon will be detected by the TRACER analysis in
both the past and the current data, hence the corresponding cells in the difference heat map will not
be highlighted. However, if some abnormal trace behavior is observed solely in the current data
the corresponding cell(s) in the difference heat map will be highlighted, as presumably this trace
behavior reflects a truly novel event of operational significance.

3.2.5 The TRACER hierarchy of linked heat maps

While the chamber/process heat map report mentioned above can summarize large volumes of data
through a single view, the sheer volume of the trace data collected in the fab requires even more
summarization and filtering. For example, a process engineer may be responsible over O(100)
chamber/process pairs, and it is unrealistic to expect this individual to review all the corresponding
TRACER heat maps.

To address this issue, the TRACER output was designed as a hierarchy of linked reports, com-
posed at various levels of granularity, that exploit the same heat map notion at all levels to swiftly
draw the attention of the end user to the most important signals. One example of such a TRACER
high level report is a heat map in which rows represent different processes while columns repre-
sent chambers. Hence, highlighted cells indicate a potential problem in particular chamber/process
pairs, and clicking over a specific cell will reveal the relevant underlying chamber/process heat map
report, from which the user may click over any highlighted cells to the potentially most-relevant
detail reports. In this high-level report as well, the heat map representation provides the results
in context, so that for example, a problem associated with a given chamber will probably be re-
flected by a highlighted column; alternatively, a problem associated with a particular recipe will
be reflected through a highlighted row. Such a high-level heat map report may cover up to O(106)
TDVs in a single view, thereby allowing the end user to rapidly review and focus on a handful of
signals that are of potential operational significance.
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3.2.6 Summary

The TRACER framework is highly modular and versatile, and new scoring functions can be easily
integrated into it. A major advantage of this framework is that it provides a common platform for
multiple application objectives, such as tool stability, tool matching and tool operating insight.

The TRACER results are always presented in the context of the end-user application objectives.
For example, in the basic heat map, the context consists of all the other sensors and process steps
involved in the Cartesian product Cx × Py. In the difference heat maps, the context is provided by
the previous related data.

In summary, the TRACER framework provides application views and reports that are ideally
suited for large-volume PTD, since this data can be covered by a single, high-level view from
which the signals of operational interest can be isolated and rapidly reviewed.

4 Work-In-Progress Simulator (WIPSim)

4.1 Motivation and Overview
A semiconductor fab is a complex manufacturing environment, in which, at any given time, there
are hundreds of product routes, with each route involving thousands of process steps and hundreds
of tools. This complexity, along with numerous other operating factors, is responsible for a high
level of variability in the work-in-progress (WIP).

For example, the wafer processing often requires repeated sequences of similar processes, so
that the WIP is re-entrant over the same set of tools, which is known to result in turbulence [16].
These instabilities are further compounded by unexpected changes in the tool supply and demand
capacities. For example, the tool-supply availability is subject to quality-control measures on
specific wafers, that can automatically inhibit certain tools from performing these process recipes.
Similarly, the tool-demand availability can change when wafers are re-routed away from their
planned processing routes, into branches and re-works.

There are additional sources of complexity in fabs that simultaneously cover multiple chip
manufacturing technologies, ranging from technologies under development to those in high volume
production. In order to reduce capital costs and shorten the transition times from development to
production, these different chip manufacturing technologies will often share the same tools. The
higher uncertainty and the greater requirement for manual intervention on the development routes,
will often influence the relatively more-stable production routes, leading to greater variability on
those high-volume routes as well. As a result, the fab is never at a “steady state” in terms of WIP
throughput. For example, Figure 10 shows histograms of bottleneck process centers in the fab.
Over a three month period, it shows that over half of the bottleneck process centers are temporary,
lasting for two days or less. The throughput on any given day depends on which process centers
are going to be the bottleneck for that day. An effect of shifting bottlenecks is the high variability
of the average daily WIP at key process centers as shown in Figure 11. This implies that the
productivity impact of tool availability in these process centers will vary greatly from day to day.

This high variability which is intrinsic to the nature of fab operations creates major challenges
in terms of meeting customer commitments, since even the stable, high-volume products are pro-
cessed in a dynamic, as opposed to a steady-state manner, through their product route. This is
illustrated in Figure 12. This shows the distribution of wafers along a particular product route
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Figure 10: Histograms of Bottleneck Process Centers
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Figure 11: Average daily WIP in the top 10 Process Centers over one month
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(shown along the ordinate in terms of fraction of operations completed) over a one month period
(abscissa). The number of wafers is denoted by the shading (where the darkest shading denotes
1200 wafers). This figure allows the visualization of WIP “bubbles” and “holes”. Bubbles imply
the presence of processing bottlenecks impeding the throughput of WIP while holes imply lack of
WIP leading to idling of expensive tools. The figure shows how bubbles and holes appear and dis-
sipate over days or even sometimes weeks, resulting in the intermittent production of the finished
wafers.

Fab production managers are therefore faced with difficult choices for short-term operational
decisions, such as whether to speed up a given product route, or whether to take certain tools offline
for maintenance. The complexity of individual product routes, and the interactions between these
routes, increases the difficulty of evaluating the effectiveness of operational decisions. Therefore,
even when the direct effect of an operational decision is not in doubt, there is always uncertainty
over unintended consequences, since for example, speeding up the processing on one product route
may negatively impact all other product routes that share common tools with it.
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Figure 12: Flow of WIP, in terms of number of wafers, over a one-month period (abscissa) through
a product route progression (from top to bottom along the ordinate). The darkest shade denotes
1200 wafers and white denotes 0 wafers.

Although fab simulation models have a long history [17, 6, 18, 10], those models are typically
used to study fab-wide strategic issues over a steady-state, long-time horizon, such as for capacity
planning, or for operational scheduling in a small section of the fab (such as a cluster of similar
tools).

We have therefore developed a specialized simulation model for operational decision support
in the fab [3]. In contrast to previous work, our modeling intent is to cover the entire fab, so as to
capture the impact of any operational decisions across all product routes and process centers, and
to predict operational metrics over very short time horizons of the order of hours and days.
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For such a simulation model to be useful in decision-support applications, the following desider-
ata must be satisfied. First, the model should cover all the WIP and tools in the fab at the appro-
priate fine level of granularity, so that the model outputs have operational value. Second, the
simulation should be based on a current snapshot of the fab state, without requiring an extended
warm-up period, due of the short simulation horizon. Third, the statistical estimation of the large
number of model parameters, which is based on the data in historical event logs, should be auto-
mated. Fourth and finally, the model creation and maintenance efforts should be minimal, so that
frequent simulations can be performed, with the model outputs can be integrated into the planning
and decision-making, perhaps even on a daily assessment cycle.

The proposed simulation model incorporates the following factors that are responsible for most
of the WIP variability in the fab.

The first factor, which is most critical, is the processing time at a given tool, which is a function
of the process recipe, the number of wafers, the tool setup requirements, and the number of parallel
load ports and chambers in the tool. The historic data in the wafer processing logs for each tool
is analysed to obtain the regression parameters for these dependencies, in order to estimate the
Expected lot-processing time.

The second factor is the tool downtime, and for each tool, the available time and downtime are
modeled as empirical distributions by analysing their historical event states. These distributions
are often bi-modal, reflecting the presence of both short-term and long-term outages.

The third factor is the wafer-lot sampling in the product routes, since a significant fraction of
the product route comprises of non-mandatory test and measurement operations. The decision to
perform a given non-mandatory operation on a wafer lot depends on various rules associated with
the product maturity cycle and recent yield levels. Therefore, the historic state data for the wafer
lot is used to estimate the lot sampling probability, as well as the number of wafers per lot that will
be measured or tested in these non-mandatory operations.

The fourth factor is the need to account for the holds, which may appear for various reasons, in
the flow of WIP in the product routes. These holds, which are typically of variable duration, often
require manual intervention on the product routes. The hold frequency and duration are obtained
as empirical distributions from the historic state data on wafer lots.

In order to ensure that the simulation model tracks the changing conditions in the fab, the
various parameters associated with the various factor models mentioned above are recomputed
weekly, and depending on the specific factor model, up to 12 weeks of historical data may be used
for the statistical estimation.

The WIPSim model has been deployed in the 300mm IBM fab for over a year, in a range of
decision support activities [2], which include the following.

First, it provides daily projections of the incoming and average WIP at each of over 200 process
centers in the fab, which is used to plan the tool maintenance activities, and the assignment of
constrained labor to the maintenance of critical tools. In addition, longer term projections over a
period of 1 to 3 months have been used to make tool-idling decisions that save millions of dollars
in maintenance costs.

Second, it has been used to improve the productivity of specific product routes, with minimal
impact on other key product routes, by allowing fab managers to evaluate the effect of adjusting
various parameters, such as the daily production targets, and the dispatching priorities. Since the
impact on the other production routes is affected by the day-to-day variability of WIP position in
the fab, the model simulations provide the ability to evaluate and select the most effective option
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from the alternatives.
Third, it has been used to evaluate the impact of production rules, that are invoked at hourly or

daily time intervals, on the overall fab productivity. This feature has been used by fab managers to
modify production rules, to automate decision-making, and to re-organize product groups, so that
the key product routes have the resources for the best productivity.

These examples, given above, specifically illustrate the two broad classes of operational decision-
support applications that are supported by the WIPSim methodology.

The first class of decision-support applications rely on making use of the WIPSim results for
the projected WIP and process-center throughput based on the current observed state of the fab.
A good example, described in Section 5, is a novel maintenance-scheduling application in which
WIPSim is used to estimate the WIP profiles. One challenge in developing this class of decision-
support applications, is the need to incorporate the gradual decrease in the accuracy of the WIPSim
projections with increasing time horizon. For example, a coarsening of the decision time-scale with
increasing time, can reduce the complexity of the decision evaluation, with the assumption that the
WIPSim model will be run again in the future, when more accurate predictions are available.

The second class of decision-support applications rely on making use of the WIPSim results
for the fab performance over some fixed period of time period. In order to increase the robustness
of decisions that are based on the WIPSim results, multiple replications can be run from a single
initial state of the fab, in addition to using replications from multiple start dates to obtain a variety
of initial states. The impact of the reduction in variability in this way, depends on the specific metric
that is being predicted, and for example, the throughput metric can be predicted more reliably for
high-volume production wafers compared to low-volume development wafers, particularly since
the latter are also subject to many more manual interventions and re-routing. The challenge in
this class of decision-support applications is the need to obtain robust algorithms, which take into
account the various aspects of variability in the product routes, in the simulation results.

5 Maintenance Scheduling Solution (MSS)

5.1 Overview
In this section, we consider the problem of generating optimal schedules for tool maintenance
in the semiconductor fab, which is challenging because of the high degree of uncertainty in the
operational-level details, such as the tool availability, product yield, and processing times. In
order to take into account these operational-level details, we have developed a novel integrated
approach, termed MSS, in which simulation results are used to estimate the Expected work-in-
process (WIP) in the fab, and in which the scheduling optimization is carried out using a variety of
techniques including goal programming, constraint programming and mixed-integer programming
(the detailed technical aspects of the MSS formulation are described in [9]).

In a capital-intensive manufacturing facility, such as a semiconductor fab, the scheduling of
the maintenance events, such as cleaning, calibration and safety checks on the individual tools, is
critical for the following reasons. First, these maintenance events are expensive, and should be per-
formed either according the the equipment needs, or according to the recommended maintenance
schedule of the original-equipment manufacturer (OEM). Second, the recommended OEM main-
tenance schedule should not be compromised, in order to avoid potential sub-optimal functioning
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or even malfunction of the tool, which would precipitate an even-more costly unplanned mainte-
nance event. Third, any tool that is in maintenance, either partly or entirely, should not impact any
critical production requirements. Fourth and finally, the maintenance of certain tools will require
coverage from appropriately-qualified technicians, who are a scarce and expensive resource.

5.2 Problem formulation
5.2.1 Inputs and Primary Constraints

There are three different types of maintenance events in the fab that need to be considered: (a)
regular preventive events, according to the recommended OEM schedule (e.g., every six months);
(b) trigger events, based on the tool reaching a certain state (e.g., after it has processed certain
number of wafers); and, (c) unplanned or unforeseen events, which leave no choice but to require
the tool be taken down for repair.

The MSS system is primarily concerned with the first two types of events mentioned above, and
unplanned events are considered only indirectly, as described below. However, in the future, we
expect to incorporate the mean-time-before-failure (MTBF) statistics of various tools, to directly
ensure a reserve capacity of maintenance technicians for periods when the likelihood of unplanned
events is high.

For each tool maintenance event, we are given the following - a release date, a due date, a
processing time, the relevant tool or the part of the tool under consideration, and the average
number of technicians required to service the event. The scope of the maintenance event, whether
limited to a part of the tool (e.g., a single chamber of a lithography tool), or applicable to the
entire tool, is important, since it impacts the tool usage in the production operations, as well as the
possibility of simultaneously scheduling multiple maintenance events on the tool.

The tools in a semiconductor fab can be partitioned into toolsets, with each toolset consisting
of the set of tools with the same function (e.g., lithography) and manufacturing vendor. Thus,
individual toolsets will have the same set of qualified maintenance technicians (however, very
infrequently, certain technicians may be certified on multiple toolsets).

For each toolset, there is a timetable giving the technician capacity during each time period (or
maintenance shift), and this capacity is the primary resource constraint for generating MSS sched-
ules (although technician requirements that exceed capacity can occasionally be sub-contracted to
external vendors, this is considered to be an expensive and avoidable alternative).

5.2.2 Objectives

In practice, the set of feasible schedules satisfying the technician capacity contraints are straight-
forward to obtain, and the real challenge is to manage the numerous complex production and
maintenance objectives, listed below.

Resource Leveling The first objective is the uniform utilization of the available technicians for a
given toolset, since this also increases the likelihood of having some surplus capacity to handle un-
planned maintenance events in that shift (see Figure 13 for examples of good and bad utilization).
This objective may also be stated as: minimize the number of technicians that are utilized through-
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out the entire schedule of pending maintenance events, or alternatively: minimize the maximum
number of technicians that are active in any given shift.

Figure 13: Bad (left) and good (right) examples of maintenance technician utilization

Production Disruption The second objective is to minimize the production disruption that re-
sults from removing tools for maintenance. As described earlier, the work-in-progress (WIP) at any
given shift, consists of wafers are either being processed or waiting in a queue to be processed, by
a given tool. During a maintenance event, when all production is stopped on this tool, in addition
to the delays in its own queue, this tool downtime will also starve downstream processes, leading
to a cascade of tool under-utilization. Ideally, these production disruptions should be minimized
by scheduling the relevant maintenance events during shifts when there is little or no WIP on the
given tool. Figure 14 illustrates a maintenance schedule for a set of tools in a toolset, in which the
WIP levels for each tool and time period are plotted in the background.

]

Figure 14: The maintenance schedule for a toolset: each row is a Gantt chart for a single constituent
tool, and the lines denotes the corresponding projected WIP over each time period in the schedule,
and the boxes denote the start and duration of the corresponding maintenance events.

The objective for minimizing the production disruption can be formulated in the following
way: Given wmt, the level of WIP on tool m in time period t, and maintenance event k on tool
m which starts in time period s and finishes in time period e, the WIP disruption of this event is∑

t∈[s,e] wmt. We wish to minimize the total WIP disruption for all scheduled maintenance events.
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However, the difficulty with using this objective function is the uncertainty in the WIP levels
for each tool over the scheduling horizon, and as discussed in Section 4.1, this uncertainty is an
intrinsic issue in semiconductor fabs. The detailed production scheduling in fabs is usually done
using dispatch rules which are applied whenever a tool becomes available for processing, and
there is no long-term production schedule that can be used to determine the WIP levels for each
tool. Therefore, we use the Expected WIP for each tool and time period obtained from WIPSim
(Section 4; see also [3]) as follows. We use 20 replications of WIPSim for the whole scheduling
horizon, based on a division of the horizon into one hour time buckets. From the WIPSim output,
we obtain the expected WIP level for each tool during each time bucket, and these estimates are
usually quite accurate in the short term (1-3 days), although much less so over the long term (up to
two weeks). Consequently, the maintenance scheduling is performed every day, with rescheduling
taking place over several days, based on the most recent updates to the estimates for the Expected
WIP.

Earliness/Tardiness The third objective is to minimize the long-term costs of periodic main-
tenance events. While there is some flexibility in determining when a maintenance event j can
be performed in the schedule, as specified by the release and due dates, for periodic maintenance
events, the elapsed interval between the completion time ei of one event i and the start time sj of
the following event j on a tool should not exceed the recommended elapsed duration Di,j specified
by the OEM manufacturer. This leads to earliness/tardiness costs for scheduling periodic mainte-
nance events, where the tardiness cost comes from scheduling an event j to start at some time sj

such that sj > ei + Di,j , and the earliness cost comes from scheduling an event j to start at some
time sj such that sj < ei + Di,j . The due date dj of an event j is calculated such dj = ei + Di,j , so
that scheduling an event precisely at the due date incurs zero earliness/tardiness costs.

Therefore, given an earliness penalty αj and a tardiness penalty βj for each event j, and given
the completion time Cj of event j in a feasible schedule, the earliness-tardiness cost η(Cj) for this
event can be computed as η(Cj) = max(αj(dj − Cj), βj(Cj − dj)).

5.2.3 Side Constraints

In addition to the basic problem formulation presented above, there are a number of “side con-
straints” in MSS that arise from imposing other user preferences on the maintenance schedule,
which MSS attempts to satisfy whenever possible, irrespective of their impact on the problem
objective. For brevity, we limit the discussion below to a couple of possible side constraints.

Follow-up Maintenance Constraint It has been observed that whenever a maintenance event
is completed on a given tool, there is a good likelihood of a follow-up maintenance event within
six hours on the same tool. Ideally, this follow-up should be performed by the same technician
who is responsible for the original maintenance event, and therefore, it is desirable to reserve
this technician for this potential follow-up event. The side constraint can therefore be stated as:
maximise the number of maintenance events that satisfy this user preference.

Separation Constraint For operational reasons, any two maintenance events i and j on a given
tool, should preferably be scheduled in one of the following ways, in some decreasing order of
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preference; (a) i and j separated by at least 24 hours; (b) i and j separated by at least 12 hours; (c)
i and j scheduled continuously, so there is no gap between the end of i and the start of j or vice-
versa. By assigning weights wi to each of these preferences (a)-(c), this constraint may be stated as:
maximize the weighted sum of the satisfied preferences (a)-(c) for all the scheduled maintenance
events.

5.3 Solution Approach
The solution approach in MSS is motivated by the following two observations based on the typ-
ical problem data. First, generating a feasible maintenance schedule is usually straightforward,
with the main resource bottleneck being the availability of maintenance technicians. Second, ob-
tainng the optimal maintenance schedule is difficult, due to presence of the multiple objectives and
preferences, as described above.

Several approximate methods (local search, genetic algorithms, dispatch rules) as well as exact
methods (branch-and-bound search, constraint programming, mixed-integer programming). have
been suggested in the literature for solving manufacturing scheduling problems. Since the goal
in MSS is to find the optimal solution for the maintenance scheduling problem, the primary fo-
cus has been on exact methods, although these methods have different strengths and weaknesses,
particularly for present class of scheduling problems with complex objectives and side constraints.

For example, constraint programming solvers [4] are able to compactly model scheduling prob-
lems using an event-based formulation, and are successful at finding good feasible solutions in
highly resource-constrained problems; however, these solvers are not always suitable for prob-
lems with complex, non-convex objectives (e.g., consider the ILOG CP Optimizer [15], which
has a flexible representation for modelling objective functions, but requires these to be in a semi-
convex form). Similarly, mixed-integer programming solvers based on time-indexed formulations
are effective for the modeling and solution of scheduling problems with complex, non-regular
objectives, and yield good linear programming relaxations when the objective function is of the
form

∑
j fj(Cj), where Cj is the completion time of job j, but the resulting formulations can be

very large, since the number of decision variables depends on the length of the time horizon, and
therefore, this approach is often restricted to small problems. Finally, a number of specialized
branch-and-bound techniques have been developed for large-scale scheduling problems [21], but
this formulation is not very suitable for incorporating side constraints.

In the MSS formulation, the five objectives and constraint preferences mentioned above, were
ranked in the following order for the optimal solution (starting with the most important): (a) re-
source leveling, (b) separation constraints, (c) follow-up maintenance constraints, (d) production
disruption, and (e) earliness-tardiness costs.

The MSS solution approach, which is inspired by lexicographic goal programming, is to first
solve the scheduling problem with respect to the most important objective, ignoring all other objec-
tives. Let f1 denote the value for the first objective in the corresponding solution. A new constraint
is added to the model, after fixing the value for the first objective at f1, and the scheduling problem
is solved for the second objective only, but with the first objective now represented as a constraint
in the model. Subsequently, we add a second constraint to the model based on the objective value
found for the second objective. We continue cycling through this process until we have solved the
problem for all objectives.
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The objectives for resource levelling, separation constraints and follow-up maintenance con-
straints can be solved very efficiently using constraint programming (the details of this solver,
which uses depth-first chronological backtracking, the SetTimes branching heuristic and the timetable
resource constraint propagator can be found in [4]; we note, parenthetically, that stronger propa-
gation than timetable was not found to be useful in practice). Finding a feasible solution to the
maintenance scheduling problem in this way is very fast (less than a second of CPU time), so that
the estimate of the minimum number of technicians required can be obtained by solving a series
of feasibility problems in the following way: For each feasibility problem, the number of available
technicians is set to a fixed value, and a binary search is used to find the smallest number of techni-
cians for which a feasible solution can be found for scheduling all the pending maintenance events.
A similar approach is used to determine the best value of the objective for the separation constraints
and the follow-up maintenance constraints. The objective for disruption and earliness-tardiness is
solved using mixed-integer programming, for which we use the time-indexed formulation with
some additional cuts. In practice, the mixed-integer programming solver is much slower than the
constraint programming solver, due to the large formulation. However, with time being discretized
into 15 minute buckets over a 2-week horizon, the CPU times for the mixed-integer programming
solver was of the order of 5-20 minutes (using CPLEX version 11).

5.4 Summary
The MSS-based system described here, is now being routinely used to generate maintenance sched-
ules for IBM 300mm fab over two-week time horizons. Specifically, this system determines
the timing of maintenance events for individual tools, taking into account the availability of the
appropriately-qualified technicians, so as to minimize the production disruptions in the fab, as a
consequence of the scheduling of planned and unplanned maintenance events.

6 Summary and Future Directions
In Section 1, we noted two important concerns in a semiconductor fab, which were the individ-
ual product quality and the overall production efficiency. The EDMS and TRACER methodolo-
gies generally address the product-quality concern, while WIPSim and MSS generally address the
production-efficiency concern. It is often tacitly assumed that the various factors and outcomes
associated with these two important concerns are unrelated to each other; however, this decoupling
also reflects some of the organizational aspects of the fab, and in particular, the roles and respon-
sibilities that are assigned for various facets of the the data collection, and for the actionability of
the analytics-based operational recommendations.

The development of an integrated framework for analytical applications for a semiconductor
fab should consider the functional requirements along two dimensions. The first dimension com-
prises the various solution requirements, such as aberrant behavior detection, root cause analysis,
process and operations optimization, and predictive modeling. The second dimension comprises
the appropriate data-delivery requirements, ranging from real-time to off-line, that are needed for
effectively implementing each of the proposed solutions. The synergistic evolution of the solu-
tion and data-delivery requirements, will drive the emergence of of new analytics solutions, with
increasingly more timely and comprehensive data sets.
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We now describe some directions that we have identified as important for further research,
based on our experiences to date.

The first direction is to further broaden the scope of the analytics and data perspectives. As
noted above, the two areas of concern, viz., individual product quality and overall production
efficiency are often addressed as separate and unrelated problem domains; however, in practice,
there is often an interaction between these domains. For example, an operational decision on the
allocation of certain tools to certain processes must take into account the resulting implications
along both the product quality and manufacturing productivity dimensions. (In general, being
able to use all tools for all tasks maximises manufacturing productivity, but minimises the product
quality.) Furthermore, the specialized nature of the engineering expertise, and the fine-grained
details of the organizational structure, leads to even further compartmentalization of the data and
analytics perspectives within these two ostensibly-separate problem domains. As a result, the
characterization of complete event and aberrant behavior, and the subsequent root cause diagnosis,
is often compromised. Therefore, a broadening scope of the analytics and data perspectives is
an important future direction, and this scope should consider all the disparate data inputs in the
fab, including for example, process history modifications, in-line contamination, in-line chemical
and physical analyses, in-line electrical, final product test, environmental, consumables, and field
performance. In addition, there is often an additional compartmentalization between the groups
responsible for factory operations and financial management. Financial management frequently
relies on limited static models of factory operations, which may never be realized in practice.
Therefore realistic models of factory operations and factory demands, along with explicit linkages
between them, will provide improved financial management responsiveness, risk management, and
financial outlooks.

The second direction is to extend the analytical techniques that have been developed to date, to
better handle the numerous practical data challenges, such as the presence of heterogeneous data
types; modeling requirements for non-standard distributions; data quality issues involving errors,
outliers, and missing measurements; and data heterogeneity in terms of the variation of sample
sizes and measurement scales across the data sets. Another related challenge is that there is often
little consensus on what constitutes either routine or aberrant behavior in many of these data sets,
as well as the need to detect specific aberrant behaviors in a more general setting than is being done
currently. For example, the EDMS-induced rules in Section 2 are effective for identifying aberrant
conditions in a single tool, but further work is required for the case when specific pairs of tools
lead to aberrant conditions, although the the constituent tools may be individually non-aberrant.

The third direction is to expand the use of predictive models, in particular, for the characteri-
zation of the intermediate product yield and process performance, based on the process trace data.
There is a significant interest in the semiconductor manufacturing industry in the so-called “virtual
metrology” application, which has the potential for replacing the time-consuming and capital-
intensive product testing events in the manufacturing workflow, by credible model predictions.
Predictive modeling is also extensively used in WIPSim to obtain estimates of the daily incoming
WIP projections at the individual processing centers.

The fourth direction is to develop methodologies for detecting aberrant conditions that are of
genuine operational significance. The current approach of eliciting expert information is effective
in reducing the number of false positives to the end user, but this approach is difficult to scale to
very high-dimensional and high-throughput monitoring applications. The use of process trace data
to predict product performance, as mentioned earlier, also holds the promise of inferring opera-
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tionally significant thresholds for process aberrations based on individual product requirements.
In closing, we note that the challenges of improving product quality and production efficiency

are not unique to semiconductor fabs, and these challenges are encountered in all manufacturing
and service enterprises, albeit with differences in the respective functional requirements. The
opportunities for new solutions and applications in these enterprises will increasingly be driven by
the evolution of the instrumentation, data capture, and data-serving capabilities of their production
operations.
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