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Matroid Matching: the Power of Local Search

Jon Lee∗ Maxim Sviridenko† Jan Vondrák‡
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Abstract

We consider the classical matroid matching problem. Unweighted matroid matching for linear
matroids was solved by Lovász, and the problem is known to be intractable for general matroids. We
present a PTAS for unweighted matroid matching for general matroids. In contrast, we show that
natural LP relaxations that have been studied have an Ω(n) integrality gap and moreover, Ω(n) rounds
of the Sherali-Adams hierarchy are necessary to bring the gap down to a constant.

More generally, for any fixed k ≥ 2 and ε > 0, we obtain a (k/2 + ε)-approximation for matroid
matching in k-uniform hypergraphs, also known as the matroid k-parity problem. As a consequence,
we obtain a (k/2 + ε)-approximation for the problem of finding the maximum-cardinality set in the
intersection of k matroids. We also design a 3/2-approximation for the weighted version of a known
special case of matroid matching, the matchoid problem.

1 Introduction

The matroid matching problem was proposed by Lawler as a common generalization of two important
polynomial-time solvable problems: the non-bipartite matching problem, and the matroid-intersection
problem (see [27]). Unfortunately, it turns out that matroid matching for general matroids is intractable
and requires an exponential number of queries if the matroid is given by an oracle (see [30, 21]). This result
can be easily transformed into a standard NP-completeness proof for a concrete class of matroids (see [38]).
An important result of Lovász is that (unweighted) matroid matching can be solved in polynomial time for
linear matroids (see [29]). There have been several attempts to generalize Lovász’ result to the weighted
case. Polynomial-time algorithms are known for some special cases (see [41]), but for general linear matroids
there is only a pseudopolynomial-time randomized exact algorithm (see [7]).

In this paper, we revisit the matroid matching problem for general matroids. Our main result is
that while LP-based approaches including the Sherali-Adams hierarchy fail to provide any meaningful
approximation, a simple local-search algorithm gives a PTAS (in the unweighted case). This is the first
PTAS for general matroid matching and to our knowledge also the first example of a problem where there
is such a dramatic gap between the performance of the Sherali-Adams hierarchy and a simple combinatorial
algorithm. We also provide approximation results for a generalization of the problem to hypergraphs; more
details follow.

We assume familiarity with matroid algorithmics (see [38], for example) and approximation algorithms
(see [43], for example). Briefly, for a matroid M, we denote the ground set of M by V = V (M), its set
of independent sets by I = I(M), and its rank function by rM. For a given matroid M, the associated
matroid constraint is S ∈ I(M) or equivalently |S| = rM(S).

In the matroid hypergraph matching problem, we are given a matroid M = (V, I) and a hypergraph
G = (V, E) where E ⊆ 2V . Note that the vertex set of the hypergraph G and the ground set of the matroid
M are the same. The goal is to choose a maximum-cardinality collection of disjoint hyperedges E∗ ⊆ E in
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hypergraph G, such that the set of vertices covered by hyperedges in E∗ is an independent set in matroid
M. If G is a graph, we obtain the classical matroid matching problem.

The matroid hypergraph matching problem generalizes several classical optimization problems, namely:

1. If M is a free matroid (i.e., I(M) = 2V ), then the problem is known as the maximum hypergraph
matching problem or the maximum set-packing problem. Set packing in general is NP-hard, but when
G is a graph (every hyperedge has exactly two vertices), it is the classical matching problem which
led Edmonds to the very notion of polynomial-time algorithms (see [12, 13]).

2. In the k-matroid intersection problem we are given k matroids M1 = (V, I1), . . . ,Mk = (V, Ik) on
the same ground set V , and the goal is to find a maximum cardinality set S of elements that is
independent in each of the k matroids, i.e. S ∈ ∩kj=1Ij . The k-matroid intersection problem is
NP-hard for k ≥ 3 but polynomially solvable for k = 2 (see [38]).

3. A problem of intermediate generality is the k-uniform matchoid problem, defined for k = 2 by
Edmonds and studied by Jenkyns (see [22]). In this problem, we have a k-uniform hypergraph and
a matroid Mv given for each vertex v, having ground set the set of hyperedges containing v. The
goal is to choose a maximum collection of hyperedges S, such that for each v, the hyperedges in S
containing v form an independent set inMv. This can be also seen as a packing problem with many
matroid constraints, where each item participates in at most k of them.

By taking eachMv to be the uniform matroid of rank 1, we get the set-packing problem. By taking
k arbitrary matroids defined on k copies of the same ground set V and a hypergraph of n parallel
hyperedges on the k copies of the same element from V , we get k-matroid intersection. On the other
hand, the matchoid problem is a special case of matroid matching, as we show below. We remark
that even for k = 2, the matchoid problem is NP-hard (see [30]).

4. The special case of the matroid hypergraph matching problem when each vertex (i.e., element of the
ground set) belongs to a unique hyperedge, and all hyperedges have cardinality exactly k is known as
the matroid k-parity problem, or simply the matroid parity problem when k = 2. As we show below,
this problem is in fact equivalent to k-uniform matroid matching, even in terms of approximation.

k-uniform matroid matching

?
6

matroid k-parity

?

k-uniform matchoid
�����

HHHHj

k-set packing k-matroid intersection
H
HHHj

�
����

k-dimensional matching

Next, we explain how the k-uniform matchoid problem is a special case of matroid k-parity. Given a
hypergraph G, we can replace each vertex by nv distinct copies, where nv is the number of hyperedges
containing v. We replace each hyperedge in G by a collection of distinct copies of its elements, so that
we get a hypergraph G′ where the hyperedges are disjoint. In the matchoid problem, we have a matroid
Mv defined on the nv copies of each vertex v, and we define a new matroid M′ by taking the union of
the matroidsMv. Then matroid k-parity for (G′,M′) is equivalent to the original k-uniform matchoid for
(G,Mv).
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In fact, a similar construction implies that matroid k-parity includes (and therefore is equivalent to)
matroid matching in k-uniform hypergraphs (or more generally in hypergraphs where each hyperedge has
cardinality at most k, which can be shown by adding dummy elements). Given an instance of k-uniform
matroid matching, we define nv copies for each vertex v where nv is the degree of v in the hypergraph
G = (V, E). We replace each hyperedge in G by a collection of distinct copies of its elements, so that the
new hyperedges are disjoint. Let G′ = (V ′, E ′) be the new hypergraph. We also define a new matroid M′
on the ground set V ′, where the nv copies of each vertex act as parallel copies. That is, a set of vertices
S′ ⊆ V ′ is independent in M′ if it contains at most one copy of each vertex from V and the respective set
S ⊆ V is independent in M. It is not difficult to show that M′ is a matroid.

Henceforth, we will discuss the matroid k-parity problem with the understanding that all our results
can be easily extended to the k-uniform matroid matching problem. For the purposes of this paper, the
terms matroid matching and matroid parity are essentially interchangeable.

Literature overview. There are a few different lines of research relevant to our results. The matroid
parity problem (for k = 2) was originally popularized by Lawler [26]. The maximum-cardinality matroid
parity problem was shown to have exponential query complexity in general (see [30, 21]), and to be NP-hard
for some concrete classes of matroids. If the matroid is linear over the reals, the problem is polynomially
solvable (see [29, 16, 34, 35, 40]). For more on matroid parity, applications and closely related problems,
see [5, 31, 36, 37]. The linear matroid k-parity problem also admits a polynomial time algorithm if k is a
constant, and the rank of matroid M is O(log |V |) (see [3]). The special case of matroid intersection can
be solved in polynomial time for arbitrary matroids (see for example [38]), even in the weighted case.

It is not difficult to show that a simple greedy algorithm that adds hyperedges one-by-one, as long as
the current solution remains independent, gives a k-approximation for general weighted matroid k-parity
and that this guarantee is tight. This follows from the work of Jenkyns on k-independence systems; see
[23] (see also Section 2). Until our present work, this was the only algorithm known for the general matroid
k-parity problem with a provable approximation guarantee. The only improvement to our knowledge has
been achieved in the case of unweighted matroid matching (k = 2), where Fujito proved that a local-search
algorithm gives a 3/2-approximation (see [15]).

Linear-programming relaxations for the matroid matching problem (k = 2) have been studied in [42,
10, 11, 17]. An LP proposed by Vande Vate (see [42]) has been shown to be half-integral, and moreover,
there are polynomial-time algorithms to find a half-integral optimal solution in the unweighted case (see
[10, 11]) and the general weighted case (see [17]). However, this approach has not yielded any approximation
algorithms for matroid matching.

We now survey known approximability and non-approximability results for special cases of the matroid
k-parity problem. Local-search algorithms exploring a larger neighborhood for the k-set packing problem
were analyzed in [20]. They showed that a local-search algorithm produces a solution with approximation
guarantee k/2+ε for any fixed ε > 0 and constant k in polynomial time. Hardness of approximation results
are known for the maximum k-dimensional matching problem which is a special case of the maximum k-set
packing problem and hence also matroid k-parity. The best known lower bound is the Ω(k/ log k) hardness
of approximation of [19]. It is also known that a large-neighborhood local-search algorithm has a tight
approximation guarantee of k − 1 + ε for the problem of (weighted) k-matroid intersection (see [28]). It
should be noted though that unweighted versions of packing problems seem to be easier for algorithm design
and analysis, and approximation guarantees for general linear objective functions can be often improved
for an unweighted variant of the problem.

The Sherali-Adams hierarchy (see [39]) has been studied recently for a number of combinatorial opti-
mization problems (see [24, 25] for good surveys on the results in this area). Mathieu and Sinclair proved
(see [32]) for the non-bipartite matching problem that r rounds of Sherali-Adams applied to the matching
polytope have integrality gap 1 + O(1/r) and hence provides a PTAS (while the problem can be solved
exactly in polynomial time). Chan and Lau considered k-uniform hypergraph matching, i.e. k-set packing,
and proved that that even after O(n) rounds of Sherali-Adams, the standard LP has integrality gap at
least k− 2 (see [8]). In contrast, local search techniques yield a (k/2 + ε)-approximation (see [20]), and an
alternative LP (using intuition from local search) has integrality gap at most (k + 1)/2 (see [8]).
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Our Results. On the negative side, we show that the known linear relaxations of matroid parity do
not yield any reasonable approximation guarantee (even for k = 2 with unit weights). More precisely,
all variants of the LPs that have been proposed have an Ω(n) integrality gap for instances with n pairs.
Moreover, Ω(n) rounds of the Sherali-Adams hierarchy are required to generate an LP with a constant
integrality gap.

In contrast, we prove that a very simple local-search algorithm gives a PTAS for unweighted matroid
parity. Given the negative results for the matroid parity problem (see [30, 21]), this is the best type
of worst-case result we could expect for this problem. It is also a strong manifestation of the fact that
LP-based hierarchies do not always match the performance of combinatorial algorithms (which was, in a
weaker sense, shown previously for the matching problem in graphs (see [32]) and hypergraphs (see [8])).

For the more general problem of unweighted matroid k-parity, we present a (k/2 + ε)-approximation,
for any fixed k ≥ 2 and ε > 0. As a special case, this subsumes the (unweighted) k-matroid intersection
problem for which a k-approximation was known since 1976 (see [23]) and has been only recently improved
to k − 1 + ε (see [28]).

The algorithm that we analyze is simple local search that in each iteration seeks to remove s(ε) hyper-
edges and add s(ε) + 1 hyperedges to the current solution in such a way that the new solution defines an
independent set in matroid M. We call this the s-neighborhood local-search algorithm. If there is no im-
provement the algorithm stops and outputs the current local optimum. Our analysis uses an idea from [20]
to reduce inductively the instance, and given the performance of the local search on the smaller instance,
to derive the guarantee on the original one. But the presence of the matroid independence constraint
complicates matters significantly. In particular, to achieve the approximation guarantee of 1 + ε for the
matroid parity problem we need to implement the local-search algorithm with s(ε) exponentially large in
1/ε, while it is well known that s(ε) = d1 + 1/εe is enough for the maximum matching problem in graphs
(the fixed-size augmenting-path algorithm could be viewed as a local-search algorithm). We do not know
at this point if having such a large neighborhood is necessary or if it is just an artifact of our analysis.
Surprisingly, for k ≥ 3, we show that to achieve k/2 + ε approximation, it is enough to run the local-search
algorithm with s(ε) polynomially bounded in 1/ε.

Finally, we give a 3/2-approximation algorithm for the weighted matchoid problem, which is a special
case of weighted matroid parity. This result uses an LP relaxation of the matchoid problem and its known
half-integrality (see [10, 11, 17, 42] for closely related linear programs). We provide an alternative proof
that is very simple and intuitive which might be of independent interest.

The rest of the paper is organized as follows. In Section 2, we show that matroid k-parity is a special
case of a “k-independence system” which implies a greedy k-approximation. In Section 3, we present our
PTAS for unweighted matroid parity. In Section 4, we consider various linear-programming relaxations
for the matroid parity problem and present our lower bounds on their integrality gap. In Appendix A, we
present a (k/2 + ε)-approximation for matroid k-parity. In Appendix B, we present our 3/2-approximation
for the weighted matchoid problem.

2 Relation to k-independence systems

First, we show that the matroid k-parity falls in the framework of k-independence systems (see [23]). Such
systems generalize intersections of k matroids, and in fact several definitions of various degrees of generality
have been proposed (see also [33, 6]). The definition of Jenkyns is as follows.

Definition 1 For a family of sets I ⊂ 2V and a set W ⊆ V , we define a base of W to be any inclusion-wise
maximal subset B ⊆W such that B ∈ I. We call I a p-system, if for any W ⊆ V ,

max
B:base of W

|B| ≤ p · min
B:base of W

|B|.

Lemma 1 The independence system corresponding to matroid k-parity is a k-system.

Proof: Consider an independent collection of hyperedges W = {e1, . . . , e`}, and two bases B1, B2 of W .
Assume toward a contradiction that |B2| > k|B1|. Let S1 =

⋃
{e : e ∈ B1} and S2 =

⋃
{e : e ∈ B2};
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i.e. |Si| = k|Bi| and both S1 and S2 are independent in the matroid M. By the matroid extension
axiom, S1 can be completed from S2 to a set S1 ∪ S′2 independent in M, where S′2 ⊆ S2 \ S1 and
|S′2| = |S2| − |S1| = k|B2| − k|B1|. Note that S′2 is not necessarily a union of hyperedges. However, it
must contain at least one hyperedge, otherwise |S′2| ≤ (k − 1)|B2| < k|B2| − k|B1|. Therefore, there is a
hyperedge ei ∈ B2 \B1 that we can add to B1 which contradicts B1 being a base of W . �

The work of [22, 14] for p-systems gives the following results (see also [6]).

Theorem 1 The greedy algorithm yields a p-approximation for maximizing any linear function over a
p-system. Moreover, the greedy algorithm yields a (p + 1)-approximation for the problem of maximizing a
monotone submodular function over a p-system.

Corollary 1 The greedy algorithm yields a k-approximation for matroid k-parity, even in the weighted
version. Moreover, the greedy algorithm yields a (k + 1)-approximation for the problem of maximizing a
monotone submodular function over sets feasible for the matroid k-parity problem.

We regard the greedy k-approximation for matroid k-parity as a “folklore” result and a starting point
for further improvements. For unweighted matroid parity (k = 2), this has been improved to a factor of
3/2 by Fujito [15]. For general k, no better approximation was known prior to our work.

3 PTAS for matroid parity

Let us start with the case of k = 2, i.e. matroid parity. In an instance of matroid parity, we have disjoint
pairs, and we look for a maximum-cardinality collection of pairs whose union forms an independent set in
a given matroid. We present a PTAS for this problem.

Definition 2 For feasible solutions A and B of matroid parity, a “local move of size s between A and B” is
a choice of s−1 pairs e1, . . . , es−1 inside A, and s pairs e′1, . . . , e

′
s inside B, such that (A\

⋃s−1
i=1 ei)∪

⋃s
i=1 e

′
i

is again feasible.

Theorem 2 For any ε > 0, a local-search algorithm which considers local moves of size up to s(ε) =
5b1/(2ε)c achieves a (1− ε)-approximation for the matroid parity problem.

The same result also holds for matroid matching, by a simple reduction that we outlined in the intro-
duction. The theorem follows immediately from the following characterization of local optima.

Lemma 2 Let t ≥ 1, and A,B feasible solutions to the matroid parity problem such that

|A| <
(

1− 1
2t

)
|B|.

Then there exists a local move of size 5t−1 between A and B.

Assuming that B is an actual optimum and A is a local optimum with respect to local moves of size
5t−1, this implies that A is an (1−1/2t)-approximate solution. This means that for any fixed ε > 0, we can
pick t = d1/(2ε)e and s = 5t−1; the corresponding local-search algorithm achieves a (1− ε)-approximation
for matroid parity.

It remains to prove the lemma. Our proofs uses the standard notion of matroid contraction. For a set
S ⊂ V (M),M/S (readM contract S) is the matroid having ground set V (M) \S and set of independent
sets {T ⊆ V (M) \ S : T ∪ J ∈ I(M)}, where J is an arbitrary maximal independent subset of S with
respect to M.

Proof: Let A,B be feasible solutions as above. (We assume for simplicity that A and B are disjoint,
otherwise we can contract the intersection, which only decreases the ratio |A|/|B|.) Because |A| < |B|,
there exists B0 ⊂ B, |B0| = |B| − |A| such that A ∪B0 is independent in M. We proceed by induction on
t.
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Base case: t = 1. For t = 1, we have |A| < 1
2 |B|. Then, |B0| = |B|− |A| > 1

2 |B|. Because B decomposes
into disjoint pairs, this means there must be a pair contained inside B0. This pair can be added to A
without violating independence, i.e. there is a local move of size one.

General case: t ≥ 2. We assume that |A| = |B| − a where a > 1
2t |B|. We also assume a ≤ 1

2 |B|,
otherwise we are in the base case. We construct a set B0 ⊂ B as above, with A ∪ B0 independent and
|B0| = a. Again, if there is a pair contained inside B0, we can add it to A, and we are done. So let us
assume that no pair is contained completely inside B0.

Every pair intersecting B0 also contains an element in B \ B0; let us denote the elements matched
with B0 by B1. We have |B1| = |B0| = a. Let M0 = M/B0 denote the matroid where B0 has been
contracted. Because A ∪B0 and B1 ∪B0 are independent in M (by construction), we get that A and B1

are independent in M0. Because |A| = |B| − a ≥ a = |B1|, we can extend B1 by adding (possibly zero)
elements from A, to form an M0-independent set (A \A1) ∪B1 where |A1| = |B1| = a.

If A1 contains a pair e then we can find a local move as follows: A \ e is independent in M0, and so
is the set (A \ A1) ∪ B1. Therefore, A \ e can be extended to a set (A \ e) ∪ {x′, x′′} independent in M0,
such that x′, x′′ ∈ B1. The elements x′, x′′ are contained in pairs e′, e′′ whose remaining elements are in
B0. Because (A \ e) ∪ {x′, x′′} is independent in M0 =M/B0, any elements of B0 can be added for free,
and (A \ e) ∪ e′ ∪ e′′ is independent in M. This defines a local move of size two.

The rest of the proof deals with the case when there is no pair contained in A1. Then, every pair
intersecting A1 also contains an element in A \A1; let us denote the elements matched with A1 by A2. We
have |A2| = |A1| = a. Here is where we apply the inductive hypothesis.

The inductive step. We define a new matroid M1 = M0/B1 = M/(B0 ∪ B1). By construction, the
sets A∗ = A \ (A1 ∪ A2) and B∗ = B \ (B0 ∪ B1) are both independent in M1. They both form a union
of pairs and hence are feasible solutions to the matroid parity problem for M1. We have |A∗| = |A| − 2a
and |B∗| = |B| − 2a. Because |A| = |B| − a, we get

|A∗|
|B∗|

=
|A| − 2a
|B| − 2a

=
|B| − 3a
|B| − 2a

= 1− 1
|B|/a− 2

.

Because we assumed a > 1
2t |B|, we have |B|/a < 2t and |A∗| < (1 − 1

2t−2 )|B∗|, so we can apply the
inductive hypothesis. There is a local move of size s = 5t−2 between A∗ and B∗, i.e. a union of s− 1 pairs
Ã ⊆ A∗ and s pairs B̃ ⊆ B∗ such that (A∗ \ Ã) ∪ B̃ is independent in M1. Our goal is to define a local
move of size 5s = 5t−1 between A and B (in M).

The set (A∗ \ Ã)∪ B̃ is independent inM1. Unfortunately, (A \ Ã)∪ B̃ is not necessarily independent,
even in M. We have to proceed more carefully. The set (A∗ \ Ã) ∪ A2 = A \ (A1 ∪ Ã) is independent in
M1 =M0/B1, because (A\A1)∪B1 was constructed to be independent inM0. Therefore, we can extend
(A∗ \ Ã) ∪ B̃ to a set (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C2) independent in M1, where C2 ⊆ A2 and |C2| ≤ |B̃|. (If
|A2| ≤ |B̃|, we can just set C2 = A2.)

The new set (A∗ \ Ã)∪ B̃ ∪ (A2 \C2) is also independent inM0 (a weaker condition). So is (A∗ \ Ã)∪
(A2 \C2)∪A1, as any subset of A is independent inM0. Therefore, we can extend (A∗ \ Ã)∪ B̃∪ (A2 \C2)
to a set (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C2) ∪ (A1 \ C1) in M0, where C1 ⊆ A1 and |C1| ≤ |B̃|.

The set we have obtained is not necessarily a union of pairs, so let us remove the whole pair for each
element in C1 and C2. Let us denote by C ′ the union of all pairs intersecting C1∪C2. By our construction,
we have C1 ∪ C2 ⊆ C ′ ⊆ A1 ∪ A2. Further, let us define C ′1 = C ′ ∩ A1 and C ′2 = C ′ ∩ A2. Each
pair on A1 ∪ A2 contains exactly one element in A1 and one element in A2, therefore |C ′1| = |C ′2|. Also,
|C ′1| = |C ′2| ≤ |C1 ∪ C2|, because each each element of C1 ∪ C2 contributes at most one pair to C ′.

We obtain a feasible solution A+ = (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C ′2) ∪ (A1 \ C ′1) in M0. Now, consider the
set (A+ \ A1) ∪ B1 = (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C ′2) ∪ B1. This is independent in M0, because A+ \ A1 was
constructed to be independent inM1 =M0/B1. Because A+ misses some elements in A1, namely C ′1, the
cardinality of (A+ \ A1) ∪B1 is actually larger than |A+|, |(A+ \ A1) ∪B1| = |A+|+ |C ′1|. Hence, we can
extend A+ by |C ′1| elements of B1, let us call them F1, to obtain a set A+ ∪ F1 independent in M0. The
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pairs touching F1 have exactly 1 element in B1 and the other element in B0. Let F0 be the elements of
B0 matched with F1. We can add F0 for free and obtain an independent set A+ ∪F1 ∪F0 inM. We have
|F0| = |F1| = |C ′1| = |C ′2|. Now A+∪F1∪F0 is a union of pairs and hence a feasible solution, of cardinality

|A+ ∪ F1 ∪ F0| = |A+ ∪ C ′1 ∪ C ′2| = |(A \ Ã) ∪ B̃| > |A|.

Finally, let us estimate the size of this local move. We removed Ã∪C ′1∪C ′2 from A, and added B̃∪F1∪F0

instead. The size of C ′1 is bounded by |C ′1| ≤ |C1 ∪C2| ≤ 2|B̃|, hence |F1| = |C ′1| ≤ 2|B̃|. The size of F0 is
equal to the size of F1, i.e. |F0 ∪ F1| = 2|F1| ≤ 4|B̃|. In summary, we are adding at most 5|B̃| elements to
A, i.e. the size of the local move is at most 5|B̃| = 5s = 5t−1. �

4 Linear-Programming Relaxations

In this section, we consider a linear-programming approach to matroid parity. Our results in this direction
are mostly negative and indicate that linear programming in this case fails very badly compared to the
local-search algorithm presented in the previous sections. We formulate our linear programs for the general
case of matroid k-parity but the case k = 2 is already sufficiently general to obtain our results.

We start with the following natural LP for the weighted matroid k-parity problem (equivalent to an
LP studied in [17]). The variables ye correspond to the hyperedges and the variables xu correspond to
the elements of the ground set. We assume here that each hyperedge alone is independent; otherwise we
remove it from the instance.

max
∑
e∈E

weye, (1)∑
u∈S

xu ≤ rM(S), ∀S ⊆ V, (2)

xu = ye, ∀u ∈ e, e ∈ E , (3)
xu, ye ≥ 0, ∀u ∈ V, e ∈ E . (4)

In the objective function (1) we are maximizing the total weight of chosen hyperedges. The constraints
(3) correspond to the fact that we can choose a hyperedge only if we chose all its vertices. The constraints
(2) are the standard rank constraints for the matroid M and any independent set of vertices must satisfy
them.

For any set of elements S ⊆ V let sp(S) = {u ∈ V | rM(S∪{u}) = rM(S)} be the span of S in matroid
M. F ⊆ V is a flat if sp(F ) = F (for more information on these concepts, see [38], Chapter 39). Since
rM(sp(S)) = rM(S), it is easy to see that it is enough to write the constraints (2) for every flat F ⊆ V ;
the inequality for arbitrary S ⊂ V is implied by the flat F = sp(S).

Another set of valid inequalities (for k = 2) were suggested by Vande Vate [42] and studied in subsequent
work [10, 11, 17, 42]. For a set S ⊆ V and a hyperedge e, let a(S, e) = rM(S ∩ sp(e)). In case of a flat
F , the intuition is that a(F, e) is the dimension of the subspace of F generated by e. The LP proposed by
Vande Vate is as follows.

max
∑
e∈E

weye, (5)∑
e∈E

a(S, e)ye ≤ rM(S), ∀S ⊆ V, (6)

ye ≥ 0, ∀e ∈ E . (7)

Again, it is equivalent to consider the inequalities (6) only for flats, which was the formulation given
by Vande Vate. This LP is potentially stronger than LP (1-4), which can be equivalently obtained from
(5-7) by replacing a(S, e) with the smaller quantity |S ∩ e|.
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It is known that the linear program (5-7) is half-integral in the 2-uniform case. Moreover, there are
polynomial time algorithms to find a half-integral optimal solution in the unweighted 2-uniform case (see
[10, 11]) and the weighted 2-uniform case (see [17]). The following lemma shows the validity of the LP
(5-7) in the general k-uniform case. Validity is not completely trivial, and we could not find a published
proof of it (even for k = 2), so for completeness we provide a short proof.

Lemma 3 The inequalities (6) are valid for the matroid k-parity problem.

Proof: Consider any feasible solution, a collection of hyperedges E∗ = {e1, . . . , ek} such that e1∪ . . .∪ ek
is an independent set in matroid M. In the following, we denote the rank function of M simply by
r(S). Let Si = S ∩ sp(ei). Note that r(Si) = a(S, ei). We claim that for any i < k, r(S1 ∪ . . . ∪ Si) =
r(S1 ∪ . . . ∪ Si−1) + r(Si). By induction, we will get that r(S1 ∪ . . . ∪ Sk) =

∑k
i=1 r(Si) =

∑k
i=1 a(S, ei)

which implies the Vande Vate constraint
∑
e∈E∗ a(S, e) ≤ r(S).

We let rA(S) = r(A ∪ S) − r(A); due to submodularity, this is a non-increasing function of A. Let
A = S1 ∪ . . . ∪ Si−1 and B = e1 ∪ . . . ∪ ei−1. Our goal is to prove that rA(Si) = r(Si). Since A ⊆ sp(B),
we get rA(Si) ≥ rsp(B)(Si) = rB(Si), using the fact that r(sp(B)) = r(B) and r(Si ∪ sp(B)) = r(Si ∪B).
On the other hand, as ei is independent of B, we have

r(sp(ei)) = rB(sp(ei)) = rB(Si) + rB∪Si
(sp(ei))) ≤ rA(Si) + rSi

(sp(ei))

using again the submodularity of r. This implies that rA(Si) ≥ r(sp(ei)) − rSi
(sp(ei)) = r(Si). The

opposite inequality is obvious and hence rA(Si) = r(Si). �

In the following, we use examples where e = sp(e) for all hyperedges e ∈ E . Note that in this case,
a(S, e) = rM(S ∩ sp(e)) = rM(S ∩ e) = |S ∩ e| and hence the two LPs are in fact equivalent.

4.1 Integrality gap example

It is known that the integrality gap of the linear-programming relaxation (1–4) is k−1+ 1
k for the maximum

weighted hypergraph matching problem [8]. Therefore, it is tempting to conjecture that a similar result
should hold for matroid hypergraph matching. Unfortunately, as we show below, the integrality gap of the
linear-programming relaxation (1–4) is Ω(|E|) even when k = 2 and the matroid is linear over the rationals.

Example. Consider a ground set V = {u1, v1, . . . , un, vn} of size 2n, partitioned into pairs ei = {ui, vi}.
The weight of each pair is wei

= 1. Given an integer parameter t ≥ 1, we define a matroid M = (V, I) as
follows. For a set S ⊆ V , let p(S) be the number of pairs ei such that ei ⊆ S. Then let S ∈ I if p(S) ≤ t.

It can be checked that I satisfies the matroid independence axioms: For any S, T ∈ I, |S| < |T |, either
T contains an element from a pair {ui, vi} which is disjoint from S, or it contains more pairs than S. In
either case, we can extend S by adding some element of T . Moreover, this matroid is is linear over the
rationals (see Appendix C).

First, let us write down the LP for this particular example. We have variables yi for i = 1, . . . , n, which
are constrained by yi ∈ [0, 1]. Since sp(ei) = ei, the LPs (1-4) and (5-7) coincide. It is enough to write
the constraints (6) for flats, and in particular only for collections of pairs S =

⋃
i∈T ei. This is because

including only one element of a pair in S always increases rM(S) by 1 and hence cannot strengthen the
constraint. Also, for S =

⋃
i∈T ei where |T | ≤ t, the rank is rM(S) = |S| and the respective constraint

(6) is implied by yi ≤ 1. The only non-trivial constraints are for S =
⋃
i∈T ei, |T | > t, where we get

rM(S) = 2t+ (|T | − t) = t+ |T |. Also, a(S, ei) = 2 for all i ∈ T . Therefore, the LP is as follows.

max
n∑
i=1

wiyi, (8)

∑
i∈T

yi ≤
1
2

(t+ |T |), ∀T ⊆ [n], |T | > t (9)

0 ≤ yi ≤ 1, ∀i. (10)
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Lemma 4 The integrality gap of LP (8-10) is Ω(n/t), even in the unweighted case.

Proof: It is easy to see that yi = 1/2 for all i = 1, . . . , n is a feasible fractional solution. Therefore,
LP ≥ n/2. However, only t pairs can be selected in an integral optimum, i.e. OPT = t. �

For t = 1, we get an Ω(n) integrality gap. One way to improve the quality of linear-programming
relaxations is to add valid inequalities that cut bad fractional solutions. One of the possible classes of
valid inequalities are the so-called clique inequalities that were recently shown to reduce the integrality
gap for unweighted hypergraph matching from k − 1 to (k + 1)/2 [8]. This motivates us to define the
undirected graph G′ = (E , E′) where the vertices are the hyperedges e ∈ E in our instance of matroid
hypergraph matching and the edges are defined between “incompatible hyperedges” e and e′, i.e. when
r(e∪ e′) < |e∪ e′|. A set of vertices C in graph G′ is called a clique if it has an edge between every pair of
vertices in C. Let C be the set of all cliques in graph G′. Then the following set of constraints is valid for
the matroid hypergraph matching problem∑

e∈C
ye ≤ 1, ∀C ∈ C. (11)

However, as we can see in the example above (for t ≥ 2), sometimes the clique inequalities do not add any
non-trivial constraints and the LP effectively remains the same. More generally, we could add all the valid
constraints for the stable-set polytope corresponding to G′ (or perhaps consider the semidefinite program
corresponding to the Lovász θ-function). The relaxation would still remain the same, since the graph G′

is empty in our example.
In the next section, we consider the strongest known systematic way of generating valid constraints in

linear programming, which is the Sherali-Adams hierarchy.

4.2 The Sherali-Adams hierarchy

The Sherali-Adams hierarchy produces progressively stronger refinements of a given LP by introducing
new variables yL indexed by subsets of the original variables, and then projecting back to the space of
the original variables. We follow the formalism of [32]. To carry out r rounds of Sherali-Adams, we
consider all pairs of disjoint subsets of variables I, J such that |I ∪ J | = r. We multiply each constraint
by
∏
i∈I yi

∏
j∈J(1− yj), expand all the monomial terms and replace every square y2

i by yi. Now all terms
are multilinear, and we replace each occurrence of

∏
`∈L y` by a new variable yL. We also do the same for

the constraint
∏
i∈I yi

∏
j∈J(1− yj) ≥ 0, for all disjoint I, J such that |I ∪J | = r+ 1. This defines the new

LP; note that the variables yL for |L| > 1 play no role in the objective function and thus the polytope can
be viewed as projected back to the original space.

Lemma 5 The integrality gap of LP (8-10) still remains Ω(n/r) after r rounds of the Sherali-Adams
hierarchy.

Proof: Our starting point is LP (8-10), with the parameter t chosen equal to the desired number of
rounds r. We have constraints

∑
`∈T y` ≤

1
2 (r + |T |) for all |T | > r. We multiply this constraint by∏

i∈I yi
∏
j∈J(1− yj) and obtain

∑
`∈T

y`
∏
i∈I

yi
∏
j∈J

(1− yj) ≤
1
2

(r + |T |)
∏
i∈I

yi
∏
j∈J

(1− yj). (12)

We expand the products, linearize the expressions, and replace monomials
∏
`∈L y` by new variables yL as

explained above. We also do the same thing for the constraints
∏
i∈I yi

∏
j∈J(1−yj) ≥ 0 with |I∪J | = r+1.

We claim that yL = 1/2|L| for all |L| ≤ r + 1 is a feasible solution for the new LP.
To see this, first observe that whenever we have ` ∈ J on the left-hand side of (12), the corresponding

term contains y`(1 − y`) = y` − y2
` which disappears after linearization. In terms where ` ∈ I, we get

y2
` which gets linearized to y`. Equivalently, we can replace y` by 1 in its appearance before the product

9



∏
i∈I yi, whenever ` ∈ I. Variables outside of I ∪ J remain unchanged. Therefore, after linearization, the

left-hand side is equal to (|T ∩ I|+
∑
`∈T\(I∪J) y`)

∏
i∈I yi

∏
j∈J(1− yj).

Now we replace the monomials
∏
`∈L y` by yL and substitute yL = 1/2|L|. Note that this is equivalent

to directly substituting y` = 1/2 for all `. Thus the left-hand side becomes

(|T ∩ I|+ 1
2
|T \ (I ∪ J)|) 2−|I∪J| =

1
2

(|T ∩ I|+ |T \ J |) 2−|I∪J| ≤ 1
2

(r + |T |) 2−|I∪J|

using the fact that |I| ≤ r. This verifies the linearized form of constraint (12).
The inequalities arising from

∏
i∈I yi

∏
j∈J(1 − yj) ≥ 0 are easy to verify, since our assignment yL =

1/2|L| is equivalent to substituting yi = 1/2. Therefore, our fractional solution is feasible for r rounds of
Sherali-Adams.

Finally, the value of our fractional solution is equal to n/2, because each singleton variable is yi =
y{i} = 1/2. The integral optimum is OPT = r. �

To summarize, our LP (8-10) is an instance of the strongest “natural LP” for matroid matching we are
aware of, namely the Vande Vate LP (5-7). The same LP (8-10) is obtained even with the added clique
constraints (11) and other valid constraints for the stable-set polytope which are hard to optimize over in
general. On top of this LP, we run the Sherali-Adams hierarchy and the gap still remains superconstant
for o(n) rounds.

5 Conclusion

We have seen that a simple combinatorial algorithm performs dramatically better than any known LP-
based approach for matroid matching. Linear programming still holds some promise for the k-uniform
matchoid problem. Theorem 4 and the results from [8] on the integrality gap of the hypergraph matching
problem motivate the following.

Conjecture 1 The integrality gap of the linear-programming relaxation (1–4) is k−1+ 1
k for the maximum

weighted k-matchoid problem and k − 1 for the maximum weighted k-matroid intersection problem.

In the case of weighted matroid k-parity, we have the following conjecture, which is true (and tight) for
the weighted k-set packing problem due to [1] and also for the weighted k-matroid intersection problem
due to [28].

Conjecture 2 The simple local-search algorithm for the weighted matroid k-parity problem that tries to
add/remove a constant number of hyperedges in each iteration has approximation guarantee k − 1 + ε for
any ε > 0 (with running time depending on 1/ε).

An especially intriguing open problem is to show that this simple local-search algorithm gives a PTAS
for the weighted matroid parity problem (k = 2). This problem is interesting even for the special case of
linear matroids, because Lovász’ polynomial-time algorithm applies only to the unweighted case (see [29]).
For the weighted linear case, there is only a pseudopolynomial-time randomized exact algorithm due to [7].

Another interesting line of research is to analyze more sophisticated local-search algorithms (see [4, 9])
implemented for the weighted matroid k-parity problem. Such algorithms are known to provide improved
approximation guarantees for the weighted set packing problem.
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A Matroid k-parity

Here we extend the analysis of local search to matroid k-parity; i.e. instead of pairs, we work with
hyperedges of size k. We assume here that k ≥ 3. In an instance of matroid k-parity, all hyperedges
are mutually disjoint. We remark that again, our analysis extends to k-uniform matroid matching where
hyperedges are not necessarily disjoint, by a standard reduction.

Interestingly, the analysis for k ≥ 3 is slightly different and the complexity of our (2/k−ε)-approximation
for k ≥ 3 has a much better dependence on ε than our PTAS for k = 2 (matroid matching). More precisely,
while we need local moves of size exponential in 1/ε in order to achieve a (1−ε)-approximation for matroid
matching, local moves of size polynomial in 1/ε are sufficient to achieve a (2/k − ε)-approximation for
matroid k-parity. We do not know whether our analysis is optimal in terms of size of the local move.

Definition 3 For feasible solutions A and B of matroid k-parity, a “local move of size s between A and
B” is a choice of s − 1 hyperedges e1, . . . , es−1 inside A, and s hyperedges e′1, . . . , e

′
s inside B, such that

(A \
⋃s−1
i=1 ei) ∪

⋃s
i=1 e

′
i is again feasible.

Theorem 3 For any k ≥ 3 and ε > 0, a local-search algorithm which considers local moves of size up to
s(ε) = d1/ε3e achieves a (2/k − ε)-approximation for the matroid k-parity problem.

This follows easily from the following characterization of local optima.

Lemma 6 Let k ≥ 3, t ≥ 1, and A,B feasible solutions to the matroid k-parity problem such that

|A| <
(

2
k
− 1

(k − 1)t

)
|B|.

Then there exists a local move of size (2k + 1)t−1 between A and B.

Note that in order to achieve a (2/k − ε)-approximation, it suffices to pick t = dlogk−1(1/ε)e and
s(ε) = (2k+ 1)t−1 ≤ 1/εlogk−1(2k+1). Then, if A is a local optimum and B is a global optimum, the lemma
implies that |A| ≥ (2/k− 1/(k− 1)t)|B| ≥ (2/k− ε)|B|. For simplicity, we replaced 1/εlogk−1(2k+1) by 1/ε3

in the statement of the theorem, but for large k the dependency gets close to 1/ε.
It remains to prove the lemma.

Proof: Let A,B be feasible solutions as above. (We assume for simplicity that A and B are disjoint,
otherwise we can contract the intersection, which only decreases the ratio |A|/|B|.) Because |A| < |B|,
there exists B′ ⊂ B, |B′| = |B| − |A| such that A∪B′ is independent inM. We proceed by induction on t.

Base case: t = 1. Here, we have |A| < ( 2
k −

1
k−1 )|B| < 1

k |B|. Then, it is impossible that every hyperedge
in B contains some element in B \ B′, because that would mean that |A| = |B \ B′| ≥ 1

k |B|. Hence,
there must be a hyperedge contained completely inside B′, which can be added to A without violating
independence. This means there is a local move of size one.

General case: t ≥ 2. We assume that |A| = (2/k− ε)|B| and ε > 1
(k−1)t . Again, if there is a hyperedge

contained inside B′, we can add it to A, and we are done. So let us assume that no hyperedge is contained
completely inside B′.

We use a counting argument to show that there must be many hyperedges with exactly k− 1 elements
in B′. Let a denote the number of such hyperedges (|e ∩ B′| = k − 1), and b the number of hyperedges
such that |e ∩B′| ≤ k − 2. All hyperedges in B fall into one of these two categories, hence |B| = k(a+ b).
On the other hand, |B′| ≤ (k − 1)a + (k − 2)b which means that |A| = |B| − |B′| ≥ a + 2b. We assumed
that |A| = (2/k − ε)|B|, which implies

a+ 2b ≤ |A| =
(

2
k
− ε
)
|B| = (2− kε) (a+ b). (13)
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We conclude that
a ≥ kε(a+ b). (14)

Let Q denote these a hyperedges in B and V (Q) denote the elements of B that belongs to hyperedges in
Q; each of them contains exactly one element in B \B′ and k− 1 elements in B′. Let B0 = V (Q)∩B′ and
B1 = V (Q) ∩ (B \B′). We have |B0| = (k − 1)a and |B1| = a.

Let M0 = M/B0 denote the matroid where B0 has been contracted. Because A ∪ B0 ⊆ A ∪ B′
and B1 ∪ B0 ⊆ B, both of which are independent in M, we get that A and B1 are independent in M0.
Because |A| ≥ a + 2b ≥ |B1|, we can extend B1 by adding (possibly zero) elements from A, to form a
M0-independent set (A \A1) ∪B1 where |A1| = |B1| = a.

If A contains any hyperedge e with |e ∩ A1| ≥ 2, we find a local move of size two as follows: ((A \ e) \
A1) ∪ B1 is an independent set in M0, whose cardinality is at least |A \ e| + 2 (because A1 contains ≥ 2
elements of e). Therefore, A \ e can be extended to a set (A \ e) ∪ {x′, x′′} independent in M0, such that
x′, x′′ ∈ B1. The elements x′, x′′ are contained in hyperedges e′, e′′ whose remaining elements are in B0.
Because (A \ e) ∪ {x′, x′′} is independent in M0 =M/B0, any elements of B0 can be added for free, and
(A \ e) ∪ e′ ∪ e′′ is independent in M. This defines a local move of size two.

The rest of the proof deals with the case that there is no hyperedge in A with more than 1 element in
A1. Let P be the collection of hyperedges in A intersecting A1; each such hyperedge satisfies |e ∩A1| = 1,
and hence |P | = |A1| = a. Let A2 denote the remaining elements of P , i.e. A2 ⊆ A\A1 and |A2| = (k−1)a.
Here is where we apply the inductive hypothesis.

The inductive step. We define a new matroid M1 = M0/B1 = M/(B0 ∪ B1). By construction, the
sets A∗ = A \ (A1 ∪A2) and B∗ = B \ (B0 ∪B1) are both independent inM1. They both form a union of
hyperedges and hence feasible solutions to the matroid k-parity problem forM1. We have |A∗| = |A| − ka
and |B∗| = |B| − ka = kb. Using (13), we get

|A∗|
|B∗|

=
|A| − ka

kb
=

(2− kε)(a+ b)− ka
kb

=
2
k
− ε− (k − 2 + kε)a

kb

and applying (14) to estimate a ≥ kbε, we get

|A∗|
|B∗|

≤ 2
k
− ε− (k − 2 + kε)ε ≤ 2

k
− (k − 1)ε.

Because we assumed ε > 1
(k−1)t , we have |A∗| <

(
2
k −

1
(k−1)t−1

)
|B∗|, and we can apply the inductive

hypothesis. There is a local move of size s = (2k + 1)t−2 between A∗ and B∗, i.e. a union of s − 1
hyperedges Ã ⊆ A∗ and s hyperedges B̃ ⊆ B∗ such that (A∗ \ Ã) ∪ B̃ is independent in M1. Our goal is
to define a local move of size (2k + 1)s between A and B (in M).

We accomplish this by a construction essentially identical to the case of matroid parity. The set
(A∗ \ Ã)∪ B̃ is independent inM1. Unfortunately, (A \ Ã)∪ B̃ is not necessarily independent, even inM.
However, the set (A∗ \ Ã)∪A2 = A \ (A1 ∪ Ã) is independent inM1 =M0/B1, because (A \A1)∪B1 was
constructed to be independent inM0. Therefore, we can extend (A∗\Ã)∪B̃ to a set (A∗\Ã)∪B̃∪(A2\C2)
independent in M1, where C2 ⊆ A2 and |C2| ≤ |B̃|. (If |A2| ≤ |B̃|, we just take C2 = A2.)

The new set (A∗ \ Ã)∪ B̃ ∪ (A2 \C2) is also independent inM0 (a weaker condition). So is (A∗ \ Ã)∪
(A2 \C2)∪A1, as any subset of A is independent inM0. Therefore, we can extend (A∗ \ Ã)∪ B̃∪ (A2 \C2)
to a set (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C2) ∪ (A1 \ C1) independent in M0, where C1 ⊆ A1 and |C1| ≤ |B̃|.

The set we have obtained is not necessarily a union of hyperedges, so let us remove the entire hyperedge
for each element in C1 and C2. Let us denote by C ′ the union of all hyperedges intersecting C1 ∪C2. Note
that due to our construction, C1 ∪ C2 ⊆ C ′ ⊆ A1 ∪ A2. We also define C ′1 = C ′ ∩ A1 and C ′2 = C ′ ∩ A2.
We know that each hyperedge on A1 ∪ A2 contains exactly one element in A1 and k − 1 elements in A2.
Therefore, |C ′2| = (k − 1)|C ′1|, and also |C ′1| = 1

k |C
′| ≤ |C1 ∪ C2| , because each element of C1 ∪ C2

contributes at most one hyperedge to C ′.
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We obtain a feasible solution A+ = (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C ′2) ∪ (A1 \ C ′1) in M0. Now, consider the
set (A+ \ A1) ∪ B1 = (A∗ \ Ã) ∪ B̃ ∪ (A2 \ C ′2) ∪ B1. This is independent in M0, because A+ \ A1 was
constructed to be independent inM1 =M0/B1. Because A+ misses some elements in A1, namely C ′1, the
cardinality of (A+ \A1) ∪B1 is actually larger than |A+|, namely |(A+ \A1) ∪B1| = |A+|+ |C ′1|. Hence,
we can extend A+ by F1 ⊆ B1, |F1| = |C ′1|, to obtain a set A+ ∪ F1 independent in M0. The hyperedges
touching F1 have exactly 1 element in B1 and the remaining k − 1 elements in B0 (denote these by F0),
hence we can add F0 for free and obtain an independent set A+ ∪ F1 ∪ F0 in M. We have |F1| = |C ′1| and
|F0| = (k− 1)|F1| = (k− 1)|C ′1| = |C ′2|. To conclude, we have found a feasible solution A+ ∪F1 ∪F0 inM,
of cardinality

|A+ ∪ F1 ∪ F0| = |A+ ∪ C ′1 ∪ C ′2| = |(A \ Ã) ∪ B̃| > |A|.

Finally, let us estimate the size of this local move. We removed Ã∪C ′1∪C ′2 from A, and added B̃∪F0∪F1

instead. The size of C ′1 is bounded by |C ′1| ≤ |C1 ∪ C2| ≤ 2|B̃|, hence |F0 ∪ F1| = k|C ′1| ≤ 2k|B̃|. In
summary, we are adding at most (2k + 1)|B̃| elements to A, i.e. the size of the local move is at most
(2k + 1)|B̃| = (2k + 1)t−1. �

B The weighted matchoid problem

In this section we analyze the integrality gap for the special case of the weighted matroid matching problem.
First, we show a result similar to the one in [17].

Lemma 7 The linear-programming relaxation (1–4) for the weighted matroid matching problem (k = 2)
has a half-integral optimal solution, i.e. a solution x∗, y∗ such that x∗u, y

∗
e ∈ {0, 1/2, 1}. Moreover, there

exists a polynomial time algorithm to find such a solution.

Proof: Consider the basic optimal solution (x∗, y∗) of the linear-programming relaxation (1–4). By
the well-known properties of basic solutions, there exists a collection of sets S such that corresponding
inequalities (2) are saturated, i.e. are satisfied with the equalities. Moreover, the solution (x∗, y∗) is
a unique solution of the system of linear equations corresponding to these equalities and equations (3).
Because the equations (3) are just equalities between different variables, there are |E| = |V |/2 distinct
variables and therefore we may assume that |S| = |E|.

By the well-known uncrossing technique we may assume that the sets in S form a laminar family, i.e.
if A,B ∈ S then either A ∩ B = ∅ or A ⊆ B or B ⊆ A. Indeed, the submodularity of the rank function
implies that the constraints corresponding to the sets A ∩ B and A ∪ B are also saturated. Therefore, if
there are two sets A,B ∈ S such that A ∩ B 6= ∅, A \ B 6= ∅ and B \ A 6= ∅ then we can replace A and B
in collection S with A ∪B and A ∩B.

Each laminar family can be viewed as a directed forest where the vertices correspond to sets in S and
we connect two such vertices by a directed arc (A,B) if B is a minimal set in S such that A ⊆ B. Let EF
be the set of arcs in this directed forest and for each set B ∈ S let Υ(B) = {A ∈ S | (A,B) ∈ EF } be the
set of children of B. The set of saturated constraints (2) corresponding to the set S can be rewritten as∑
u∈B\(∪A∈Υ(B)A) xu = rM(B)−

∑
A∈Υ(B) rM(A) for each B ∈ S.

This new set of constraints has the crucial property that each variable xu such that x∗u > 0 appears in
exactly one of the above constraints. Together with the constraints xu = xv for (u, v) ∈ E , we basically
obtain an instance of the classical b-matching problem. We have a vertex corresponding to each A ∈ S,
b(A) = rM(A) −

∑
B∈Υ(A) rM(B) and edges correspond to pairs in the matroid matching instance (or

constraints (3)). It is known that the b-matching polyhedron is half-integral [2], i.e. if we have variables
defined on edges ye = xu = xv > 0 and we know that this solution is a unique solution of the system of
linear equations defined by the degree constraints in the b-matching problem then this solution must be
half-integral. Therefore, we derive the statement of the lemma. �

Actually, the proof technique in the above lemma can be extended to the general hypergraph matroid
matching problem. We can basically show that the properties of the basic solutions of the hypergraph
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matroid matching polyhedron are similar to the properties of the basic solutions of the hypergraph b-
matching polyhedron. Because we do not know how to use such properties, we omit the statements and
the proofs.

Let LP ∗ be the optimal value of the linear program (1–4). Using Lemma 7 we prove the following.

Theorem 4 There exists a polynomial time algorithm that finds a feasible solution to the weighted matchoid
problem of value at least 2

3LP
∗, given the half-integral optimal solution of the linear-programming relaxation

(1–4).

Proof: Recall the reduction of the matchoid problem to the matroid parity problem from Introduction. In
this reduction each edge (u, v) in the matchoid problem corresponds to a pair that includes its own copies of
u and v. Each vertex v in the matchoid instance has its own matroidMv defined on edges incident to that
vertex, or equivalently on copies of vertex v. The key property of the matchoid problem (or matroid parity
instance corresponding to the matchoid problem) that allows us to derive an approximation algorithm is
that all relevant rank constraints involve at most one element from each pair. This is because the rank
constraints come from a matroid that is defined on the star of a vertex of the original instance.

Let (x∗, y∗) be the optimal half-integral solution of the linear-programming relaxation (1–4) defined on
the instance of the matroid parity problem corresponding to the matchoid problem. Our algorithm rounds
variables iteratively. In iteration i we are given an instance of the matroid parity problem corresponding
to the matchoid problem. In this instance we have matroids Mvi for each vertex v ∈ V of the original
matchoid instance and we are given a set of pairs Ei such that the elements of the pair always participate
in the different matroid constraints. We are also given a half-integral solution (xi, yi) of the linear program
(1–4) for that instance. Initially, E0 = E , Mv0 =Mv for each vertex v ∈ V of the matchoid instance and
(x0, y0) = (x∗, y∗).

In iteration i our algorithm chooses a pair eh = (u, v) ∈ Ei such that yieh
> 0 of highest weight

wh. We add this pair to our current approximate solution and update matroids Mvi+1 = Mvi/eh and
Mui+1 = Mui/eh. For all other vertices w ∈ V , we define Mwi+1 = Mwi. If yih = 1 then we do not
need to change the fractional solution. In this case xi+1

w = xiw and yi+1
h′ = yih′ for all w 6= u, v and h′ 6= h.

Otherwise, yih = 1/2. In this case the old solution may not be feasible anymore for rank inequalities defined
by matroids Mui+1 and Mvi+1.

Note that xi is a half-integral feasible solution of the matroid polyhedron P(∨w∈VMwi) (rank con-
straints (2)) where ∨w∈VMwi the union of matroids Mwi. By the integer decomposition property [38]
(Corollary 42.1e, p.730) this vector is a convex combination of two integral independent sets I1 and I2 in
this matroid (actually the proof will work almost the same way using any convex combination of indepen-
dent sets). Each of those independent sets consists of a union of independent sets in matroids Mwi, i.e.
I1 = ∪w∈V Iw1 and I2 = ∪w∈V Iw2 where Iw1, Iw2 ∈ I(Mwi).

Because yhi = xui = xvi = 1/2, we know that vertex u belongs to either Iu1 or Iu2. Without loss
of generality, we take u ∈ Iu1. By the matroid exchange properties there exists an element π(u) such
that the set Iu2 ∪ {u} \ {π(u)} ∈ I(Mui), i.e. it is independent in this matroid. This element π(u)
belongs to some pair in Ei let us call it eh′ = (π(u), w′). If yh′i = xπ(u)i = xw′i = 1/2 then we define
yh′i+1 = xπ(u)i+1 = xw′i+1 = 0. If yh′i = xπ(u)i = xw′i = 1 then yh′i+1 = xπ(u)i+1 = xw′i+1 = 1/2.

We apply an analogous operation for the element v, i.e. we define an element π(v) and pair eh′′ =
(π(v), w′′) and update the variables accordingly. We do not change any other variables, i.e. yhi+1 = yhi
for h 6= h′, h′′ and xwi+1 = xwi for w 6= u, v, π(u), π(v), w′, w′′.

We claim that the new fractional solution (xi+1, yi+1) is a feasible for the matroid matching problem
for the next iteration. The key property we used is that the elements from the pair (u, v) participate in
different matroid constraints and do not appear in the same independent set Iui or Ivi for i = 1, 2.

In each iteration i we added a pair of value wh to our approximate solution and decreased the value of
the LP solution for the next iteration by at most 3

2wh. It implies that our final approximate solution will
have value at least 2

3LP
∗. �

We remark that the integrality gap of LP (1–4) is 3/2 even for the special case of non-bipartite matching
(the example is a triangle), so with respect to this LP we cannot achieve a better approximation.
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C Linearity of integrality gap example

Consider a ground set V = {u1, v1, . . . , un, vn} of size 2n, partitioned into pairs ei = {ui, vi}. Given an
integer parameter t ≥ 1, we define a matroid Mt = (V, I) as follows. For a set S ⊆ V , let p(S) be the
number of pairs ei such that ei ⊆ S. Then let S ∈ I if p(S) ≤ t.

For t = 0, the matroid M0 is a simple partition matroid — a set is independent if no more than one
element is selected from each pair. For t > 0, the matroid Mt is related to M0 via a not very well known
operation. Generally, for a matroid M of rank r on ground set V and an integer p satisfying r ≤ p ≤ |V |,
the elongation of M to height p has as its family of bases the sets that have rank r in M and have
cardinality p. Note that elongation is dual to the more familiar matroid operation of truncation (see [44,
pp. 59–60]). The matroid Mt is the elongation of M0 to height n+ t. Although there is a standard way
of passing from a matrix representation of a matroidM to a matrix representation of an elongation ofM,
the general procedure is not very parsimonious and it does not preserve the field that M is represented
over (see [45, p. 402]). Instead, for Mt, we give a direct parsimonious representation over the rationals.

Proposition 1 The matroid Mt is linear over the rationals. Moreover the representation has bit size that
is polynomial in n.

Proof: Take W to be a t×n Vandermonde matrix. That is, we take distinct positive integers c1, c2, . . . , cn
(we can take cj = j). Then, we fill column j of W with the t entries: c0j , c

1
j , c

2
j , ..., c

t−1
j . Our representation

of the matroid Mt is (
I I

W 2W

)
where the first block of columns represents u1, . . . , un and the second block represents v1, . . . , vn.

Next, we consider any S ⊆ V and we check that the respective columns of this purported representation
are linearly independent if and only if S is independent in Mt.

If S contains t+ 1 pairs, we take the respective columns and delete all-zero rows. We obtain a (t+ 1 +
t)× 2(t+ 1) = (2t+ 1)× (2t+ 2) submatrix, which clearly has dependent columns as it has more columns
than rows.

Suppose that S contains at most t pairs - we can assume it is a base which contains exactly t pairs
and n − t singletons. First, for each of the n − t singletons, notice that the corresponding column has a
non-zero in an associated row, that is zero in all of the other columns; so we can delete such columns and
the associated rows, and concentrate on the columns corresponding to just the pairs. So we are led to a
2t× 2t submatrix of the form (

I I

A 2A

)
,

where A is a t× t submatrix of W . We want to argue now that this 2t× 2t matrix is non-singular. After
elementary row operations, we pass to the matrix(

I I

0 A

)
.

Now it is clear that we just need to check that A is non-singular. But the matrix A is itself a Vandermonde
matrix, which is well known to be non-singular.

Finally, taking cj = j, j = 1, 2, . . . , n, the largest integer used is just 2nt−1, which has polynomial bit
size. �
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