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Program Behavior Prediction

Using a Statistical Metric Model

ABSTRACT

Adaptive computing systems rely on accurate projections of program behavior to understand and respond to the dynamically-

varying application characteristics. In this study, we propose a Statistical Metric Model (SMM) that is system- and metric–

independent for predicting program phases. SMM is a probability distribution over workload patterns and it attempts to

model how frequently a specific behavior occurs. Maximum Likelihood Estimation (MLE) criterion is used to estimate the

parameters of the SMM. The model parameters are further refined with a smoothing method to improve the robustness

of the proposed program model. Finite sequences of execution metrics, obtained from running workloads are used to train

the SMM. The SMM learns the application patterns during runtime, and at the same time predicts the upcoming program

phases based on what it has learned so far. The finite prediction horizon can be adjusted based on the available data,

which is used to estimate the model parameters. An extensive and rigorous series of prediction experiments demonstrate the

superior performance of the SMM predictor over existing predictors on a wide range of benchmarks. For some benchmarks

the improvements in prediction error are as much as 10-fold and 3-fold respectively, compared to the existing last-value and

table-based prediction approaches.

1 Introduction

Adaptive management of power and performance has utmost importance in current generation microprocessors.

Today’s microprocessors rely on adaptive power management schemes that try to adapt to changing behavior of

applications. Typically, these schemes exploit changing phase behavior at certain time granularities of application

to dynamically trade-off power and performance. In most cases, the techniques are reactive in that they are enabled

once the phase transition occurs. Obviously, reactive systems do not predict the future values and durations of

phases for an application. In cases, where the application phase behavior is very dynamic the reactive systems may

lead to possible oscillations for the adaptive control system.

Ideally, one would like to predict future behavior of an application based on its past behavior and proactively



manage the system to avoid instability. Obviously, such a scheme heavily relies on accurate prediction capability

of application behavior. Prior work proposed such proactive methods based on simple pattern history tables [17],

recent program flow behavior [22, 20], and statistics over recent performance characteristics [12]. These predictors

aim to predict application behavior by keeping track of the recently observed patterns or statistics in the observed

application features, which can be then used to guide dynamic management decisions.

While in general these predictors prove to be effective in many scenarios, there are two critical caveats due to i)

their deficiency in predicting global long range patterns, and ii) their inability to model patterns of varying length.

Figure 1 shows an example to why a simple table based predictor cannot provide a robust mechanism for workload

behavior prediction. This figure shows an actual trace from the SPECCPU 2000 applu benchmark. Here, the

two boxed regions show an exemplary repetitive execution. The table based predictor used in this example has

a pattern length of 8 samples. The two captured repetitive regions show an 8-sample pattern, where the second

occurrence experiences a single fluctuation. While the table based predictor learns the behavior following from the

first pattern, this small fluctuation actually leads to a pattern mismatch. As a result, the table based predictor

backs off to the last value predictor, and the following two consecutive samples labeled as i and j are mispredicted.

However, an advanced predictor that can model varying size patterns, can actually discern the repetition at a

smaller sequence length and can correctly predict both i and j from prior observations. This shorter pattern

discovered by our proposed predictor is highlighted with the smaller enclosed patterns in the figure. As shown in

Figure 1, the proposed predictor can be effective over both table based and other historical predictors. While both

of the latter approaches are potentially prone to mispredictions due to fluctuations in pattern history, the proposed

novel predictor can model patterns of varying length.

In this paper, we propose a Statistical Metric Model (SMM) for metric prediction. The SMM estimates the

probability of a finite a sequence. The probabilities generated by the SMM are used to predict the most likely next

sample value given the history pattern. The SMM does not have the shortcomings of the table based predictor.

As such, it has the ability to model patterns of different length and it can effectively model long term patterns.

A comprehensive set of experiments demonstrates the effectiveness of the SMM predictor in comparison to the

previously proposed predictors.

The rest of the paper is organized as follows. Section 2 gives an overview of prior work for program phase

prediction. Section 3 describes the baseline predictors that SMM is compared against. Section 4 provides a detailed

description of the SMM predictor. Section 5 summarizes the methodology. An extensive series of experiments are

reported in Section 6 followed by the conclusions in Section 7.
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Figure 1: Vulnerability of table based predictor to the fluctuations in the metric sequence of fixed length.

2 Related Work

A large body of research focuses on tracking, characterizing and predicting application characteristics. These

studies investigate characterization and prediction techniques for various metrics that include runtime performance

monitoring counts, programmatical flow information and operating system statistics.

One line of research explores characterization of observed behavior via runtime statistic collection and ar-

chitectural or system-level simulations [15, 16, 21, 5, 7, 11, 13]. These techniques mainly focus on interpret-

ing specific workload execution behavior and detecting some indicative characteristics. Other characterization

work [6, 8, 10, 9, 23] uses system statistics to guide dynamic adaptations such as power and thermal management.

While, these techniques provide significant insights to workload behavior and its impact on dynamic management

decisions, they do not explore the approaches for online prediction of future behavior. The dynamic management

techniques resulting from these can be considered as reactive approaches. Our proposed approach aims to provide

the necessary means for proactive adaptations.

In addition to the characterization studies, significant number of studies also target at predicting future appli-

cation behavior [12, 17, 14, 22, 18, 19, 24]. Duesterwald et al. [12] describe different statistical and table based

predictors for within- and across-metric predictions of performance monitoring information. Sarikaya et al. [19]

describe an optimal prediction technique based on a predictive least squares minimization [19]. Isci et al. [14]

develop a table based runtime predictor to predict future behavior from past pattern characteristics. Zhou et al.

monitor memory access patterns to estimate memory behavior of workloads [24]. This approach is used for energy

efficient memory allocation. Sherwood et al. describe micro–architectural phase predictors based on the repetitive

characteristics of program flow behavior [22]. Shen et al. detect such repetitions from reuse distance patterns

3



 

St St-1 St-2 … … St-N … … St’’ St’’-1 St’’-2 … … St’’-N … … 

St’ St’-1 St’-2 … … St’-N … … 

: : : : : : : : 

: : : : : : : : 

: : : : : : : : 

S0 

 
S0 

 
S0 

 
… … S0 

 
… … 

St’’+1 

St’+1 

: 

: 

: 

S0 

 

15 

20 

: 

: 

: 

-1 

 

New 
observed 
samples 

Last N Observations 

Pattern Table PHT 
Pred-n 

Age / 
Invalid 

T
able entries 

Figure 2: Table based predictor structure.
for dynamic memory configurations via profiling and instrumentation [20]. In summary, all these studies provide

useful prediction techniques suitable for different applications. This paper, on the other hand, shows the benefit of

statistically incorporating the varying pattern history tracking. It also improves prediction accuracy over existing

approaches by modeling long term patterns.

3 Baseline Predictors

This section gives a brief overview of the predictors that serve as the baseline in our work.

3.1 Last Value Predictor

One simple, yet effective metric predictor is the last value predictor. Last value predictor assumes that the next

metric sample is the same as the last observed sample. The last value predictor can be very accurate for slowly

varying metric sequences. However, its performance suffers greatly for rapidly varying metrics. The main appealing

feature of the last value predictor is its simplicity from the computational and storage perspective. Other more

elaborate predictors introduce computational and storage overheads to the prediction process.

3.2 Table Based Predictor

Table based predictors track the patterns in prior application history to deduce future workload characteristics.

Such approaches rely on the repetitive application execution characteristics to produce a reliable model of future

behavior. An example of these predictors, namely a global phase history table predictor [14] is depicted in Figure

2. Such a table based predictor can be implemented either in software or hardware depending on the desired

prediction quantum and policy application time granularities [14, 12, 22].

The table based predictor consists of a global register that tracks a certain number of—specified as N— most

recently observed sample characteristics. At each sampling period, this register records the last observed sample.
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The contents of this register are used to index into a pattern table, which holds up to a certain number of previously

encountered patterns. The predictions for the future behavior is also deterministically encoded into this table such

that a prediction is performed for each previously observed pattern. An age entry is used to track the reuse time of

different entries for a least recently used (LRU) replacement policy when the pattern table is full. After a prediction

is performed, the register contents are added to the table by either replacing the oldest entry or by inserting into

an available invalid entry.

4 Statistical Metric Model

4.1 Intuition for SMM

The SMM is inspired from the way natural language is generated. In a natural language we use words to construct

sentences. The SMM treats the metric samples as the words in a language and builds a language model for each

metric. Note that, as metric samples are real numbers one has to quantize the real numbers into a set of discrete

values, which are called “quantization bins”. In a natural language, words do not follow each other randomly

because of the underlying grammar. There is an underlying structure defined by the grammar, which determines

the order in which we bring words together to make meaningful sentences. Our intuition is that, like in natural

languages, we can treat the metric modeling as a language modeling problem. We assume that there is an underlying

structure in each metric, and if indeed there is such an underlying structure (e.g. repetitive patterns) SMM can

reveal and model this structure. However, if there is not any structure, that is to say, the metric is a completely

random sequence of numbers then SMM will not do a worse job than any other predictor, as long as it is trained

on sufficiently large data. In the rest of the manuscript we will often draw parallels between the natural language

modeling and the SMM to explain the concepts used in this work.

4.2 Foundations of SMM

We consider a metric as a sequence of quantized sample values. From now on, we refer to a “quantized sample”

simply as “sample”. The SMM is a conditional distribution on the identity of the ith sample in a metric sequence,

given the identities of all previous samples. In other words, the next sample in a metric depends on all the previous

samples. In general, this is a true statement but such a model will suffer from parameter estimation problems.

Therefore, we have to make a computationally convenient approximation that a sample depends only on the previous

n samples, where n depends on the amount of available data to estimate the model parameters. Again, going back

5



to natural language modeling analogy, in general, what word we will speak next, depends more on the most recent

previous n words than the words we have spoken a while ago.

The SMM we use is based on a class of Markov models, which is known as, the n-gram models [4]. N -gram

models have received intensive research since their invention and have been widely used in speech and natural

language processing [25]. The parameters of n-gram models are estimated from a large training text. The models

produce a reasonable nonzero probability for every word in the vocabulary. From a theoretical perspective SMM is

identical to the n–gram models. Here n refers to the maximum length of the finite sequence of the metric samples

(e.g. patterns of n = 4 samples as given in Figure 3). The probability of the nth sample is conditioned on the

previous n − 1 samples. Unlike natural language models, which are built offline only once and then used for the

application without any update, the SMM is updated as many times as the observed metric samples.

The SMM model of order n = 4 is shown in Figure 3. The model has two set of entries: the finite sequences

and the associated probabilities with each sequence. The model contains sequences of length 1 to n where the last

sample in each sequence is the output given the remaining n − 1 history samples. For example, the first entry

has the (s1, s2, s3) as the history for the next sample s4 with the probability P (s4|s3, s2, s1). The probabilities

are called the model parameters that are estimated from the observed data. As we highlighted before, the SMM

consists of models of lower order m (1 ≤ m ≤ n), increasing the likelihood of finding a matching subsequence for a

given finite sequence.

There is an inverse relationship between the predictive power of the SMM and robust parameter estimation.

As n increases the predictive power of SMM increases at the expense of unreliable parameter estimation, which

in turn may start to hurt the predictive power of the model. Following extensive experimentation, 2 ≤ n ≤ 6 are

found to work best for natural language models. In this work, for program behavior prediction we use n = 8 to

have a fair comparison with prior work. However, we also provide an evaluation of SMM performance with smaller

n. By restricting the conditioning information to the previous seven (n− 1) samples, we are making a simplifying

assumption. Although samples further back in history potentially also have an influence on the identity of the

next sample, higher order models provide diminishing returns due to the fact that the number of parameters in

the SMM model is exponential in n. Converting the entire sequence of metric samples that are observed up to now

to a set of finite sequence of n samples, allows us to compare any sequence with any other sequence in an efficient

manner.

6



N−1

N−2

History Next SampleHistory
Size

0

s1 s2 s3 s4 P(s4 | s3,s2,s1)

s1 s2 s3 s5

s2 s3 s4 P(s4 | s3,s2)

s3 s4 P(s4 | s3)

s4 P(s4)

P(s3)

P(s2)

P(s1)

Probability

Figure 3: Description of the statistical metric model with back-off for n = 4.

4.3 Formulation of SMM

The SMM model is a probability distribution, P (s), over L samples S = s1, s2, ..., sL, that attempts to reflect the

frequency with which each finite sequence s = s1, s2, ..., sl (l < L) occurs in a metric.

P (s) = P (s1)P (s2|s1)...P (sl|sl−1...s1)

=
l∏

i=1

P (si|si−1, si−2, ...., s1) (1)

In SMM, the probability of a string P (s) is expressed as the product of the probabilities of the samples that

compose the sequence, with each sample probability is conditional on the identity of the last n−1 samples. Without

loss of generality, we can express the probability of a s, P (s) as:

P (s) =
l∏

i=1

P (si|si−1
1 )

≈
l∏

i−1

P (si|si−1
i−n+1) (2)

where sj
i denotes samples si, ..., sj . In order to simplify the description and formulation of the SMM we consider

the case n = 2. The extension of formulation and results to higher order models are trivial. By setting n = 2, we

7



make the approximation that the probability of a sample only depends on the identity of the immediately preceding

sample, hence we can approximate P (s) as:

P (s) =
l∏

i=1

P (si|si−1) (3)

This probability distribution can be estimated with maximum likelihood estimation (MLE) technique:

P (si|si−1) =
C(si−1, si)
C(si−1)

(4)

where C(x) denotes the number of times the sequence x occurs in the metric. This is called the maximum likelihood

(ML) estimate for P (si|si−1).

4.4 Motivation for Model Smoothing

There are fundamental problems with using ML based relative frequency counts due to data sparseness and robust

model parameter estimation. We consider a specific example such as a bigram model (n = 2). Now assuming

a total quantization level of V=20 bins, there are 20 × 20 = 400 bigrams. Setting n = 8, result in, potentially

208 = 25.6 billion unique sequence of length 8. However, in our experiments we sample the data at every 10msec,

and the longest metric data of SPECCPU 2000 consists less than 50K samples. In an unlikely case, where if there

would be no identical sequence of 8 samples, this metric would generate 50K unique sequences of length 8. Clearly,

this figure is negligible compared to 25.6 billion. As a result, the conventional probability estimate for each unseen

event would be zero, and only a small fraction of all sequences of length 8 can be observed due to the small size of

the training set.

While intuitive, the maximum likelihood estimate is a poor one when the amount of metric data is small

compared to the size of the model being built, as is generally the case in metric modeling. For example, consider

the situation where a pair of samples, say (1,20) does not occur in the metric data observed so far. Then, we

have PML(1, 20) = 0, which is clearly inaccurate as this probability should be larger than zero. Just because an

event has never been observed so far in the data does not mean it can not occur in the future. A zero bigram

probability can lead to errors in metric prediction, as it disallows the bigram regardless of whether this bigram will

be observed in the future. To overcome these shortcomings of the ML probability estimates, we have to apply some

sort of “smoothing” to the relative frequencies and to make sure that each probability estimate is larger than zero.

Smoothing is about modifying the conditional distributions away from pure relative frequency estimates in order

to compensate for data sparsity.
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4.5 Model Smoothing

Various smoothing techniques can be devised to ensure that the probability estimates are greater than zero for

samples which do not occur in the training data. One simple smoothing technique is to pretend each bigram occurs

once more than it actually did, leading to;

P+1(si|si−1) =
C(si−1, si) + 1
C(si−1) + |V | (5)

where V is the set of all unique quantization bins being considered. This has the desirable quality of preventing

zero bigram probabilities. However, this scheme has the flaw of assigning the same probability to say, “(10,10)”

and “(20,20)” (assuming neither occurred in the metric data so far and the overall metric mean is 10), even though

intuitively the former seems more likely because the sample 10 is much more frequently observed than 20.

Another smoothing method is to interpolate higher order n–gram models with lower order n–gram models,

because when there is insufficient data to estimate a probability in the higher order model, the lower order model

can often provide useful information.

Pint(si|si−1) = λPML(si|si−1)(1− λ)PML(si) (6)

where Pint(si|si−1) is the probability distribution for the interpolated model and PML(si) = C(si)/L is the unigram

model. The interpolated model achieves the behavior so that bigrams which involve common words are assigned

higher probabilities [4, 1]. The weighting of the linear interpolation is estimated by maximizing the probability of

new “held-out” data which differs from the data used to originally estimate the n-gram frequencies. In either case,

this treatment normalizes the frequencies of formerly low-frequency n-grams to a significant level for the SMM.

This type of smoothing was shown to obtain competitive performance when the training data is small, as is the

case with the metrics considered here.

A more widely used set of smoothing methods is based on absolute discounting, which also involves interpolating

higher order and lower models. However, instead of multiplying the higher order ML model with a factor, λ, the

higher order distribution is created by subtracting a fixed discount D < 1 from each nonzero count. We use an

interpolated version of the absolute discounting [25], which was shown to provide the best performance in natural

language modeling applications. For finite metric sequences with nonzero counts, this distribution has the following

general form:
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Pint(si|si−1
i−n+1) =

C(si
i−n+1)−D∑

si
C(si

i−n+1)

+ α(si−1
i−n+1)Pint(si|si−1

i−n+2) (7)

where Pint(si|si−1
i−n+2) is the lower order smoothing distribution. Normalization constraints fix the value of α(si−1

i−n+1):

α(si−1
i−n+1) = D

n1+(∗, si−1
i−n+1)∑

si
C(si

i−n+1)
(8)

where n1+(∗, si−1
i−n+1) is the number of bins for which C(si

i−n+1) > 0.

4.6 Implementation of SMM

While our SMM-based prediction approach is inspired from natural language modeling, there are unique differences

in our implementation stemming from the different characteristics of computational flow in computing systems.

First, typically, the natural language model is built from a previously collected existing corpus once, and the

same model is used for speech recognition or information retrieval without any model update. Even though the

dialog or topic context information could be used to further improve the prediction of the words to be uttered

at any point in the text/conversation, the information contained in the existing corpus dominates the probability

of which word is to be expected next. Second, in natural language a sentence contains a finite number of words.

However, in workload behavior prediction, the entire sequence of execution is not observed when the SMM is used

for prediction. In fact, in practice monitored system execution is a continuous process that produces a stream

of workload characteristics without any particular beginning or end. The metric data that is of interest to the

SMM predictor keeps coming from the beginning system startup to the next system halt, which can span days or

months. Because of this, the SMM must be trained/updated constantly. The key question here is whether the

computational complexity of model training/updating presents a challenge on the practicality of the SMM.

We can estimate the computational complexity of the SMM model training. For that, we need to know three

parameters: i) number of quantization bins, ii) length of finite sequence (n), iii) how often we need to update the

model. In our experiments, we have V = 20 quantization bins, n = 8 and we update the SMM parameters at every

sample. For such a setting, the computational overhead for each model update would be bounded by O(kV n)

division and multiplication operations, where k is a small constant (k ≤ 3). The storage requirements could be a

more important concern for large n value and very long metric sequences.

As the metric data becomes longer the SMM model size will increase as well. However, this is not a concern

from a practical implementation point of view, as there are a number of effective methods that can keep the model
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size under control without compromising the model performance [2]. Moreover, the model size can inherently be

controlled by limiting the number of quantization bins and the model order. Fewer quantization bins and smaller

model order will lead to smaller model size.

Based on the described computational upper bounds for the model update, the overall computational overhead

of the SMM is constrained to be less than a thousand multiply and divide operations. This translates to compute

time overheads on the order of microseconds. Therefore, the proposed schemes can be implemented within the

operating system software in context switch time granularities with no visible performance impact.

4.7 Advantages of SMM

By expressing various short term and long term sequential phenomena in terms of simple parameters in a statistical

model, SMM provides an easy way to deal with complex computer metric prediction.

One of the important features of the SMM in comparison to the previous methods is its ability to model long

term patterns. Last value predictor, table based predictor and others attempt to use short term dependencies,

focusing on the previous n − 1 samples to predict the next sample. This of course is useful but not sufficient to

model long term dependencies where repetitive patterns go beyond the window of past n samples.

Another major advantage of the SMM is its ability to model patterns of variable length. We show in Figure 3

that SMM has the ability to match patterns of variable length m, where (1 ≤ m ≤ n). This is a major issue with

table based predictor, as its patterns are fixed in length. SMM takes a pattern of length n and checks whether

there is such an entry in the model, if so, it uses the probability for that entry. If not, then it checks models of

lower order. For a given history, the predicted next sample is selected based on its probability.

5 Methodology

We perform the experiments on an IBM POWER4 [3] server platform with the AIX5L operating system. The

results present per-thread behavior running in multi-user mode on a lightly loaded machine. We use the hardware

performance counters, with a sampling tool that works on top of the AIX Performance Monitoring API (PMAPI).

The sampler ties together counter values to a particular thread, including all library calls and system calls performed

by that thread. The prediction is performed at 10 ms time scales. All the experiments are performed with the

SPECCPU 2000 suite using reference datasets. All benchmarks are compiled with XLC and XLF90 compilers with

the base compiler flags. The data in the experimental sections shows prediction performance with the instruction

per cycle (IPC) metric. However, the same prediction approach can be applied to other architectural metrics. The
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Figure 4: Normalized mean prediction error for IPC using table based predictor with various table sizes of 128,
256, 512, 1024, 10000.

results shown are based on a quantization level of 20 bins. This represents the high end of the experimented phase

granularities, limiting within-bin quantization error range to 5%.

6 Experimental Results

We run a rigorous and extensive set of experiments to compare SMM, table based and last value predictors. We

also investigate SMM predictor in-depth for its performance in relation to various parameters. Even though SMM

predictor is applied to predict IPC, it has general applicability to predict any metric of interest with great accuracy.

Much of the past effort in the metric prediction area focused on ad-hoc methods that are tailored to work on

specific benchmarks. Typically, these methods may perform very well for a few benchmarks in comparison to last

value predictor. However for the rest of the benchmarks, they do not provide better prediction accuracy than the

last value predictor. As such, they lack the generality and fail to work on other metrics, simply because they are

not based on statistical estimation principles.

In order to provide a fair comparison with the baseline table based predictor, we perform a sensitivity analysis

using different table sizes. Figure 4 presents the normalized mean prediction errors for different table sizes. Our

results confirm the previous studies [17] in that using table sizes larger than 1024 does not provide significantly

different prediction results. For most of the benchmarks as the table size increases the reductions in prediction

error level off. A very large table size such as 10K does not change the results most applications. There is an

appreciable improvement only for mgrid benchmark, while others such as parser, gcc 166 and crafty show slight

degradations in accuracy. In our experiments table size is set to 1024.
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6.1 Metric Variation

The value of a good prediction scheme can be realized only if the underlying predicted workload characteristics

show significant variability. In other words, if the metrics and the workloads of interest, show little or no variation

in their temporal behavior, it is an overkill to design anything beyond a trivial predictor such as last value predic-

tor. However, for benchmarks that exhibit rapidly changing characteristics, such a trivial predictor shall perform

unfavorably. Therefore, we provide an evaluation on the predictability of the different applications used in this

work.
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Figure 5: Variation in experimented benchmarks.

Figure 5 shows the available variation in the experimented benchmarks under two criteria. The upper plot

shows the average sample-to-sample variation in IPC metrics. This variation is computed as the average sample-

to-sample variation normalized with respect to the overall dynamic range of the workload. Benchmarks are sorted

in increasing variability. Therefore, workloads towards the right end of the plot show the highest variability. The

last six workloads show more than 5% sample-to-sample variation. In the lower plot, the magnitude of variation

is decoupled from the occurrence of a variation. In this case, the IPC trace is quantized into 20 bins, and the

percentage values show how often the two consecutive samples belong to different bins. This measure is useful to

understand the deviation of each workload from a purely flat workload.

6.2 Metric Tracking Using SMM Predictor

The optimal model order n depends on the specific benchmark and available data to train the SMM. In this study,

we set n = 8, simply because the table based predictor, which is considered as one of the baseline methods uses a

sequence length of 8. We also use the last value predictor both as a baseline to compare and as a backoff predictor

for the table based predictor. Using larger model orders can allow us modeling longer patterns but the underlying

model parameters may not be robustly estimated. However, using smaller model orders may not have enough
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Figure 6: Improvements with the SMM predictor, compared to last-value and table-based predictors.

predictive power to model any patterns embedded in the metric sequence. We believe that n = 8 is a reasonable

compromise between these two competing goals. In later sections, we also look at this tradeoff for different values

of n.

Figure 6 shows a comparison of last value, table based and SMM predictors across all benchmarks. The SMM

predictor improves prediction errors by 19% relative on average over all the experimented workloads compared to

the table based predictor. This improvement is even further emphasized, with 43% relative reduction in prediction

error for the top five highly-varying applications, namely as mgrid, equake, facerec, art ref1, art ref2. In

comparison to the last value predictor, SMM improves prediction errors on top five highly-varying applications

by 63%. The largest improvements of about 10–fold (15.3% vs. 1.6%) and 3–fold (4.8% vs. 1.6%) are achieved

compared to the last value and table based predictors, respectively on the equake benchmark.

Figure 7 shows how the prediction performance of the different prediction approaches change over time, with

the equake benchmark. In the first panel the entire IPC sequence of equake, normalized to its max, is plotted.

In the other panels, the prediction errors are plotted for the last value, table based and SMM predictors. We

clearly observe from the plots that the table based predictor outperforms the last value predictor and the SMM

predictor outperforms both predictors. As expected, as the amount of data increases the SMM parameter estimation

becomes more reliable. As a result the SMM prediction performance improves towards the end of the figure. Online

learning and adaptation are two critical features that an adaptive predictor must have. SMM has the ability to

learn and adapt itself constantly. As it learns and adapts itself to the changing phase behavior, the prediction

accuracy improves. On the other hand, in the same figure, the errors for last value predictor appears to be evenly

distributed across the time scale. This is expected, as this simple predictor does not employ any adaptation

based on previously-observed application behavior. The table-based predictor’s performance also improves slightly
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Figure 7: Normalized IPC prediction errors for different predictors over the quantized samples.

with increasing amount of data, since it also aims to discern the patterns in application behavior. However, the

improvements in the prediction accuracy do not come close to those of the SMM predictor, as the SMM predictor

can successfully leverage both long-term and varying-duration application characteristics.

We also zoom into a segment of the equake data to provide more concrete insights on how different predictors

are performing. In the first panel of Figure 8, we plot a segment of the normalized equake IPC data. This segment

of the data is somewhat periodic with significant differences in values between consecutive samples. In the second

panel, the corresponding normalized prediction error is plotted using the last value predictor, where the errors are

almost on the same scale as the data samples. In the third panel table-based predictor errors are displayed. The

table-based predictor models the periodicity in the data to some extent, as seen in the beginning and end of the

plot. However, each time there is a slight variation in the observed behavior, the fixed-pattern-based approach fails

and the predictor backs off to the last value predictor as seen between samples 25 and 40. However, SMM is very

robust to small variations in the patterns and is able to provide accurate prediction.

Figure 9 underlines one of the main strengths of SMM as compared to the table based predictor. That is, SMM

backs off to lower order models when the maximum sequence match is not found. In the figure, we highlight two

patterns with boxes, which contain identical samples of length 6. Even though, the first 5 samples are the same

15



0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
Zooming into normalized equake IPC

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
Prediction Error Using Last Value Predictor

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
Prediction Error Using Table Based Predictor

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1
Prediction Error Using SMM Predictor

Figure 8: Normalized IPC prediction errors for different predictors over a segment of quantized samples.

in both boxes, table based predictor does not have any match simply because it stores samples of length 8. When

there is no match, then it backs off to the last value predictor, which does not produce good prediction, as pointed

out by the arrows. However, SMM backs off to lower order models and finds the matching pattern of length 6,

which is observed in the first box, and uses it to perform accurate prediction in the second box. This is of course

the case, given the past 5 samples in the box, the next sample 10 has the highest probability among all the possible

outputs (1,...,20). SMM prediction considers the conditional (on the history) probability of the each possible metric

output and picks the one that has the highest probability.

The other main strength of the SMM predictor is its ability to model long range patterns, which improves

the prediction. In order to underline this feature of SMM, we extend the runtime duration of the experimented

benchmarks by a factor of 2 (shown as x2 in Figure 10) by concatenating workloads back to back. With this approach

we provide the predictors with runtime histories which are twice as long as the original runs. In Figure 10, we

plot the normalized mean prediction errors for the original benchmark runs and the extended benchmark runs. We

also plot the results for the table based predictor in both cases. Not surprisingly, the prediction performance of

the table based predictor shows almost no improvement except for two benchmarks. Those two benchmarks are

gcc exp and gcc integrate, which are both very short in metric sample size. SMM, on the other hand, provides
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Figure 9: Benefit of backing off to lower order models for SMM.

significant improvements for almost all the benchmarks. The only exception is swim, where we observe a slight

increase in prediction errors of both predictors. It is not surprising to see that SMM performance improves on the

extended-duration benchmarks, since SMM has a memory of observing all the prior characteristics before. SMM

starts to improve the prediction in the second half of the duplicated benchmark data. The average improvement

across all benchmarks is 15% for the SMM predictor, whereas it is only 3% for the table based predictor. This

shows the substantial benefits of the SMM predictor in the longer term.

It is important to emphasize that the ability of the SMM predictor to capture long-term patterns is not directly

proportional to its chosen model order/history size, or its quantization bins. The key strength of the SMM predictor

stems from a fundamental difference from the existing predictors. While pattern-based or statistical predictors rely

on recent history and discard old pattern information in favor of new observations, SMM actually eliminates this

temporal dependence by relying on its probability-based history information. Thus, older but dominant patterns

survive in SMM model, and provide significant influence in future predictions. SMM brings out two unique features:

i) it can model patterns of varying length, ii) it can model long range patterns by tracking observed patterns with

their respective probabilities. When capacity requirements dictate discarding some patterns, this pruning is done

not by temporal proximity, but with respect to the strength of the patterns as indicated in the SMM pattern tables.
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Figure 10: Improvement in SMM predictor accuracy with longer benchmark execution times. In “(x2)” experiments,
each application is ran twice. SMM predictor improves its prediction accuracy significantly as it gathers more
information on application behavior. Table-based approaches show practically no improvement over time.

This leads to a much higher accuracy in predicting future behavior.

6.3 Impact of Model Order on SMM Predictor Performance

For SMM, model order (n) and the history size are related via HistorySize = n − 1. We mentioned that the

performance of SMM predictor largely depends on the model order and the available data to estimate the model

parameters. Smaller model order limits the predictive power of the SMM predictor. However, using larger model

orders may adversely affect the parameter estimation step - which in turn may degrade the prediction performance.

We are not aware of a “grand” recipe that would tell us the optimal model order given the amount of training data.

However, one should keep in mind that even though the metric data sizes for specific applications are fixed, in reality

SMM is designed to operate continuously—for days or even months—during system uptime, with a very large set

of running metric samples. In that case using larger model order should only benefit the prediction performance.

In this section, we try different model orders and observe their effect on the prediction performance. Each

benchmark can be described better with a specific model order and may achieve the smallest prediction accuracy.

In Figure 11, we provide prediction errors for all benchmarks with model orders: {4,6,8}. In general, as the model

order increases, overall prediction accuracy also increases (i.e. lower prediction error). Typically, models with larger

model order are good in describing the fine structure in the segment of the data that is observed so far. However, in

the absence of large data, this comes at the expense of poor generalization for the unseen future observations, which

are to be predicted. There are few exceptions to this overall trend. For example, model order 4 (n=4) for parser ref

achieves a slightly lower prediction error than model order 8 (n=8). We also observe that the improvements with

the larger model order appears to be leveling off for n ≥ 6 for most of the benchmarks with the exception of mgrid,
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Figure 11: SMM prediction performance for different model orders of 4, 6, and 8.

where there is further possible reduction in prediction error with larger model sizes.

7 Conclusions

We describe a new method called Statistical Metric Model (SMM) for predicting dynamically-varying program

behavior. SMM is a probabilistic model that learns application characteristics at runtime and captures long term,

dominant application behavior. There are four main strengths of SMM compared to existing predictors. First, it

models long term global patterns in application behavior. Second, the predictor can respond to variable-length

patterns. Third, it is resilient to small fluctuations in the observed patterns. Last, the SMM predictor has the

ability to adapt itself; as it learns more it predicts better. We present a series of experiments that demonstrates

these strengths of the SMM predictor, as well as its superior accuracy. These studies show that the SMM predictor

reduces prediction errors by up to 10X and 3X compared to the last value and table based predictors respectively,

with an average improvement of more than 60% and 40% for highly varying benchmarks.
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