
RC24900 (W0903-005) March 2, 2009
Computer Science

IBM Research Report

Where Do You Want to Go Today? 
Escalating Privileges by Pathname Manipulation

Suresh Chari, Shai Halevi, Wietse Venema
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Where Do You Want to Go Today?
Escalating Privileges by Pathname Manipulation∗

Suresh Chari Shai Halevi Wietse Venema

IBM T.J. Watson Research Center,
Hawthorne, New York, USA

Abstract

We analyze filename-based privilege escalation attacks, where an attacker creates filesystem links,
thereby “tricking” a victim program into opening unintended files. We develop primitives for a POSIX
environment, providing assurance that files in “safe directories” (such as /etc/passwd) cannot be
opened by looking up a file by an “unsafe pathname” (such as a pathname that resolves through a sym-
bolic link in a world-writable directory). In today’s UNIX systems, solutions to this problem are typically
built into (some) applications and use application-specific knowledge about (un)safety of certain direc-
tories. In contrast, we seek solutions that can be implemented in the filesystem itself (or a library on top
of it), thus providing protection to all applications.

Our solution is built around the concept of pathname manipulators, which are roughly the users that
can influence the result of a file lookup operation. For each user, we distinguish unsafe pathnames from
safe pathnames according to whether or not the pathname has any manipulators other than that user or
root. We propose a safe-open procedure that keeps track of the safety of the current pathname as
it resolves it, and that takes extra precautions while opening files with unsafe pathnames. We prove that
our solution can prevent a common class of filename-based privilege escalation attacks, and describe our
implementation of the safe-open procedure as a library function over the POSIX filesystem interface.
We tested our implementation on several UNIX variants to evaluate its implications for systems and
applications. Our experiments suggest that this solution can be deployed in a portable way without
breaking existing systems, and that it is effective against this class of pathname resolution attacks.

1 Introduction

In this work we take another look at the problem of privilege escalation via manipulation of filesystem
names. Historically, attention has focused on attacks against privileged processes that open files in directo-
ries that are writable by an attacker. One classical example is email delivery in the UNIX environment (e.g.,
[9]). Here, the mail-delivery directory (e.g., /var/mail) is often group or world writable. An adversarial
user may use its write permission to create a hard link or symlink at /var/mail/root that resolves to
/etc/passwd. A simple-minded mail-delivery program that appends mail to the file /var/mail/root
can have disastrous implications for system security. Other historical examples involve privileged programs
that manipulate files under the world-writable /tmp directory [11], or even in a directory of the attacker’s
choice [10].

Over time, privileged programs have implemented safety mechanisms to prevent pathname resolution
attacks. These mechanisms, however, are tailored specifically to the program’s purpose, are typically imple-
mented in the program itself, and rely on application-specific knowledge about the directories where files

∗This work was supported in part by the Department of Homeland Security under grant FA8750-08-2-0091.

1



reside. We believe, however, that the application is fundamentally the wrong place to implement these safety
mechanisms.

Recent vulnerability statistics support our position. The US National Vulnerability Database [16] lists at
least 177 entries, since the start of 2008, for symlink-related vulnerabilities that allow an attacker to either
create or delete files, or to modify the content or permissions of files. No doubt, the vast majority of these
entries are due to application writers who simply were not aware of the problem. However, there are even
vulnerabilities in system programs, which are typically better scrutinized. For example, an unsafe file open
vulnerability was reported in the inetd daemon in Solaris 10 [12] when debug logging is enabled. This
daemon runs with root privileges and logs debug messages to the file /var/tmp/inetd.log if that
file exists. The file is opened using fopen(DEBUG LOG FILE, "r+"). Since /var/tmp is a world
writable directory a local unprivileged user can create a link to any file on the system, and overwrite that
file as root with inetd debug messages. A similar example, related to unsafe unlink operation, is a
reported vulnerability in the Linux rc.sysinit script [13] in the initscripts package before version
8.76.3-1. That vulnerability could be used by unprivileged users to delete arbitrary files by creating symbolic
links from specific user-writable directories.

In addition to these examples, experiments that we run in the course of this work uncovered a number
of (latent) privilege escalation vulnerabilities, where system processes write or create files as root in di-
rectories that are writable by unprivileged system process. In these cases, a compromise of the unprivileged
system process could result in further privilege escalation. These vulnerabilities are described in Section 5.3.

These examples demonstrate that it is unrealistic to expect every application (or even every “important
application”) to implement defenses against these attacks. We contend that a system-level safety net would
be more effective at stopping these problems than trying to fix every affected application, or trying to educate
current and future generations of application writers. In a world where applications (and their fragments)
are used in environments that are vastly different from what the application designers had in mind, it is
unreasonable to expect that the applications themselves will distinguish between files that are safe to open
and ones that are not.

In this work we seek a general-purpose mechanism that can be implemented in the file system or in a
system library, that allows programs to open files that exist in an “unsafe” environment, knowing that they
will not be “tricked” into opening files that exist in a “safe” environment. Specifically, we show how such a
mechanism can be implemented over POSIX filesystems.

In a nutshell, our solution can be viewed as identifying “unsafe subtrees” of the filesystem directory tree,
and taking extra precautions whenever we visit any of them during the resolution of a pathname. Roughly,
a directory is unsafe for a certain user if anyone other than that user (or root) can write in it. Our basic
solution consists of resolving a pathname component by component, enforcing the conditions that once
we visit an unsafe node we will no longer, in the remainder of the path, follow symbolic links or allow
pathname elements of ‘..’, nor will we open a file that has multiple hardlinks. Thus, once we resolve
through an unsafe node, we will not visit nodes that exist outside the subtree rooted at that node.1

In contrast with many prior works on filename-based attacks, our work is not primarily focused on
race conditions (such as access/open races [20, 4]). Rather, we directly addresses the privilege-escalation
threat, which is the main motivation for many of these attacks. Here we focus on the pathname resolution
mechanism, identify a simple security property that can be met even in the face of race conditions, and show
that this property can be used to prevent privilege-escalation attacks.

1We describe in Section 6.1 a more permissive variant that still provides the same protection against privilege-escalation attacks.

2



1.1 Our contribution

We focus on tightening the connection between files and their names. In most filesystems, programs access
files by providing names (the pathnames), and rely on the filesystem to resolve these names into pointers
to the actual files (the file handles). Unfortunately, the relation between files and their names in POSIX
filesystems is murky: Files can have more than one name (e.g., due to hard or symbolic links), these names
can be changed dynamically (e.g., by renaming a directory), filename resolution may depend on the current
context (e.g., the current working directory), etc. This murky relation obscures the semantics of the name-
to-file translation, and provides system administrators and applications writers with ample opportunities to
introduce security vulnerabilities. Our solution builds on the following concepts:

• Ignoring the partition to directories and subdirectories, we view the entire path as just one name and
examine its properties. We introduce the concept of the manipulators of a name, which roughly
captures “anyone who can change the outcome of resolving that name.” In POSIX filesystems, the
manipulators of a path are roughly the users and groups that have write permission in any directory
along this path. More precisely, U belongs to the manipulators of a name if the resolution of that name
visits any directory that is either owned by U or that U has write permissions for.

• Using the concept of manipulators, we distinguish between safe names and unsafe names. Roughly,
a name is safe for some user if only that user can manipulate it. Specializing this concept to UNIX
systems, we call a name “system safe” if its only manipulator is root, and call it “safe for U” if the
only manipulators of it are root and U. For example, typically the name /etc/passwd is “system
safe”, the name /home/joe/mbox is safe for user joe, and the name /var/mail/jane is not
safe for anyone (as /var/mail is group or world writable).

• Once we have safe and unsafe pathnames, we can state our main security guarantee. We provide a
procedure safe-open that ensures the following property:

If a file has safe names for user U, then safe-openwill not open it for U using an unsafe
name.

As we show in the paper, this property can be used to ensure that no privilege escalation via filesystem
links occurs. For example, if /etc/passwd is system-safe, then no process running as root will
safe-open this file due to a hard link or symbolic link that could have been created by a non-
root process. In particular, a “simple minded” mail delivery program that uses our safe-open
will be protected against the attack in the example from above. Also, we verified that this guarantee
is sufficient to protect against the documented vulnerabilities in CVE.

We implemented our safe-open procedure as a library function over POSIX file systems, and also
generalized it to other POSIX interfaces that resolve pathnames such as safe-unlink, safe-chmod,
etc. (cf. Section 4). We performed whole-system measurements with several UNIX flavors, and find
that system-wide safe pathname resolution can be used without ”breaking” real software. During these
measurements we also uncovered a number of new (latent) vulnerabilities (cf. Section 5.3), that would be
fixed using our safe-open.

We mention that our work on safe pathname resolution was done in the context of a more general
framework. In a companion paper [6] we describe an abstract filesystem interface where file operations
are permitted only on the names with which the file was created. We then describe an implementation that
uses the safe resolution procedure described in this paper, and formally prove that it realizes the abstract
filesystem interface. (That formal proof is carried out in the framework of “universal composability” [5],
which is used in cryptography to prove that a system realizes its specifications in all adversarial settings.)

3



1.2 Related Work

Much of the prior work on pathname safety has focused on time-of-check/time-of-use race vulnerabilities
(TOCTTOU) in privileged programs [1, 2, 8, 3, 20, 4]. Our work is not focused on this problem, instead it
directly addresses the privilege-escalation issue that underlies many of these race-condition vulnerabilities:
Rather than trying to prevent race conditions, we modify the name-resolution procedure to ensure that
privilege-escalation cannot happen even if an attacker is able to induce race conditions.

In early analysis of filesystem race vulnerabilities in privileged programs, Bishop discusses safe and
unsafe pathnames, and introduces a can-trust library function that determines whether an untrusted user
could change the name-to-object binding for a given pathname [1]. Later, a more formal analysis with
experimental validation was done by Bishop and Dilger [2].

Our safe-open function implements a user-level pathname resolver that examines pathname elements
one by one; its structure is therefore similar to that of the access-open function by Tsafrir et al. [20, 21].
While their user-level name resolver applies access checks to each path element in a manner that defeats
race attacks, our safe-open function is not primarily concerned with access checks. Instead, we apply a
“path safety” check to each path element.2

In the context of system call introspection monitors for TOCTTOU vulnerabilities, Garfinkel [14] con-
sidered remedies which could also potentially apply to the problem of unsafe pathname resolution. These
remedies include disallowing the creation of symlinks to files which the calling process does not have write
permissions to, as well as denying access to files through symlinks. As noted in his paper, these solutions
can mitigate the problem but they do not solve it. For instance, they do not address pre-existing symlinks,
and fail in the face of symlinks in intermediate components of the pathnames. In contrast, our solution
directly addresses the underlying problem of unsafe pathname resolution.

Another approach to system call introspection is implemented in the Plash sandboxing system [18].
Here, a replacement C library delegates file-system operations to a fixed-privilege, user-level, process that
opens files on behalf of monitored applications and that enforces a confinement policy. While this approach
provides great expressiveness, it would not be suitable for system-wide deployment as envisaged with our
safe-open function. (For example it is not clear how to address privilege changes by the calling process,
or how this solution scales with the number of processes.)

Addressing filename manipulations is in some ways complementary to dealing with the “confused
deputy” problem: Both problems are used as a vehicle for privilege escalation, and some aspects of the so-
lution are common, but the problems themselves appear to be different: For example, the “simple minded”
mail-delivery program from above knows that it uses its root privileges for writing /var/mail/root,
so in this sense it is not a confused deputy (since it is not being tricked into using some extra privilege that
it happens to hold). The problems with UNIX privilege-managing functions were systematically analyzed
by Chen, Wagner and Dean; these authors also provide a more rational API for privilege management [7].
Their approach was later extended by Tsafrir, Da Silva and Wagner to include also group privileges [19].

Mazieres and Kaashoek advocate a better system call API that among others allows processes to specify
the credentials with each system call [15]. Our safe-open function could benefit from such features
(especially when opening files on behalf of setgid programs, cf. Section 6.3).

2 Names Manipulators and Safe-Open

For presentation simplicity, we initially consider only a simplified setting where (a) all filenames are absolute
paths, (b) every filesystem is mounted only once in the global name tree, and (c) no concurrency issues are

2Our solution could have been implemented using a variant of the general framework from [21, Sec. 7], but that variant would
have to be considerably more complex to deal with issues such as change of privileges or permissions, thread safety, etc.

4



present. (The last item means that we simply assume that no permission changes occur concurrently with
our name resolution procedure.) We discuss relative pathnames at the end of this section, multiple mount
points and dynamic permissions are discussed in Section 3.

2.1 Names and Their Manipulators

Roughly speaking, a manipulator of a name is any entity that has filesystem permissions that can be used to
influence the resolution of that name. A manipulator can create a name (i.e., cause the filesystem to resolve
that name to some file), delete it (causing name resolution to fail) or modify it (causing the name to be
resolved to a different file). In the context of POSIX systems, a manipulator of a path in a POSIX filesystem
is any uid that has write permission in — or ownership of — any directory that is visited during resolution
of that path.3

For example, consider the files /etc/passwd, /home/joe/mbox, and /tmp/amanda/foo from
a common UNIX system. The permissions of the relevant directories are:

drwxr-xr-x root root /
drwxr-xr-x root root /etc
drwxr-xr-x root root /home
drwx------ joe joe /home/joe
drwxrwxrwt root root /tmp
drwxr-xr-x root root /tmp/amanda

Then the only manipulator of the name /etc/passwd is root (since only root can write in either / or
/etc/), and the manipulators of the name /home/joe/mbox are root and joe. On the other hand, all
the users on that machine are manipulators of /tmp/amanda/foo, since everyone can write in /tmp.4

Moreover, if we had the symbolic links

lrwxrwxrwx joe joe /home/joe/link1 -> /etc/passwd
lrwxrwxrwx joe joe /home/joe/link2 -> /tmp/amanda

then the manipulators of the name /home/joe/link1 are root and joe, and the manipulators of the
name /home/joe/link2/foo include all the users on that machine (since resolution of this last name
goes through the world-writable /tmp).

We note that this description is “static”, in that it refers to the permission structure as it exists at a
given point in time. Nonetheless, in Section 3.2 we show that our solution (which is based on this “static”
notion) prevents privilege escalation via pathname manipulations even in settings where the filesystem (and
its permissions) can change in a dynamic fashion. Roughly speaking, this is because in POSIX systems only
manipulators of a path can add new manipulators to it, and no manipulator can remove itself from the set of
manipulators of a path.5

Safe and unsafe names. For POSIX systems, we say that a name is system-safe (or safe for root) if
root is the only manipulator of that name. A name is safe for some other uid if its only manipulators are
root and uid. Otherwise the name is unsafe.

3See Section 6.3 for a discussion about gids.
4The directory /tmp typically has the sticky bit set, which prevents non-root users from removing other user’s files from

/tmp. But it does not prevent users from moving other user’s files into /tmp. For this reason, everyone must be considered a
manipulator of the directory /tmp/amanda, even though this directory can be removed only by root.

5The last statement depends on the fact that only root can use the chown system call.

5



2.2 The Safe-Open Procedure

Our safe-open procedure is a refinement of the safety mechanisms used by the Postfix mail system [22]
to open files under the world-writable directory /var/mail. The basic approach taken by Postfix is to
verify that the opened file is not a symbolic link and does not have multiple hard links. This approach
works for the special case of /var/mail, but it is not quite applicable as a general-purpose policy, for two
reasons:

It is too strict. There are cases where applications have a legitimate need to open a file with multiple hard
links or a symbolic link.6 Moreover, blanket refusal to open files with multiple hard links would enable
an easy denial-of-service attack: simply create a hard link to a file, and no one will be able to open it.

It is not strict enough. Refusing to open links does not provide protection against manipulation of higher-
up directories. For example, consider a program that tries to open the file /tmp/amanda/foo.
Even if this file does not have multiple links, it may still not be safe to open it: For example, the
attacker could have created /tmp/amanda/ as a symbolic link to /etc, and the program opening
/tmp/amanda/foowill be opening /etc/foo instead.

To implement a general-purpose safe-open, we therefore refine these rules. Our basic procedure is
as follows: While resolving the name, we keep track of whether the path so far is safe or unsafe for the
effective uid of the calling process. When visiting a directory during name resolution, we call it unsafe
if it is group- or world-writable, or if its owner is someone other than root or the current effective uid
of the calling process (and otherwise we call it safe). When resolving an absolute path, we start at the root
in safe mode (if the root directory is safe). As long as the resolver only visits safe directories, we are in a
safe mode, can follow symbolic links or ‘..’, and can open files with multiple hard links. However, once
the resolver visits an unsafe directory, we switch to unsafe mode, and in the remainder of the path, disallow
symbolic links or ‘..’, and refuse to open a file with multiple hard links.7 We note the following about this
solution:

• A safe name that can be opened by POSIX open will also be opened by safe-open: If a name is
safe then the safe-open procedure will visit only safe directories, and therefore will not abort due
to symlinks or multiple hardlinks. Any directory that is visited during name resolution in open will
also be visited by safe-open, and the file will eventually be opened.

• A file with only one name (which can be opened by POSIX open) will be opened by safe-open:
This is similar to the previous argument, if the file has just one name then this name cannot include
symbolic links and the file cannot have multiple hard links. Hence safe-open will succeed in
opening it if POSIX open does.

• For a file with multiple unsafe names, each of these names may or may not be opened by safe-open.
Note that if many names point to the same file, then there must be “merge points” where either we
have a symbolic link pointing to a directory (or to the file) or multiple hard links pointing to this file.
When safe-open resolves these names, it agrees to follow these “merge points” if it visited only
safe directories before they occur, and refuses to follow them if it visited an unsafe directory.

For one example, safe-openwill agree to open the unsafe name /home/joe/link2/foo from
Section 2.1 when running with effective uid of joe, since the “merge point” occurred while visiting

6For example, old implementations of Usenet news kept a different directory for every newsgroup and a different file for every
article, and when an article was sent to more than one group, then it will be stored with multiple hard links, one from each group
where this article appears.

7See Section 6.1 for more permissive variants of this procedure.

6



the directory /home/joe/, still in a safe mode. On the other hand, safe-openwill refuse to open
this name when running with effective uid of root, since the directory /home/joe/ is not safe
for root.

Implementing this safe-open procedure in the filesystem itself (i.e., in the kernel) should be straight-
forward: All we need is to add a check for permissions and ownership on every directory, updating the
safety flag accordingly. Arguably, this is the preferred mode of implementation, but it requires changes to
existing filesystems. Alternatively, we describe an implementation of safe-open as a library function
in user space. This implementation roughly follows the procedure of Tsafrir et al. [20, 21] for user-level
name resolution, but adds to it the safe-mode vs. unsafe-mode behavior as described above. We discuss this
implementation in Section 4.

Relative paths and openat. The procedure for resolving relative paths (or for implementing openat)
is essentially the same as the one for absolute paths, except that we need to know if the starting point (e.g.,
the current working directory) is safe or not. In a kernel implementation, it is straightforward to keep track
of this information by adding flags to the handle structure. Some care must be taken in situations where
the directory permissions change (e.g., via chmod or chown) or when the privileges of the current process
change, but no major problems arise there. Keeping track of this information in a library implementation is
harder, but even there it is usually possible to get this information, and reasonable defaults can be used when
the information is unavailable (e.g., after an exec call). We refer to Appendix B for more details about
relative paths and openat.

3 Our Security Guarantee

Recall the security guarantee that we set out to achieve:

If a file has names safe for user U, then safe-openwill not open it for U using an unsafe name.

In other words, if a file has both safe and unsafe names, then safe-open should fail on all the unsafe
names. (At the same time it succeeds on all the safe names, as noted above.) We note again that as stated,
this guarantee applies only to a static-permission model, where permissions and ownership of directories
do not change during the name resolution. However, as we discuss at the end of this section, protection
against privilege escalation attack is ensured even when the attacker makes arbitrary permission changes
for directories that it owns. The only thing that we assume is that non-adversarial entities do not induce a
permission-change race against our name resolution.8 Our analysis below also assumes that each directory
tree appears only once in the file system tree (i.e. no loop-back mounts, etc.). A short discussion of mount
points can be found later in this section.

We now turn to proving this security guarantee. Consider a file that has both safe and unsafe names (for
a specific uid), fix one specific unsafe name, and we show that safe-openmust fail when it tries to open
that name (on behalf of a process with this effective uid). We distinguish two cases: either the file has just
one hard link, or it has more than one.

• Case 1: more than one hard link. Note that when safe-open is called with the unsafe name, it will
apply name resolution while checking the safety of the name as it resolves it. As the resolution of this
name goes through a directory which is unsafe for this uid, then safe-open will arrive at the last
directory in this name resolution in unsafe mode (assuming that it arrives there at all). Since the file
has more than one hard link, safe-openwill then refuse to open it.

8The distinction between adversarial and non-adversarial entities is inherent in privilege-escalation attacks, since one must
distinguish between privileges held by the attacker and those held by the victim(s).

7



• Case 2: exactly one hard link. In this case, there is a single path from the root to this file in the
directory tree (i.e. we exclude names that contain symbolic links). Below we call this the “canonical
path” for this file and denote it by /dir1/dir2/.../dirn/foo.

Clearly, every pathname that resolves to this file must visit all the directories on the canonical path.
(Moreover, the last directory visited in every name resolution must be dirn, since it holds the only
hard link to foo.) Since we assume that the file has safe names for uid, it follows that all the
directories in this canonical path must be safe for uid.

Consider now the directories visited while resolving the unsafe name. Being unsafe, we know that
the resolution of this name must visit some unsafe directory, and that unsafe directory cannot be on
the canonical path. Therefore, during the resolution of an unsafe name, safe-openmust visit some
unsafe directory (and therefore switch to unsafe mode) before arriving at the final directory dirn.

Consider the last directory not on the canonical path that was visited while resolving this unsafe name.
We call this directory dir0. Then it must be the case that safe-open switched to unsafe mode
when visiting dir0 or earlier (because after dir0 it only visited safe directories). Now, since the
canonical path begins with the root ’/’, then safe-open could not descend into the canonical path
from above. Hence moving from dir0 to the next directory was done either by following a symbolic
link or by following ‘..’, but this is impossible since safe-open does not follow symbolic links or
‘..’ when in unsafe mode.

This completes the proof of our security guarantee.

Multiple mount points. We note that all the arguments from above continue to hold even when a filesys-
tem is mounted at multiple points in the global name space, as long as all the mount points are system-safe.
However, our security guarantee breaks if we have the same filesystem mounted in several directories, some
safe and others not. In this case, going down a “canonical” unsafe name for a file, we have no way of know-
ing that the same file also have a safe name (via a different mount point). The same problem arises when
parts of the filesystem are exposed to the outside world, e.g., via NFS. In this case, what may appear as a
safe directory to a remote user may be unsafe locally (or the other way around).

3.1 Using the Security Guarantee to Thwart Privilege Escalation

The security guarantee that we proved above provides one with an easy way of creating files that applications
cannot be “tricked” into opening using adversarial links: Namely, create the file with a safe name. For ex-
ample, if the name /path-to/foo is system safe, then no process running as root can use safe-open
to open the same file with a name that includes a link that was created (or renamed, or moved to its current
location) by a non-root user. This is because such a link would have to be created in (or moved to) an
unsafe directory, making the name unsafe and causing safe-open (running as root) to fail on it.

This observation can be used to defeat privilege escalation attacks. Consider a file that needs to be
protected against unauthorized access (where access can be read, write, or both). Hence the file is created
with restricted access permissions. To ensure that this protection cannot be overcome by the attacker creating
adversarial links, we create this file with a name that is safe for all the uids that have access permission for
it. (That is, if only one uid has access permission to the file then the name should be safe for that uid, and
otherwise the name should be system-safe.)

We now claim that an attacker that cannot access the file, also cannot create a link that would be followed
with safe-open by anyone with access permission for this file. Note that the attacker must have a different

8



uid than anyone who can access the file.9 Hence a directory where the attacker can create a link must be
unsafe for anyone who can access the file, and therefore safe-openwill not follow links off that directory.

3.2 Dynamic Permissions

The argument above covers the static-permission case, where permissions for directories do not change
during the execution of safe-open. We now explain how it can be extended to the more realistic dynamic-
permission model.

Consider a potential privilege-escalation attack, where an attacker that cannot access a certain file tries
to cause a victim program to access that file on its behalf. Notice that in this scenario it must be the case
that the attacker does not have root privileges, and also has a different effective-uid than the victim.
(Otherwise no privilege escalation is needed — the attacker could access the file by itself.9)

Consider now a file F that can be accessed by the effective-uid of the victim (denoted by U ) but not
by the effective-uid of the attacker (denoted by U

′), consider a particular execution of safe-open by the
victim, and assume that:

(a) at the time that the procedure is invoked, the file F has some name that is safe for U , and that name
remains unchanged throughout the execution, and

(b) the pathname argument to safe-open is not a U -safe name for the file F when the procedure is
invoked.

Under these conditions, we show that this safe-open procedure will not open the file F , barring a
concurrent filesystem operation by root or U on pathname elements that safe-open examines. Put in
other words, the attacker can only violate our security guarantee if it can induce a race condition between
two non-adversarial processes (i.e., the safe-open procedure and another process with uid of either the
victim or root). Assume therefore that these two conditions hold, and in addition

(c) neither root nor U did any concurrent filesystem operation on any pathname element examined by
this safe-open.

We observe that any pathname element that safe-open examines and that resides in a U -safe directory
at the time where the procedure was invoked, must remain in the same state throughout this safe-open
execution. The reason is that being U -safe, only U and root have permissions to change anything in the
directory, and by our assumption (c) neither of them made any changes to that pathname element.

Imagine now that the state of the filesystem is frozen at the time when the safe-open procedure is
invoked, and consider the way the pathname argument to safe-open would be resolved. We have two
cases: either all the directories visited by this hypothetical name resolution are U -safe, or some of them
are not. The easy case is when all of them are U -safe: then it must be the case that the hypothetical
name resolution does not resolve to the file F (or else it would be a U -safe name for F , contradicting our
assumption (b)). But it is easy to show (by induction) that the same directories will be visited also in the
actual name resolution, all of them would be in exactly the same state, and therefore also the actual name
resolution as done by safe-openwould not be resolved to F .

Assume, then, that the hypothetical name resolution would visit some unsafe directories, and let dir0
be the first U -unsafe directory to be visited. The same easy inductive argument as above shows that all the
directories upto (and including) dir0 are also visited by the actual name resolution. We now know that the
owner of dir0 remains the same throughout the execution of safe-open (since by assumption (c) root
did not make any changes in directories that were examined by safe-open). If the owner is different

9See Section 6.3 for a short discussion of setgid programs.

9



than U and root, then safe-open will switch to unsafe mode when it gets to dir0. If the owner is U

or root then it must be the case that the directory was group- or world-writable when safe-open was
invoked (since it was unsafe in the hypothetical resolution), and thus it must still be group- or world-writable
when safe-open examines it (since by our assumption (c) U and root did not change that directory).
We therefore conclude that the hypothetical and actual name resolutions proceeded identically upto (and
including) dir0, and they both switched to unsafe mode upon visiting dir0.

In particular it implies that safe-open arrived at the final directory in unsafe mode, so it would only
open F if F had a single hard link at the time that the procedure returned. Recall now that by our assump-
tions (a), this single hard link must be at the end of a U -safe pathname. But we know that safe-open
visited at least one unsafe directory, so its traversal must have merged back into the safe pathname at some
point after visiting dir0. As in the static case, this must have happened by following a symbolic link or
‘..’, which is a contradiction.

Preventing privilege-escalation in the dynamic setting. Once we established the security guarantee in
the dynamic setting, we can show how to use it to prevent privilege escalation even in a filesystem where
permissions can change. In addition to creating the protected files with safe names, we also need to ensure
that (a) we never reduce the write permissions of a non-empty directory that was group- or world-writable
or chown a non-empty user directory back to root; and (b) we do not change permissions or ownership in
the safe name and do not delete it while there are still programs that have the file open.

It is not hard to see that as long as (a) and (b) do not happen, then the conditions that we set in our
dynamic-system proof hold, and hence no privilege-escalation can result from adversarial filesystem actions.
Seeing that condition (a) is really needed is also easy: indeed if the attacker creates an adversarial link
in a world-writable directory and then the victim chmods the directory and removes the world-writable
permission, then safe-open will happily follow the adversarial link. Demonstrating that (b) is needed
is a bit more tricky: Consider for example the file /etc/passwd, which is only writable by root, and
consider the following sequence of operations:

1. Some user program P opens /etc/passwd for read and keeps the handle,

2. The attacker creates another hard link /var/mail/root to he same file,

3. A confused administrator deletes /etc/passwd, and

4. The mail-delivery program uses safe-open to open /var/mail/root, and then writes into it.

Note that safe-open will succeed under these conditions, since now /var/mail/root is the only
name for this file (and in particular the file has only one hard link). But when the program P goes to read
from its file descriptor, it will see the data that the mail-delivery program wrote there.

4 Implementing safe-open for POSIX Filesystems

We implemented safe-open as a library routine over the POSIX filesystem interface. The routine per-
forms user-level name resolution, similar to the routines of Tsafrir et. al [20, 21], while adding the pathname
safety check in every directory. That is, the routine goes through each component of the path to be opened,
checks for the manipulators of each directory, and marks a directory unsafe if it has manipulators other than
root and the current process’ effective uid. Once it encounters an unsafe directory, in the remainder of the
path, it does not follow symlinks or ‘..’, and does not open a file with multiple hardlinks. A pseudocode
description of our implementation is found in Appendix A.

10



4.1 Race conditions

Our name-resolution procedure is not particularly vulnerable to filesystem-based adversarial race conditions,
in that it would correctly label safe/unsafe directories regardless of concurrent actions of any attacker (as
long as the euid of the attacker is neither root nor the victim’s euid). There are only two points in our
code where we need to guard against check/use conditions:

(A) We must never open a symbolic link. If the O NOFOLLOW flag is available then we can use it for
that purpose, but to get get the same effect in a truly portable code we implement the lstat-open-fstat-
lstat pattern.

(B) The other check/use window in our code is between the time that we check permissions and conclude
that we are in a safe directory and the time that we read a symbolic link (or open ‘..’). As we explained
in Section 3.2, this check/use window is only open to races against processes with the same effective uid
as the process calling safe-open (or root), not to races against an adversarial process trying to escalate
privileges. As permission-changing actions by benign processes are quite rare, we believe that this window
does not pose a major threat. We can even check the directory permissions both before and after opening a
symlink to further narrow this window (and then this race cannot happen as long as non-adversarial processes
do not revoke write permissions on non-empty directories).

4.2 Thread safety

Implementing user-level name resolution requires that we work with handles to directories, using either the
current working directory (which may not be thread safe) or the openat, readlinkat and fstatat
interfaces, which are part of a recent POSIX standard [17]. These interfaces duplicate existing pathname-
based interfaces but add another parameter, a file descriptor for a directory. When used with a relative name,
these calls now work relative to the specified directory instead of the current working directory.

The new interfaces are implemented in current Solaris and Linux versions. On systems without sup-
port for the openat family of function calls, we emulate their functionality inside a synchronized block:
Maintaining a handle to the directory currently visited, we store the current working directory, change di-
rectory with fchdir to the visited directory, explore the next path element (for example, with open or
lstat), then restore the original current working directory. To make the emulation signal-safe we also
need to suspend signal delivery while in the protected block.

4.3 Read permissions on directories

Our user-level safe-open implementation relies on the ability to open all the intermediate directories
(e.g., to fstat them or to use them with openat). Each path component, except the final one, is opened
in a O RDONLY mode. For this implementation to work, the process must have read permission on each
non-final component in the path (in addition to the search permission that is required to look up the next
pathname component in that directory). This is different from the regular POSIX open that only requires
search permission on each directory component.

This restriction is of only temporary nature: the latest POSIX standard [17] introduces the O SEARCH
flag to open a directory for search operations only, and a future safe-open implementation can migrate
to this.

4.4 Opening files without side effects

Upon arriving at the last path element (i.e., the file to be opened), our safe-open implementation may
still need to verify that it is not a symbolic link. We again use the lstat-open-fstat-lstatpattern, but
we must guard against potential side-effects of opening the file. For instance, opening the file with the flag

11



O TRUNC in combination with either O WRONLY or O RDWR will truncate the file before the safe-open
procedure can determine that it opened an unexpected file. To fix this problem, we must first remove the
O TRUNC flag when opening the file, and if no error occurs then call ftruncate on the newly opened
handle before returning it.

Somewhat similarly, if safe-open unexpectedly opens a target which is not a regular file (such as a
FIFO or a tty port), then the open call could block indefinitely. This can be addressed only with cooper-
ation by the application: when an application never intends to open a blocking target then it could specify
the flag O NONBLOCK.

4.5 safe-create, safe-unlink, and other primitives

Building on the same ideas, we can implement safe versions of other POSIX interfaces, such as safe-create
for creation of new files, safe-unlink for removing them, etc. For many of these primitives, the imple-
mentation can be almost trivial: follow the same steps as with safe-open to reach the final directory10 ;
in the final step, safe-create creates the file (with flags O CREAT and O EXCL), and safe-unlink
removes the target which may be a symlink or a file with multiple hardlinks.

Our generalized pathname safety policy is easy enough to express: “when resolving a pathname through
an unsafe directory, in the remainder of the path don’t follow ‘..’ or symbolic links, and don’t open or
change attributes of files with multiple hardlinks.” Articulating the exact security properties that you get
may take some care. For example, the security property that you get from safe-create is this: “When
called with an unsafe name, safe-createwill fail to create the file if the resulting file could also have a
safe name.”

Implementing safe versions of POSIX interfaces with more than one pathname (i.e., safe-rename
and safe-link) can be problematic on systems that don’t support renameat and linkat. The emula-
tion of these functions is complicated by the fact that a process can have only one current working directory
at a time; as a workaround one could perhaps utilize temporary directories with random names as interme-
diaries.

Current POSIX standards still lack some primitives that operate on existing files by file handle instead of
file name, but this may change as standards evolve. For example, the recently-standardized O EXEC (open
file for execute) flag [17] enables the implementation of a family of fexec primitives that execute the file
specified by a file handle.11 Based on these primitives one could implement safe-exec versions that can
recover from accessing an unexpected file, similar in the way that safe-open recovers before performing
an irreversible operation. We note that executing files in unsafe directories is a minefield, and leave the
development of a suitable safety policy as future work.

5 Experimental validation

We conducted extensive experiments to validate our approach for safe pathname resolution. Our goals in
these experiments were (a) to check whether existing applications would continue to work when they run
over a POSIX interface that implements safe pathname resolution; and (b) to see if we can identify yet-
undiscovered vulnerabilities related to applications that follow unsafe links.

10Some primitives (such as unlink and mkdir) do not follow a symlink that appears as the final pathname component; the
safe-unlink and safe-mkdir functions must of course behave accordingly.

11Support for these is already implemented in some Linux and BSD versions.

12



5.1 Testing apparatus

We implemented our safe name resolution and tested several “live” systems, to see what applications ac-
tually use unsafe links, and for what purpose. To cover a wide range of operating systems and production
environments, we opted for implementing our procedure in a “shim” layer between the applications and
libc. That is, we built a library that intercepts filesystem calls, and instructed the run-time linker to load
it before the regular libc. We used this to instrument dynamically-linked programs including setuid and
setgid programs.12 This approach makes it easier to test existing systems, but it may not be able to interpose
on calls between functions within the same library. In addition it is necessary to intercept some library calls
not related to file access, to prevent the accidental destruction of environment variables or file handles that
our “shim” layer depends on.

In the interposition library, we implemented the safe pathname resolution and used it in the filesystem
calls open, fopen, creat, unlink, remove, mkdir, rmdir, link, rename, chmod, chown, and
the exec family. With openat and related functions, we did not implement yet safe pathname resolution
with respect to arbitrary directory handles; in our measurements, such calls were a tiny minority. So far
we only instrumented calls that involve absolute pathnames, or pathname lookups relative to the current
directory.

We also kept some state related to the current working directory in our library, in order to implement
safe name resolution for relative pathnames. (The same approach can be used for the directory handles used
by openat and related functions, but we did not implement this yet.) A more detailed description of the
implementation and its intricacies is provided in Appendix C.

5.2 Measurements of UNIX systems

We ran our pathname safety measurements on several out-of-the-box UNIX systems, specifically Fedora
Core 11, Ubuntu 9.04, and FreeBSD 7.2 for i386 (both server and desktop versions). These systems were
run on VMware workstation 5 for Linux and Windows hosts, and on real hardware. We instrumented the
top-level system start-up and shutdown scripts, typically /etc/rc.d/rc or /etc/init.d/rc, and
were able to monitor system and network daemon processes as well as desktop processes.13 In all of these
experiments, we configured our library to run in a report-only mode, where policy violations are logged but
the intended operation is not aborted. (In fact, following the complete pathname resolution, our library will
simply make the underlying system call on the original arguments and return the result.)

We ran these systems in their out-of-the-box configurations, and also tested some applications including
the Gnome desktop, browsing with several Firefox versions (including plugins for popular multi-media
formats), office document browsing, printing with Adobe Acroread, software compilation with gcc, and
software package installation.14 The vast majority of these tests passed without a hitch. Most systems and
applications never attempted an operation that would violate our safety policy, and thus they would have
worked just as well had we configured our safe name resolution in enforcing mode. One notable exception
is the web-server application, discussed in Section 5.5.

12While the LD PRELOAD environment variable was sufficient to instrument most programs, instrumenting setuid and set-
gid programs required additional steps. We stored run-time linker instructions in /etc/ld.so.preload on Linux, and in
/var/ld/ld.config on Solaris; we modified the run-time linker on FreeBSD.

13For this instrumentation, we disabled security software such as AppArmor and SELinux to avoid interference between our
instrumentation and their enhanced security policies.

14The FreeBSD package manager triggered some warnings about the use of “..”; these would be addressed by our permissive
policy (cf. Section 6.1).

13



5.3 Latent vulnerabilities

In the course of our experiments we uncovered a number of latent privilege escalation vulnerabilities. The
latent vulnerabilities occur where privileged system processes write or create files as root in directories
that are writable by an unprivileged process. In these cases, a compromise of an unprivileged process could
result in further privilege escalation:

• The Common UNIX Printing System (CUPS) saves state in files job.cache and remote.cache.
These files are opened with root privileges and with flags O WRONLY|O CREAT|O TRUNC, in
directory /var/cache/cupswhich is writable by group lp (on some systems group cups). The
CUPS software uses this group when running unprivileged helper processes for printing, notification,
and more. If an unprivileged process is corrupted, an attacker could replace the state files by hard or
symbolic links and destroy or corrupt a sensitive file.

• On Fedora Core 11, a similar latent problem exists with files under directory /var/log/cups.

• During MySQL startup, the mysqld daemon opens a file hostname.lower-test with flags
O RDWR|O CREAT as root, under directory /var/lib/mysql which is owned by the mysql
user. If the mysqld daemon is corrupted later when it runs with user mysql privileges, an attacker
could replace this file by a hard or symbolic link and corrupt a sensitive file when MySQL is restarted.

• The Hardware Abstraction Layer daemon subsystem opens a file with flags O RDWR|O CREAT as
root, in directory /var/run/hald. This directory is owned by user haldaemon, who also
owns several daemon processes. Some of these processes listen on a socket that is accessible to local
users.

• The Tomcat subsystem opens a file with flags O WRONLY|O APPEND|O CREAT as root in direc-
tory /var/cache/tomcat6. This directory is owned by user tomcat6, who also owns a process
that provides service to remote network clients.

• On Fedora Core 11, directory /var/lock is writable by group lock, which is also the group of
a setgid program /usr/sbin/lockdev. System start-up scripts create “lock” files as root with
flags O WRONLY|O NONBLOCK|O CREAT|O NOCTTY. If the lockdev program has a vulnerabil-
ity, an attacker could replace a lock file by a hard or symbolic link and corrupt a sensitive file.

• XAMPP [24] (an integrated package of Apache, MySQL, PHP and other components) on Linux opens
files, for error logging, as root in the directory /opt/lampp/var/mysqlwhich is owned by the
uid nobody. A corrupted process running as nobody can replace this with a link to any file on the
system which would then be overwritten. We note that XAMPP runs a number of daemons providing
network services as the nobody user, including httpd.

In all these cases, our safe name resolution would protect the system from privilege escalation if the unpriv-
ileged processes are corrupted.

5.4 Policy violations

During our ”whole system” tests we ran into a surprisingly small number of actual safety policy violations.
These turned out to be specific to particular platforms, and were caused by quirks in the way that directory
ownership and permissions were set up:

14



• On FreeBSD 7.2, the man command could trigger policy violations when a user requested a manual
page. FreeBSD stores pre-formatted manual pages under directories owned by user man (instead of
root as with many other UNIX systems). According to our policy, these directories are unsafe for
users other than man. This resulted in policy violations with pre-formatted manual page files that had
multiple hard links.

FreeBSD adopted this approach so that pre-formatted manual pages can be maintained by a non-root
process. This limits the impact of vulnerabilities in document-formatting software. However, we find
the benefits of this approach dubious: document-formatting software still runs with root privileges
when the super-user requests a manual page for software that is not part of the base system. By
default, no pre-formatted manual pages exist for this software category, and this is where the biggest
risk would be.

• On Fedora Core 11, the Gnome desktop software triggered policy violations that we did not experience
with other systems. The violations happened when a process with gdm user and group privileges
attempted to follow symbolic links under directory /var/lib/gdm. This directory is writable by both
owner gdm and group gdm.

These policy violations can be avoided with a more sane configuration that uses owner gdm write
permission only. Our “live” measurements show that group gdm is used only by processes that run as
user gdm. With a single-member group like gdm, owner gdm permission is sufficient, and group gdm
write permission is unnecessary. (We found similar issues with XAMPP for Linux, which installs
with directories that have owner nobody and group root with group write permission.)

5.5 A web-server application

Most of our measurements were done on bare-bones systems that we instantiated specifically for the purpose
of running the experiments. The only production system that we had access to was a Debian 5.0 system
running an Apache web server and some other services. On that system we did not attempt a whole-system
measurement, but instead only run specific services under our measurement apparatus. Also on that system
most services did not report any policy violations, with the notable exception of the web server.

The web site on that system is managed cooperatively by several users, where different users are
responsible for different parts of the site, and with no attempt for any protection between these users.
As a result, the web-tree is a mesh of directories with different owners, many of them writable by the
web-administrator group (whose members include all these different users). Roughly speaking, the
entire web-tree on that system is an UNsafe subtree. Moreover, some dynamic-content parts of the web site
make heavy use of symbolic links, e.g., for using the same script in different contexts.

It is clear that our safe-open procedure will break this web site, but this is more an artifact of our
particular choice of implementation than of the security guarantee that we set out to ensure. Indeed, in
Section 6.1 we describe a more permissive implementation of safe-open that still ensures the same
security guarantee, but would not break this web site. (The idea is that we can follow symbolic links off
unsafe directories, as long as we ensure that the file that we get to at the end does not have any safe names.)

5.6 Conclusions

Our experiments seem to indicate that our approach to safe name resolution is both effective and realistic.
On one hand, it fixes all 177 symlink-related vulnerabilities reported in CVE since January 2008, and also
provides protection against the (latent) vulnerabilities that we identified in our experiments. On the other
hand, most systems will continue working without a problem even if this safety measure was implemented.

15



The few that break can be “fixed” either by implementing a more standard permission structure for the
relevant directories or by implementing the more permissive variant of safe-open from Section 6.1.

We stress that in our experiments, we did not identify even a single example where there is a legitimate
need to open files that would be inherently disallowed by our approach to safe name resolution.

6 Variations and Extensions

6.1 A more permissive safe-open

Our safe-open procedure does not follow symbolic links off an unsafe directory, but is not hard to see
that this policy is more restrictive than what we really need for our security guarantee. Indeed, we only need
to ensure that safe-open fails on an unsafe name if the file to be opened has any other name that is safe.
It turns out that a small modification of safe-open can ensure the same security guarantee while allowing
more names to be opened.

The idea is to keep two safe/unsafe flags rather than one. Both flags begin in a safe state and switch to
unsafe state when visiting an unsafe directory, but one flag is “sticky”, in that once in unsafe state it stays
in this state until the end of the name resolution, while the other is reset to the safe state whenever we
are about to follow a symbolic link with an absolute path. That is, the second flag is reset to safe state
whenever we are about to return to the root directory.

With these two flags, we can follow arbitrary symbolic links, and can also follow ‘..’ as long as the
second flag is in safe mode. When we finally reach the file to be opened, we abort the procedure only if
(a) the “sticky” flag is in unsafe mode and the file has more than one hard link, or (b) the two flags have
different values. (In the second case, the “sticky” flag indicates that the given pathname was unsafe, while
the resettable flag indicates that as part of the name resolution we followed some safe name to arrive at the
file.) The reason that this more permissive procedure works, is that if a file with only one hard link has any
safe names, then its “canonical” name (i.e., the one with no symbolic links) must be safe. Moreover, this
name must be the one followed by the time that the name-resolution arrives at the file itself.

As we described it, this more permissive version still refuses to follow ‘..’ when the second flag is in
unsafe mode. This can be easily remedied, however: we simply drop the restriction on following ‘..’, and
instead just reset the second flag to safe mode after every ‘..’.

6.2 An alternative safe-open using extended attributes

On some systems, a much more direct approach is also possible. Recall that the problem that we try to
address is that an adversary without permissions to a file is able to add names to the filesystem that resolve
to that file. If the filesystem supports extended attributes, then we can avoid this problem simply by includ-
ing with the file an attribute that lists all the permissible names for that file. The open procedure, after
opening the file, will look for this extended attribute, and if found it will compare its pathname argument
against the list of permissible names, and will abort if there is a mismatch. For example, the file sudo
in /etc/init.d/ will have a permitted-names attribute listing the names /etc/init.d/sudo and
/etc/rcS.d/S75sudo, and no program will ever be able to open it using any other name.

This simple solution looks quite attractive, but it necessitates proper management of the additional at-
tribute. In particular, we must decide who may set this attribute (and under what conditions). For example,
when we add to our filesystem a symbolic link

lrwxrwxrwx root root /var/spool/mail -> /var/mail

do we need to modify the permitted-name attribute in all the files under /var/mail/? We leave all these
questions to future work.

16



6.3 Group permissions

Recall that our safe-open procedure only uses uids to determine safety of directories, which means in
particular that we treat two processes with the same uid as equal and do not try to protect one from the
other. This leaves open the possibility of privilege escalation by acquiring group privileges: namely, an
adversarial process may try to trick another process with the same effective uid but more group privileges
into opening a file that the adversarial process itself cannot open.

In the work we do not try to protect against such attacks, indeed protection between different processes
with the same effective uid is virtually impossible in most POSIX systems. We mention that it is not hard
to change the safe-open procedure itself so that it considers the gid rather than the uid for the purpose
of determining directory safety, but this would require a change in the interface, since the calling application
would need to somehow indicate that it wants to use this gid-based safety check instead of the default
uid-based check.

We note that our approach for safe name resolution is quite coarse with respect to group permissions,
in that group write permissions always make a directory unsafe for everyone. This is justified when the
directory gid is the primary or secondary gid of multiple UNIX accounts, since multiple accounts are
manipulators. However, contemporary UNIX-es have many gids that are associated with only one uid (or
maybe none at all, e.g. when the gid is only used by the execution of a setgid program). In general we
cannot anticipate all possible ways that a gid may be activated, and hence we consider the directory unsafe
in all these cases. This may trigger spurious policy violations in some configurations, but in our experiments
we did not find configurations where such policy violations cannot be resolved.

We also note that in conjunction with the more permissive variant from above, this behavior lets admin-
istrators bypass much of our safety mechanisms: To forgo most of our safety protections for some subtree
(without otherwise changing any permissions), it is sufficient to make the root of that subtree writable, e.g.,
by the root group. Assuming that only root is a member of this group, this will not change any real
permissions in the system, but will make that entire subtree unsafe, and therefore permit opening of the files
in it also using other unsafe names, even ones with symbolic links. (This trick does not help if there are
multiple hardlinks, however.)

7 Conclusion

In this paper we considered the problem of privilege escalation via manipulation of filesystem pathnames,
which effect name resolution in system calls such as open, unlink, etc. While many privileged programs
take measures to protect against such attacks, these measures are always very application specific. We
propose a more general approach of having safe pathname resolution as part of the filesystem itself or a
system library, thereby protecting all applications by default.

We introduced the concept of the manipulators of a pathname, that include anyone who can influence
the outcome of the pathname resolution. In POSIX these are the users who either own or can write in any
directory visited during the pathname resolution. Using this concept, we call a pathname safe for U if the
only manipulators of the pathname are root and U. We described a general routine safe-open, ensuring
that if a file has safe names then safe-openwill not open that file with an unsafe name, and demonstrated
that this guarantee can be used to thwart filename-based privilege escalation attacks. This is useful not
only for privileged programs that run in known-to-be hostile environments, but also for programs written
by naive developers, and programs that are being deployed in unforeseen environments with unexpected file
permission semantics.

We implemented our safe name resolution routine in a library, using portable code over the POSIX inter-
face, and performed extensive experiments to validate the applicability of our solution to current operating
systems and applications. We verified that this solution uniformly protects system against the documented

17



cases of applications and daemons vulnerable to pathname manipulation attacks, as well as against some new
(latent) vulnerabilities that we uncovered. We also instrumented current versions of Ubuntu 9.04, Fedora
Core 11 and FreeBSD 7.2 to run every process through a program which interposes calls to file manipulation
and related calls and checks if the corresponding operation manipulates a safe pathname. These experiments
confirmed that very few existing systems break when used over our safe name resolution, and the handful
of cases where our solution produces false positives can be handled either by implementing a more standard
permission structure for the relevant directories or by using a more permissive variant of our solution.

References
[1] M. Bishop. Race Conditions, Files, and Security Flaws; or the Tortoise and the Hare Redux. Technical Report

CSE-95-8, University of California at Davis, Sep 1995.

[2] M. Bishop and M. Dilger. Checking for race conditions in file accesses. Computing Systems 9(2), pp. 131–152,
Spring 1996.

[3] N. Borisov, R. Johnson, N. Sastry, and D. Wagner. Fixing races for fun and profit: how to abuse atime. In 14th
USENIX Security Symposium, pp. 303–314, Jul 2005.

[4] Xiang Cai, Yuwei Gui, Rob Johnson Exploiting Unix File-System Races via Algorithmic Complexity Attacks
In IEEE Symposium on Security and Privacy, Oakland, California May 2009.

[5] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In FOCS, pages
136–145, 2001.

[6] Ran Canetti, Suresh Chari, Shai Halevi, Birgit Pfitzmann, Arnab Roy, Michael Steiner, Wietse Venema. Model-
ing OS Services with the UC Framework Manuscript. 2009.

[7] Hao Chen, David Wagner, and Drew Dean. Setuid Demystified. In USENIX Security Symposium, pages 171–
190, 2002.

[8] D. Dean and A. J. Hu. Fixing races for fun and profit: how to use access(2). In 13th USENIX Security
Symposium, pp. 195–206, Aug 2004.

[9] CERT Coordination Center. CERT Advisory CA-1995-02. http://www.cert.org/advisories/
CA-1995-02.html, January 26, 1995. (Accessed September 2009).

[10] CERT Coordination Center. CERT Advisory CA-1993-17. http://www.cert.org/advisories/
CA-1993-17.html, November 11, 1993. (Accessed September 2009).

[11] Common Vulnerabilities and Esposures. CVE-2001-0529. http://cve.mitre.org/, March 9, 2002.
(Accessed September 2009).

[12] Security Vulnerability in inetd(1M) Daemon When Debug Logging is Enabled CVE-2008-1684. http://
web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1684, September 2008 (Accessed
August 2009).

[13] initscripts Arbitrary File Deletion Vulnerability. CVE-2008-3524. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2008-3524, September 2008 (Accessed August 2009).

[14] Tal Garfinkel. Traps and Pitfalls: Practical Problems in System Call Interposition Based Security Tools. In
Proceedings of the Network and Distributed System Security Symposium, NDSS 2003, San Diego, California,
USA.

[15] D. Mazieres and F. Kaashoek. Secure applications need flexible operating systems. In IEEE Workshop on Hot
Topics in Operating Syst. (HOTOS), p. 56, 1997.

18



[16] National Vulnerability Database. http://nvd.nist.gov/. (Accessed September 2009).

[17] The Open Group Base Specifications Issue 7; IEEE Std 1003.1-2008. http://www.opengroup.org/.
(Accessed September 2009).

[18] Mark Seaborn. Plash: tools for practical least privilege. http://plash.beasts.org. (Accessed Septem-
ber 2009).

[19] Dan Tsafrir, Dilma Da Silva, and David Wagner. The murky issue of changing process identity: revising “setuid
demystified”, USENIX ;login, 33(3), pages 55–66. 2008.

[20] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma Da Silva. Portably Solving File TOCTOU Races with
Hardness Amplification. In Proceedings of USENIX Conference on File and Storage Technologies (FAST),
pages 189–206, 2008.

[21] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma Da Silva. Portably preventing file race attacks with user-
mode path resolution. Technical Report RC24572, IBM T. J. Watson Research Center, June 2008.

[22] Wietse Venema. The Postfix mail transfer agent. http://www.postfix.org.

[23] Robert N. M. Watson. Exploiting Concurrency Vulnerabilities in System Call Wrappers. In Proceedings of the
1st USENIX Workshop on Offensive Technologies, Boston, August 2007.

[24] The XAMPP software. http://www.apachefriends.org/. (Accessed September 2009).

A Pseudo-Code Implementation of Safe Open
/* Resolve a pathname and open the target file. */

safe_open(path, open_flags, is_safe_wd)
{

if (path is absolute) {
is_safe_wd = 1; dirhandle = null;

} else {
dirhandle = open(".", O_RDONLY) or return error;

}
return safe_lookup(dirhandle, path, is_safe_wd,

lookup_flags_open, open_action_func, open_flags);
}

/* Open the final pathname component (called by safe_lookup below). */

open_action_func(dirhandle, name, is_safe_wd, open_flags)
{

truncate = (open_flags & O_TRUNC);
flags = (open_flags & ˜O_TRUNC);

filehandle = openat(dirhandle, name, flags) or return error;
fst = fstat(filehandle) or return error;
/* lstatat is local alias for fstatat(args, AT_SYMLNK_NOFOLLOW) */
lst = lstatat(dirhandle, name) or return error;

if (fst and lst don’t match) return EACCESS;
if (!is_safe_wd && fst is not a directory && fst has multiple hard links)

return EACCES;

19



if (truncate) ftruncate(filehandle, 0) or return error;
return filehandle;

}

/* Resolve a pathname and invoke the action on the final component */

safe_lookup(dirhandle, path, is_safe_wd, lookup_flags, action_func, action_args)
{

if (path is empty) return ENOENT;
if (path is absolute) {

dirhandle = open("/", O_RDONLY) or return error;
lst = result of lstat("/") or return error;
if (lst.owner not in [root, euid] || anyone not in [root, euid] can write)

is_safe_wd = false;
skip leading "/" in path, and replace path by "." if the result is empty;

}
while (true) {

split path into first and suffix, and replace all-slashes suffix by ".";
lst = result of lstatat(dirhandle, first);
if (!is_safe_wd && (first component is a symlink or "..") return EACCES;

/* the meaning of "final pathname component" depends on lookup_flags, *
* it has different meaning for open, unlink, etc. */
if (first component is the final pathname component)

return action_func(dirhandle, first, is_safe_wd, action_args);

if (first component is a symlink) {
newpath = readlinkat(dirhandle, first) or return error;
check dirhandle permissions again, and return EACCES if unsafe;
if (suffix == null) /* symlink at end of pathname */

return safe_lookup(dirhandle, newpath, is_safe_wd,
lookup_flags, action_func, action_args);

[newhandle, fst] = safe_lookup(dirhandle, newpath, is_safe_wd,
lookup_flags, null, null) or return error; /* other symlink */

} else { /* first component is not a symlink */
newhandle = openat(dirhandle, first, O_RDONLY) or return error;
check dirhandle permissions again, and update is_safe_wd if unsafe;
fst = result of fstat(newhandle) or return error;

if (first component is not a directory) return ENOTDIR;
lst = result of lstatat(dirhandle, first) or return error;
if (lst does not match fst) return EACCES;

if (suffix == null) /* reached the end of readlinkat result */
return [newhandle, fst];

}
path = suffix;
dirhandle = newhandle;
if (fst.owner not in [root, euid] || anyone not in [root, euid] can write)

is_safe_wd = false;
}

}

20



B Relative pathnames

When resolving a pathname relative to an initial directory (i.e. the current directory or a directory handle
with functions such as openat), the resolver needs to determine if the initial directory is safe, besides
following the same steps as with absolute pathnames (Section 2.2). For this, the implementation needs to
maintain safety information about directory handles, including the implicit directory handles for per-process
current and root directories.

The per-handle safety information needs to be initialized when a directory handle is instantiated with
functions such as open, chdir or chroot, and the safety information needs to be propagated when a
directory handle is copied with functions such as dup, fcntl, fork, or with functions that transmit a file
handle over an inter-process communication channel. Maintaining this information is straightforward in the
file system itself (i.e. in the operating system kernel). We discuss our user-level approach in Appendix C.

In a simplistic implementation, each directory handle has a static flag that indicates if the directory is
safe. However, additional care is needed with processes that change their effective uid (for example, a
process that invokes the seteuid function, or a process that executes a file with the setuid bit turned on).
As the result of an effective uid change, a directory that was safe may become unsafe or vice versa. As
a further complication, the safety of a directory depends on the program execution history. For example, a
handle for directory /etc is normally safe for everyone, but that same directory handle would be safe only
for joe if a pathname resolved through a symbolic link under /home/joe.

To account for processes that change execution privilege, we propose that each directory handle remem-
bers the historical uid that the directory’s pathname prefix was “safe for” when the pathname was resolved
(this is either root for a system-safe directory pathname prefix, a single non-root uid, or no-one for a
directory pathname prefix that has multiple manipulators). When resolving a pathname relative to an initial
directory, one determines the safety of the initial directory as follows: combine the historical “safe for”
uid from the initial directory’s pathname prefix, with fresh information about the owner and writers for the
initial directory itself.

C User-level implementation

As mentioned elsewhere in this report, a kernel-based implementation of safe pathname resolution is straight-
forward: while visiting each pathname element one at a time, maintain a safety flag and apply the safety
policy for following symbolic links, “..”, and for files with multiple hard links as appropriate. With a kernel-
based implementation, maintaining per-handle directory safety information is also straightforward. This
approach is preferable, but only after it has been demonstrated that safe pathname resolution does not break
well-behaved programs.

To demonstrate the feasibility of our pathname safety policy, we chose an approach that is based on
library-call interposition with an in-process monitor. This approach works with dynamically-linked pro-
grams, including programs that are setuid or setgid, and it provides acceptable performance on Linux,
FreeBSD and Solaris systems without requiring kernel or library modifications. Such modifications would
be problematic for production environments and they would require more effort to implement across a wide
range of operating systems or system versions. We opted against external-process monitors such as strace
or truss: they suffer from TOCTOU problems, they cause considerable run-time overhead, and they don’t
have direct access to the monitored process’s effective uid which is needed for pathname safety decisions.

As illustrated in figure 1, the monitor is implemented as a library module that is loaded into the process
address space between the application and the libraries that are dynamically linked into the application.
Depending on configuration, the monitor can log function calls such as open with the effective uid, and
can log whether or not a call violates our pathname safety policy. For the purpose of the feasibility test the

21



kernel

open etc. other

application

monitor

library

logfile

Figure 1: In-process monitor architecture.

monitor does not enforce policy, but instead passes control to the real open etc. function. The in-process
monitor for Linux, FreeBSD and Solaris is implemented in about 2000 lines of K&R-formatted C code,
comments not included, plus a small shell script that implements the command-line interface.

Besides interposing on functions such as open that require pathname resolution, our in-process mon-
itor interposes on additional functions to ensure proper operation of the monitor itself. For example, the
monitor intercepts function calls such as close and closefrom, to prevent the logging file handle from
being closed by accident. The monitor intercepts function calls such as execve to ensure consistent pro-
cess monitoring when a new program is executed. Upon execve entry, the monitor exports environment
variables to control run-time linker behavior and to propagate monitor state, and it resets the close-on-exec
flag on the logging file handle. When the execve call returns in the newly-loaded program, the monitor
restores private state from environment variables before the application’s code starts execution.

To track per-handle directory safety state, an in-process monitor also needs to interpose on functions that
copy file handles such as dup or fcntl. Interposition is not necessary with process-creating primitives
such as fork or vfork, since these are not designed to share the in-kernel file descriptor table or process
memory between parent and child processes. On the other hand, the Linux clone and BSDrfork process-
creating primitives are designed so that they can share the file descriptor table or process memory, meaning
that changes made by one process will affect the other process. This behavior complicates a user-level
monitor implementation, and is not yet supported by our monitor.

Our in-process monitor does not yet remember safety state for directories other than the per-process
current and root directories. In our measurements, we found that the openat etc. functions are used by
only few programs, and that those functions are called almost exclusively with absolute pathnames or with
pathnames relative to the current directory. The monitor currently does not propagate the per-process current
directory and root directory safety state across function calls such as execve. Instead, it initializes their
safety state on the fly at program start-up time. Without modification to monitored applications, it is not
practical for a user-level monitor to track safety flags for directory handles that are sent over an inter-process
communication channel. Fortunately, such usage is rare.

22


