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Abstract

We propose to classify the Hiero grammar into re-
fined subcategories, each of which is characterized
with a specific reordering pattern. The subcategories
enable us to encourage more of certain reorder-
ing patterns across a language-pair with a proper
mixture-weight, to form a better grammar repre-
sentation for machine translation. Specifically, Hi-
ero grammar is classified according to the positions
and the relative orders of the nonterminals (vari-
ables) and lexical items: variables with lexical items
defining their boundaries, together with the mono-
tone/nonmonotone alignment nature. We propose to
learn the mixture-weight in two simple ways, relying
on minimum error rate training and maximum like-
lihood training, respectively. Improved translation
results were obtained from a state-of-the-art Arabic-
English Hiero system.

1 Introduction
Hiero grammar (Chiang, 2007) has been widely applied
in current translation systems, and achieved state-of-the-
art performances in many evaluations, due to its abil-
ity to capture rich reordering patterns across language
pairs. However, when we are doing general translation
tasks, we have to handle hundreds of millions of Hiero
plausible reordering rules. For instance, the number of
unique Hiero rules relevant to one single 24-token source-
sentence is 7,609 (already pruned with a frequency cut
of 5). Such a size of grammar incurs a huge overhead
cost for developing machine translation engines, and sig-
nificantly slows down the decoding process. Worse is,
many Hiero rules generate much more spurious ambi-
guities during the decoding, which often yield undesired
sub-optimal translations and consequently confuse auto-
matic optimization processes for translation.

A closer check of the grammar reveals the rewriting
rules often have different values of reordering patterns
for decoding. For instance, rules with monotone reorder-
ing such as “a X ↔ A X”1 have generally less value in
improving translation quality than “a X ↔ A1 X A2”,
which introduces a “fork” alignment on the target side.
The above rules, including a variable X without lexical

1Notations used for a Hiero rule in this paper: the lefthand side is
the source string, and the righthand side is target string; the lowercased
letters in the source are aligned to the uppercased ones in the target.

boundaries, often generate significant spurious ambigui-
ties during the decoding. These problems motivated us to
re-examine the Hiero rule in hope of pinpointing the po-
tential useful Hiero rules from the vast number of plau-
sible reordering rules extracted from parallel data. Our
anticipated solution should remove the redundancy from
the grammar. As a result of smaller grammar size, Hiero
rules will have sharper frequency distributions, which can
lead to potential better translations. Also, the categoriza-
tion of grammar allows one to encourage certain reorder-
ing patterns more by applying mixture-weights to such
categories. For language-pairs, such as Arabic-English,
we expect to have relative more swaps than monotones
for certain type of Hiero rules, and for Spanish-English,
we expect to use more monotone ones. Overall, a de-
tailed classification of the reordering patterns enables us
to have more control and flexibilities in configuring the
Hiero grammar for better translations.

The reset of the paper is structured as follows: in sec-
tion 2, the Hiero reordering rules are sorted into sub-
categories according to the positions of the nonterminals,
together with the reordering patterns the rule encodes;
in section 3, we describe two ways to learn the mix-
ture weights for combining the categorized Hiero rules;
in section 4, detailed experiments are reported on the ap-
plications of the proposed mixtures of Hiero rules.

2 Classify Hiero Reordering Rules

Word reordering patterns are captured in the relative posi-
tions of terminals (lexical items) and nonterminals (vari-
ables) in Hiero rule context. Depending on the positions
in the context, the ambiguities in rewriting the nontermi-
nals typically vary even for nonterminals in the same rule
during the decoding. Generally speaking, the rule like
“X a ↔ A X” generates a long-range reordering for the
lexical item “a”, with relatively low costs. Unfortunately,
the reordering is usually wrong in our observations.

To reduce such ambiguities generated by a Hiero rule,
people tried length distributions for each nonterminal in
each Hiero rule. The length distributions chosen was sim-
ple gaussian as in Shen et al. (2009). However, due to the
cap of the underlying phrase-pairs’ length2, the mean and

2In our system, the maximum length for a block (phrase pair) is 12-
tokens on the source side, and the mean is 3.5 tokens, and variance is 3.9
tokens for rewriting a nonterminal X , using Arabic-English MaxEnt-
Aligned (Ittycheriah and Roukos, 2005) parallel data.



variance are far away 3from the expectation in real decod-
ing time. Manipulations and tuning have to be applied to
accommodate the expected ranges for rewriting a nonter-
minal during the decoding time.

In this paper, we characterize the nonterminals in the
Hiero rule context, by examining if the nonterminals have
lexical items to define their boundaries on the source side.
We also combine the categories with the rules’ alignment,
by evaluating the relative positions among terminals and
nonterminals: monotone versus nonmonotone, to refine
the clusters further. In particular, we classify the follow-
ing four basic categories for Hiero grammar.

2.1 LO:Left-side is open
In a Hiero rule, a nonterminal is at the left-most side of the
source phrase, or at the very beginning of the source side.
The other variable (if there is one) is bounded with lexical
items. Examples are shown as in Eqn. 1 and Eqn. 2.

X1 a X2 b ↔ X1 A X2 B, (1)
X1 a X2 b ↔ X2 A X1 B. (2)

Nonterminal “X1” has no lexical item to define its left
boundary, and it can be instantiated to cover any source
tokens to the left side of the matched point of ‘a’ in a
test sentence during the decoding. We say the left-side is
open for X1. In a way, this rule gives more reordering
freedom than necessary in practice.

2.2 RO:Right-side is open
The Hiero rule contains one nonterminal at the rightmost
of the source phrase, while the other variable (if any) is
bounded with lexical items. Similar to the above descrip-
tion in section 2.1, there is no lexical item to bound the
instantiation of the nonterminal X2 in Eqn. 3 and Eqn. 4.
These rules are at risk of being misused during the decod-
ing time, and generate undesired reorderings especially
for Eqn. 4.

a X1 b X2 ↔ X1 A X2 B, (3)
a X1 b X2 ↔ X2 A X1 B. (4)

2.3 BO:Both Sides are open
In this case, a Hiero rule has two variables, and they are
at the rightmost and leftmost source positions, respec-
tively. This is what we called “both sides are open”. Dur-
ing the decoding time, once the middle lexical items are
matched, this rule will fire for all the rest source tokens
to the left and right, and generate more reorderings than
necessary. Shown in Eqn. 5, there is one lexical item in
the middle, and X1 and X2 are both unbounded for in-
stantiations in the decoding process.

X1 b X2 ↔ X1 B X2, (5)
X1 b X2 ↔ X2 B X1. (6)

3Gaussian eliminates any points two variances away from the mean.

2.4 NO:Non-Open
As shown in Eqn. 7 and Eqn. 8, all the nonterminals are
bounded by the source side lexical items in the context, a
and c. The freedom to rewrite these nonterminals is much
less than any of the other three cases. The lexical items
here introduce more informative evidences for word re-
orderings; such rules are applied only when the context is
matched exactly.

a X1 b X2 c ↔ A X1 B X2 C, (7)
a X1 b X2 c ↔ A X2 B X1 C. (8)

Besides the four nonoverlap categories, on the posi-
tions of the source nonterminals in the Hiero rule context,
we can also have two additional useful labels for each
Hiero rule, considering the reordering nature: monotone
and nonmonotone, as detailed in section 2.5.

2.5 Additional labels: monotone v.s. nonmonotone
Rules, by which the relative positions for the nontermi-
nals and terminals in the source is kept the same on the
target side, are labeled as monotone. For instance, rules
in Eqn. 5 (and in Eqn. 1, Eqn. 3, Eqn. 7) are all monotone
in nature. Because the relative positions for nontermi-
nals and lexical items do not move, we can infer the same
translations using simpler grammar such as the glue rule
X1X2 ↔ X1X2 as in ITG grammar (Wu, 1997).

On the other hand, when there are changes of the rel-
ative positions for terminals and nonterminals, we con-
sider them nonmonotone (or swap). Empirically, we have
observed wild and long jumps of reorderings introduced
by such rules: it can move chunk/lexical-item too far
away, as shown in Figure 1-(a) for Arabic word “tErD”
(was exposed to), with a jump of more than 23 source to-
kens. There are at least three different cases about this
reordering pattern. The first case is that the positions for
the nonterminals are swapped only, such as the rule in
Eqn. 6. the second case is that the positions for the lexi-
cal item are changed, such as the rule in Eqn. 10; the third
case is the lexical item “a” has a one-to-many alignment
to “A1” and “A2” as in Eqn. 11.

X1 a X2 ↔ X2 A X1, (9)
X1 a X2 ↔ X1 X2 A, (10)

a X1 ↔ A1 X1 A2. (11)

Overall, such rules result in reorderings among the
nonterminals and lexical items, and such reorderings fre-
quently involve non-desirable long jumps.

3 Learning Mixtures of Categorized Rules
We can assign two kinds of cost functions to combine the
mixtures of the categorized Hiero grammar, via weights
learned from typical minimum error rate training.



3.1 Binary Feature-Functions Vector

First, we associate a binary feature vector for a hiero rule,
with a dimension for each subcategories. The total di-
mension of the binary feature vector for a Hiero rule is
six, with four for basic nonoverlap subcategories, and
two additional labels for the monotone/nonmontone re-
orderings. The binary feature functions will be the accu-
mulated as counters of how many each type of rules are
applied in constructing a translation hypothesis.

3.2 Maximum Likelihood p(type) via Chart-Parsing

Secondly, we can infer a likelihood function p(type), by
taking the reference translation and run force decoding
with a given categorized Hiero grammar. In this way,
we can compute, from the derivation forest, the inside-
outside fractional counts for each type of the Hiero rules
(Huang and Zhou, 2009). With these fractional counts,
we then normalize and get a maximum likelihood estima-
tion for applying a particular type of rules for decoding
unseen sentences. The total number of feature functions
is simply one for p(type), where the type space is the
cross product of four basic categories with two additional
labels for the monotone/nonmontone reorderings.

4 Experiments

Our experiments were carried out on the MT08 Arabic-
English newswire data. We illustrated the impacts of the
proposed categories for Hiero grammar, by testing the in-
dividual feature functions’ strength, and the combinato-
rial effects via the mixtures.

A chart-based decoder (Zhao and Al-Onaizan, 2008),
using Hiero grammar, was applied, and the parame-
ters were tuned on the MT06 NIST part via a Simplex-
downhill algorithm on optimizing toward (TER-BLEU).
The feature functions in the baseline system, included a
5-gram language model, relative frequencies and IBM
Model-1 scores for both blocks and Hiero rules, word
count, and phrase count. On top of it, one or six addi-
tional feature functions on the categories we described
above in section 3, were integrated. Our translation mod-
els (blocks and Hiero rules) were learned from word-
aligned (Ittycheriah and Roukos, 2005) subsampled par-
allel corpora.

4.1 On Basic Hiero Rules Categorizations

Table 1 shows that, the losses of BLEU if removing an
individual type of the Hiero rules from the baseline sys-
tem building. For the Hiero type1 (LO:Left-side is Open),
the losses are trivial, and can be ignored in system build-
ings. However, if we remove the type2 (RO:Right-side is
Open) Hiero rules, the losses will be noticeably large.

We carried out the second experiment, using each type
of rules only for the system building, and results are in the

Setups BLEUr4n4 TER

Baseline 54.44 40.24
-type1(LO) 54.27 40.15
-type2(RO) 53.87 40.53
-type3(BO) 54.00 40.40
-type4(NO) 54.09 40.37
w/type1(LO) 53.27 41.21
w/type2(RO) 53.88 40.41
w/type3(BO) 53.06 41.29
w/type4(NO) 52.84 41.38
SimpMix(4) 54.71 40.14
MLMix(4) 54.79 40.10
MonoSwap 54.62 40.22
SimpMix+MonoSwap 54.95 39.98
MLMix+MonoSwap 55.03 39.90

Table 1: On using categorized Hiero grammar. Baseline is
a Hiero system without discriminating the sub categories; “-
typeN” is the the baseline with removing a certain type of Hiero
rules. SimpMix(4) is the one learned by simplex-downhill al-
gorithms for four basic categories, and MLMix(4) is the cost
function learned by inside-outside parsing for four basic types.
SimpMix+MonoSwap integrated two more feature functions of
monotone/nonmonotone, and MLMix+MonoSwap integrated
the cross-product of the them.

middle part of Table 1, marked by “w/type” in the setups.
The type2(RO) Hiero rules have the smallest drop from
baseline; using only type4(NO:None Open) Hiero rules,
however, we had the largest drop from the baseline Hiero
system.

Overall, the results show that different type of Hi-
ero rules have different values for decoding. Some of
them such as type1(LO) might have larger redundancies
than other types; some of them are more valuable, like
type2(RO) Hiero rules have more reordering values than
others in our experiments for Arabic-English. This mo-
tivated us on weighting them properly for optimal com-
binations of the proposed categories, to encourage more
particular types of reordering rules for better translations.

4.2 On Mixing Categorized Hiero rules

In Table 1, setup of “SimpMix(4)” is the approach as
described in section 3.1 for combining four basic types
of Hiero rules described sequentially in sections 2.1-2.4.
Comparing with the setup of “MLMix(4)”, the perfor-
mances are almost the same in BLEUr4n4. Comparing
with baseline, BLEU scores are improved from 54.44 to
54.79 using “MLMix(4)” — 0.35 improvement in BLEU.

For the first approach, as in section 3.1, there are six
more dimensions added to the baseline. This becomes a
challenge for optimization algorithms, because most are
generally effective for a handful feature functions only.



(a) Hiero Baseline (b) Hiero with Weighted-Mixed Subcategories

Figure 1: Reordering derivation trees using Hiero grammar from our chart-based decoder: baseline without clustering is as in
(a), and with mixtures of clusters is as in (b). (a) showed a long jump for the word “tErD”, a lexical item in the Hiero rule
tErD X1 fy X2 ↔ X1 infy X2 wastErD; (b) showed the hypothesis for the same source part, with mixture-weighted Hiero
reordering rules, presenting a much better word reordering for translations. ITG style GLUE rule is X1 X2 ↔ X1 X2. The
distribution of p(type) is inferred via chart-parsing, and weights were learned via a simplex-downhill optimization algorithm.

For the second approach using chart-parsing, there is
only one more dimension added to the baseline system,
and this relatively reduces the burden on the optimization
side, and the results are empirically more robust.

With further refined categories using the mono-
tone/nonmonotone labels for each Hiero rule, as de-
scribed in section 2.5, we can extend the above
experimental setups into “SimpMix+MonoSwap” and
“MLMix+MonoSwap”. Similar observations were ob-
tained, with maximum-likelihood approach slightly out-
perform binary-feature one. Both approaches outperform
baseline by a margin of 0.59 and 0.51 BLEU points, re-
spectively. On the other hand, by simply using only
monotone/nonmonotone labels for a Hiero rule, the re-
sults are shown in the setup of “MonoSwap”, and we still
got an improvement of 0.18 BLEU, indicating the utilities
of a simple effective classification for Hiero rules.

Overall, via mixing the proposed categories of the Hi-
ero grammar, better grammar representations were ob-
tained to improve Arabic-English translations.

4.3 Translation Examples
Figure 1 shows two translation hypotheses, one from
the baseline system as in (a), the other from the setup
“MLMix+MonoSwap” as shown in Table 1. Detailed
derivation trees from our chart-based decoder are shown
in the figure, including both the rule-level and word-
level alignment. In a), a src word “tErD” was wrongly
moved to more than 23 source tokens away, and trans-
lated into word “was”. In (b), it is translated into the
right verb-phrase “was exposed”, with correct word or-
der, using the Hiero rule of “tErD X1 l# X2 ↔
X1 was exposed to X2”, which belongs to our type2(RO:
right-side is open), with nonmonotone reordering.

5 Conclusion
In this paper, we propose to classify the Hiero gram-
mar into refined subcategories. A Hiero rule is charac-
terized into four nonoverlapping categories by evaluat-
ing the nponterminals’ left and right boundaries on the
source side, and marked further with monotone or re-
ordering alignment nature. We have obtained improved
translation qualities over a strong Hiero system applied
in GALE evaluations. Our results reveal there are redun-
dancies and values for certain types of Hiero grammar,
and fine-grained clusters are desired. Automatic cluster-
ing for the grammar is worthwhile for future research.
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