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This paper describes SODA, a scheduler for System S . System S is a highly scalable distributed
computer system designed to handle complex applications processing enormous quantities of
streaming data. Unlike traditional batch applications, streaming applications are open-ended.
The system cannot typically delay the processing of the data. The scheduler must be able admit
or reject jobs. It must be able to assign and reassign resource allocations dynamically in response
to changes in resource availability, incoming data rates, the relative importance of the work, as
well as job arrivals and departures, and so on. The design assumptions of System S , in particu-
lar, pose additional scheduling challenges. SODA must deal with a highly complex optimization
problem involving numerous real-world constraints, which must be solved in real-time while main-
taining scalability. SODA relies on a careful problem decomposition, and intelligent use of both
heuristic and exact algorithms. This paper is intended to be as complete a description of SODA
as is reasonably practical. We describe the design and functionality of SODA, give overviews and
extensive details of the four major mathematical components, as well as three key input data
infrastructure components. We present experiments to show the performance of the scheduler.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—
Distributed Applications; G.1.6 [Numerical Analysis]: Optimization—Constrained Optimiza-
tion

General Terms: Distributed processing, Stream processing, Optimization, Scheduling

Additional Key Words and Phrases: Job Admission, Resource allocation

1. INTRODUCTION

We consider distributed computer systems designed to handle very large-scale data
stream processing jobs. This area of research is quite new. Early examples in-
clude relational databases augmented with streaming operations [Abadi et al. 2005;
Chandrasekaran et al. 2003; Arasu et al. 2003; Zdonik et al. 2003]. These systems
process voluminous quantities of incoming stream data, performing relational op-
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Fig. 1. Templates and Resources

erations such as database joins on them.
We believe that distributed stream processing systems are becoming quite im-

portant. The authors of this paper are involved in an ambitious project, started in
2003, known as System S [Amini et al. 2006; Douglis et al. 2004; Hildrum et al.
2008; Jain et al. 2006; Jacques-Silva et al. 2007; Wolf et al. 2008; Wolf et al. 2009].
System S is a highly scalable distributed computer system designed to handle com-
plex jobs involving enormous quantities of streaming data. The system is intended
to be vastly more general than a database environment. System S continues to
evolve.

This paper describes the SODA scheduler for System S . (SODA stands for Schedul-
ing Optimizer for Distributed Applications.)

The basic unit of computational work in System S is called a processing element
(PE). These PEs can be very general software. The PEs are connected via streams
and grouped into jobs, which represent the basic unit of schedulable work in the
system. Design goals reflect the ambitious nature of the project: when completed,
we expect the system could consist of tens of thousands of processing nodes (PNs),
to be able to concurrently support hundreds of thousands of primal (originating
from outside the system) and derived (created within the system) streams, and to
have a storage subsystem with a capacity of multiple petabytes. Even at these
sizes, we expect the system to be swamped almost all of the time. Processors will
be nearly fully utilized, since the offered load (in terms of jobs) will far exceed
the prodigious processing capabilities of the system. The network will run at very
high bandwidth rates. The storage subsystem will always be virtually full, because
there will inevitably be more potentially useful data than can actually be stored.
Such goals make the design of the system enormously challenging and substantially
different from prior stream processing systems.

The composition of PEs and streams into data flow graphs seems natural and
scalable. PEs consume and produce streams and are the atomic units to be com-
posed, distributed and re-used. Streams consist of multiple stream data objects
(SDOs). In essence, System S is middleware which provides the PE and stream
services. Technically, jobs consist of one or more data flow graphs, each of which
represents an alternative way of performing a specific function. The alternative
choices are called templates.

Figure 1 shows a job with three such templates. The PEs are shown as nodes in
the data flow graphs. (The left-hand node in each case is a dummy node, which
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Fig. 2. Streamsight: Data-flow graph

may be used to “glue” this job to another. The right-hand node in each template
represents disk storage, which can be regarded as a second type of dummy node.
Both the left- and right-hand side streams are required by SODA to “match” in all
templates, as are the dummy nodes, so that the gluing may take place regardless
of the template chosen.) The first template provides the basic functionality. The
second template adds a preprocessing PE (perhaps for enhanced quality), and the
third adds a postprocessing PE, presumably for the same reason.

Figure 2 shows a particular System S application known as DAC [Wu et al. 2007],
using a specially built visualization tool known as Streamsight. (DAC stands for
Disaster Assistance Claim monitoring.) This figure shows the PN assignments for
the PEs of the job, as determined by SODA. Each colored rectangle represents a
different PN. The PEs are placed in these PNs and the intra- and inter-PN streams
are visible.

Like System S itself, SODA is highly ambitious. The environment makes pro-
ducing high quality schedules very difficult. Below, we list some of the challenges
for this scheduler.

—The offered load will frequently exceed system capacity. Thus System S compo-
nents should run at nearly full capacity much of the time. This includes the PNs,
the network, and storage. A lack of spare capacity means no room for error. So
the scheduler needs to be quite accurate.

—These are stream-based jobs. We have essentially one shot at most primal
streams, so the decision on which jobs to run is crucial to get right. This also
means that the scheduler must react intelligently in real-time.
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—The jobs involve multiple PEs which are interconnected in complex, changeable
configurations via bursty streams, just as multiple jobs are themselves glued
together. Flow imbalances can lead to buffer overflows (and loss of data), or to
under-utilization of PEs. We must not lose much data and we must not leave
processors idle frequently.

—We must be able to dynamically rebalance resources for jobs whose “importance”
changes frequently and dramatically. (We shall shortly define importance in a
rigorous but general manner. For now the reader can think of importance sub-
jectively.) Discoveries, queries and the like can require major shifts in resource
allocation which must be made quickly. Even primal streams come and go.

—There are many special purpose additional constraints which must be respected
by the scheduler.

The word “scheduler” has many distinct connotations in the literature [Blazewicz
et al. 1993; Pinedo 1995]. To be precise, the SODA scheduler we designed performs
the following four major functions.

—Job admission: It chooses a subset of jobs to execute from a huge collection of
jobs submitted. In the process it attempts to maximize the total importance of
all the work in the system subject to a variety of constraints.

—Template selection: For those jobs that will be executed it chooses one alternative
PE/stream template from among several given to it. Each alternative template
will presumably provide the greatest importance within some range or ranges of
allocated resources. (Figure 3 illustrates importance as a function of resource for
the three job templates. At medium allocated resource levels, for example, the
second template dominates.) SODA chooses the template based on the relative
importance and resources required by the other, competing jobs.

—Candidate Nodes: Internally, SODA computes a set of of candidate PNs for each
executing PE from a distributed system of heterogeneous PNs. These are the
PNs on which the PE will be allowed to be run. It does so in a manner which
load balances the nodes and network traffic, minimizes the inter-node traffic while
respecting a host of constraints.

—Fractional allocations: Finally, SODA chooses flow-balanced fractional alloca-
tions of PEs to PNs while respecting the candidate node decisions and still more
constraints.

In summary, the scheduling problem we are given involves the simultaneous ob-
jectives of maximizing importance, ensuring flow balancing amongst the PEs, load
balancing the PNs, as well as minimizing and load balancing the traffic on the
network. And the solution must respect an extensive array of constraints. These
include a notion of job rank legality, minimum and maximum allocations to each PE,
required jobs, resource matching, licensing, security, fairness, incremental change,
cardinality, mutual PE colocation, mutual PE exlocation, PE isolation, and legal
fractional allocation constraints. Moreover, we must solve these complex optimiza-
tion algorithms in real-time while maintaining scalability to huge problem sizes.
This is a huge juggling act.

Because of the difficulty of this problem we have resorted to a number of math-
ematical “tricks”:
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—Hierarchical (multi-level) problem decomposition. The idea here is to use a two-
level problem decomposition. The higher level component solves very hard math-
ematical optimization problems, but takes a relatively longer time to do so. This
component is known as the macro model, and the time allowed for solving this
problem is known as a macro epoch. The lower level component solves easier
mathematical optimization problems using the output of the macro model as in-
put. Its decisions are easier because it uses the higher level decisions as a guide.
This lower level component is known as the micro model, and the time allowed
for solving this problem is known as a micro epoch. There will be many micro
model epochs in one macro model epoch, and each such micro model run will
use the same macro model output. (To be precise, the input data for each micro
epoch is computed as the output of the previous macro epoch.) Figure 4 shows a
typical macro epoch and multiple micro epochs within it. At the top level SODA
“thinks long and hard”. At the lower level it “thinks fast”.

—Sequentially decoupling the problems. In both the macro and micro models
the original problem is decoupled into two sequentially solved problems. The
first problem computes quantity related output and the second computes place-
ment related output using the quantity output as input. Thus we have the
macroQ/microQ (Q for quantity) models and the macroW/microW (W for where)
models. Decoupling an optimization problem cannot improve the quality of the
solution, but the advantages of greater tractability can often outweigh the possi-
ble loss of accuracy. We optimize slightly different objective functions in each of
the models.

—Employing both heuristic and exact algorithms. We use heuristics for at least
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Fig. 4. SODA Epochs

three distinct purposes. First, we get a good starting solution for the exact
scheme. Second, we get a solution which will be satisfactory even if the rest of
the exact problem is too difficult to solve in the allotted time. Third, we may
have to simplify the formulation of the exact problem in order to solve it in the
allotted time. So there are trade-offs between exactness and the correctness of
the formulation. And fourth, we can use heuristics to “true up” exact solutions
to these simplified exact problems.

—Multi-granularity problem decompositions. We can solve a particular optimiza-
tion problem at a coarse resolution. If there is sufficient time, we may solve it at
a finer level of resolution. The latter will be more accurate than the former, but
by performing this trick we are essentially trying to optimize the use of time in
the scheduler itself. We also get at least some solution relatively quickly.

—Partitioning the problem into smaller problems. If the optimization problem
is truly huge we create a number of smaller problems, solving each of these
in parallel. Then we “glue” the results together. This is again a trade-off of
computation time and accuracy.

We will give more details on each of these tricks in subsequent sections. The
underlying mathematics of SODA is the key contribution of this paper.

The remainder of this paper is organized as follows. In Section 2 we give an
overview of System S , stressing the other major components. Section 3 contains a
glossary of new terms used by SODA, and by macroQ in particular. A description of
each of the four major mathematical components is given in Section 4. As noted,
these components are named macroQ, macroW, microQ and microW. Section 5
contains more mathematical details on each of these components. In Section 6 we
briefly describe three components that provide key input data to SODA. These
inputs are the so-called resource functions, job ranks and stream weights. The
components themselves are known as the Resource Function Learner (RFL), the
Rank Manager (RM) and the Weight Manager (WM). Section 7 describes SODA
job admission and placement experiments. Section 8 outlines related work. Finally,
Section 9 lists conclusions.
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2. OVERVIEW OF SYSTEM S

System S is a large-scale distributed stream processing middleware. It is designed
for supporting complex analytics on large volumes of streaming data, both struc-
tured and unstructured. System S has two main components: SPADE and the
System S runtime. SPADE is a rapid application development front-end for Sys-
tem S [Gedik et al. 2008]. It consists of a language, a compiler, and auxiliary
support for building distributed stream processing applications. The SPADE lan-
guage provides a stream-centric, operator-level programming model, and composes
these operators into logical data-flow graphs.

The operator logic can optionally be implemented in a lower-level language like
C++. Generally, a SPADE operator implementing a simple logic, like filtering,
would be too “small” to be efficiently deployed to a compute node at runtime.
The SPADE compiler can fuse multiple operators into a single PE. In the process
of code generation, SPADE creates these PEs by replacing all intra-PE streams
with more efficient function call invocations of “downstream” operators by their
“upstream” operators. Only inter-PE streams remain as actual streams after this
fusion process. Thus, the logical (operator-based) data-flow graphs are coalesced
into physical (PE-based) graphs that are more appropriate for deployment.

At runtime, the processing of stream applications is organized in terms of one
or more jobs that consist of PEs organized into data-flow graphs. Physically, a
PE is a process, and may contain of one or more threads of execution. The PEs
of an application are distributed across the PNs. Each PN can run multiple PEs
and divides its CPU resource between them according to fractions dictated by the
SODA scheduler. The PE can be a generic program that uses the streaming API or
it may be composed from several fused operators, as above. In the latter case, its
behavior depends on that of the individual operators and the manner in which they
are connected inside the PE. PEs consume and produce streams which consist of a
series of strictly-typed tuples. A PE receives and sends data through ports, which
represent attachment points for streams. A PE can read from multiple ports, write
to multiple ports, and multiple streams may originate or end in a single port.

A functional prototype of System S exists on a Linux cluster consisting of hun-
dreds of PNs interconnected by a Gigabit switched Ethernet network.

3. GLOSSARY OF KEY NEW SODA TERMS

SODA (and macroQ in particular) employs a number of terms that have very spe-
cific meanings to the scheduler. We list these below, with explicit definitions.
Understanding these concepts is critical to the discussions that follow. The first
two items, the value function and weight, are the key components of the third item,
importance. Importance, in turn, is the metric that SODA tries to maximize. The
fourth item, the resource function (RF), is essentially the basic building block by
which we iteratively compute this notion of importance. Finally, rank, the fifth
item, is an orthogonal notion to importance: It is a priority metric assigned to each
job. Jobs which produce little importance but have a better rank may get done
instead of jobs which have more importance but have a worse rank.

—Value function: Each derived stream produced by a potential System S job has
a value function associated with it. This is an arbitrary non-negative real-valued
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function. The domain of this function might typically be the projected rate of
the stream. Or it might instead be a stream quality measure, such as projected
goodput. In theory it could be a cross product of a variety of quantity, quality and
even other “goodness” measures. The definition is intentionally general, though
early SODA instances have employed rate-based value functions. Also note that
value functions which are 0 everywhere will typically predominate: Although the
notion is also intentionally general we expect to see non-trivial value functions
mostly on terminal streams of various jobs. These are, of course, the “finished
products” of System S work, and one would thus naturally want to measure
goodness there.

—Weight: Each derived stream produced by a potential System S job also has a
weight associated with it. This is a non-negative real number. Non-trivial weights
will also typically be quite sparse, since we will see that the weight may as well
be 0 unless the stream also has a non-zero value function.

—Importance: Each derived stream produced by a potential System S job has an
importance which is the product of the weight and the value function. Importance
is therefore a function of the rate or quality of the stream, which in turn depends
on the resources allocated to all the upstream PEs – in other words, those PEs
which helped to produce the stream. The summation of this importance over all
derived streams is the overall importance being produced by System S , and this
is what SODA attempts to maximize. (Again, a large majority of streams will
typically not contribute to this importance metric.) Consider Figure 5. There are
8 jobs. For the last job the figure displays two alternative templates. Several jobs
are connected to others. Initially there are positive weights at all the terminal,
“starred” streams. All of the PEs will be given resources (assuming their job is
admitted). But suppose that the second weight for job 7 is changed to 0. It follows
that the 2 PEs immediately upstream of that weight will not do work which
contributes to overall importance. SODA will therefore not allocate resources to
them. Other PEs, further upstream, do useful work in support of streams with
positive weights. They may get fewer resources than they would have before the
change. Weights are thus an easy “knob” to turn on and off portions of a job
and, more generally, a way to adjust relative importance.
Stream weights are supplied by a System S infrastructure component known as
the Weight Manager (WM). We will give a brief overview of the WM later on in
this paper.

—Resource function: If importance is the metric to be maximized, the natural
question is how to compute it. The first part of the answer is as follows: Each
derived stream s in System S (and by approximate terminology the PE that
produces that stream) has an resource function (RF) associated with it. The RF
is multidimensional. If there are n input streams to the producer PE, then the RF
has n+1 input parameters. There is one parameter for each of the input streams,
each with the same domain as the value function. These measure the goodness of
the respective input streams. The final input dimension is the (computational)
resources which may be allocated to the PE, in millions of instructions per second
(mips). The output of this function is again in terms of the same domain, and
measures the goodness of stream s. See, for example, Figure 6. Assuming the



SODA · 9

Weights

1 2 3 4 5 6 7 8Jobs

Fig. 5. SODA Jobs and Weights

domain to be rate-based, the RF for stream s4 takes 4 parameters as input.
The first three are the rates of streams s1 through s3, and the fourth is the
mips allocated to PE 4. The output is the rate of stream s4. (Some details are
hinted at in the figure. Output ports filter the streams, and the output from
PEs 1 and 2 are aggregated into the first input port, effectively decreasing the
dimensionality of this RF by one.) The RF needs to be “learned” over time
by a SODA infrastructure component known as the Resource Function Learner
(RFL). We will give a brief overview of the RFL in Section 6.1. The second part
of computing importance involves iteratively traversing the data flow graphs from
“left” to “right”, ending in a final value function calculation. Consider Figure 7.
By topologically sorting [Cormen et al. 1985] a directed acyclic graph, we can
apply ready list scheduling [Blazewicz et al. 1993; Coffman 1976] to compute the
importance for stream s5. In the figure three RF s are initially ready because
they are fed by primal streams. So we obtain the rates at streams s1 through s3.
Then additional RF s become ready (because their inputs have been computed),
and we obtain the rate at streams s4 and s5 in succession. Finally we apply the
weighted value function at s5 to obtain importance. (SODA can also handle data
flow graphs with cycles, but we omit details.)

—Rank: Each job in System S has a rank, a positive integer which is used to
determine whether the job should be run at all. The importance, on the other
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hand, determines the amount of resources to be allocated to each job that will
be run. A lower job rank is better than a higher one. (There are two seemingly
irreconcilable camps on the issue of whether rank should improve with value or
the reverse. Our motivation in using the convention we chose is twofold: First, it
is common to say that something is “priority one”, meaning it is most important.
Second, and certainly less arguably, one is the smallest positive integer, and thus
we definitively will know that a job with rank one is most essential. On the
other hand, it is certainly true that adopting this definition causes rank to be
inversely related to the assigned rank number. We apologize to members of the
other camp.)
Job ranks are supplied by a System S infrastructure component known as the
Rank Manager (RM). We will give a brief overview of the RM later on in this
paper.
We now describe the possible subsets of jobs that can be admitted into System
S . The key is that there will be a specific job rank for which the following holds:
All jobs with lower ranks will be admitted, and all jobs with higher ranks will
not be admitted. Jobs with that rank may or may not be admitted, depending
on the available resources and the importance associated with the (streams of
the) jobs themselves. We call this property rank-legality. (This is actually a
very slight simplification, since one needs to account for inter-job dependencies.



SODA · 11

REJECTED

ADMITTED

ADMITTED OR REJECTED

BASED ON CONTRIBUTION

TO IMPORTANCE

6

5

4

3

2

1

R
e
v
is

e
d

 R
a
n

k
s

Fig. 8. Job Admission as a Function of Rank: Medium Load

6

5

4

3

2

1

R
e
v
is

e
d

 R
a
n

k
s

ADMITTED

REJECTED

ADMITTED OR REJECTED

BASED ON CONTRIBUTION

TO IMPORTANCE

Fig. 9. Job Admission as a Function of Rank: Heavy Load

We will address this issue more formally in the next section.) Figures 8 and 9
show job admission in a heavy and medium load conditions (relative to available
system capacity). As the load goes up the waterline (that is, the cardinality of
the highest admitted job rank) goes down. In a light load condition perhaps all
jobs would be admitted. Each of these alternatives is rank-legal.

4. MATHEMATICAL COMPONENT OVERVIEW

In this section we describe the four major mathematical components of SODA. We
describe the solution approaches and motivate them from a practical standpoint,
emphasizing how the solutions are dictated and/or guided by the SODA design
philosophy. The two temporally hierarchical levels and their goals are:
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—The macro model, which chooses the jobs that will be admitted, the templates
for those jobs, and the candidate nodes to which the PEs in those jobs and
templates can be assigned. The choices made in the macro model are respected
by the micro model during the micro epochs of the next macro epoch, and this
makes the decisions of the micro model easier and more effective.

—The micro model, which chooses the fractional allocations of the PEs in the jobs
and templates that have been chosen by the macro model. Fractional allocations
of PEs are 0 for a particular PN unless that PN has been chosen as a candidate
node by the macro model. The micro model handles dynamic variability in the
relative importance of work (via revised weights), and changes in the state of the
system (via PNs and PEs that go up or down), without having to consider the
difficult constraints handled in the macro model.

This decomposition is not perfect. Periodically there could be solutions from the
macro model which are inconsistent with the constraints of the micro model. A
“micro to macro” feedback loop would seem to be useful, but we have not seen
examples where it is needed in practice.

Now we describe the individual decoupled quantity and where components for
both the macro and micro models:

—macroQ, the macro quantity model, maximizes projected importance by deciding
which jobs to do, which templates to choose, and by computing flow balanced PE
processing allocation goals, in mips, subject to job rank legality, required jobs,
minimum and maximum mips constraints.

—macroW, the macro where model, minimizes projected network traffic and makes
the task of load balancing the PNs easier by allocating uniformly more candi-
date nodes than PEs goals dictate, all subject to resource matching; security;
licensing; fairness; incremental movement; PE colocation, exlocation and isola-
tion; minimum and maximum numbers of candidate nodes per PE; and maximum
numbers of PEs per PN. It actually optimizes a weighted average of four separate
metrics, two of which are averages of the utilization of the PNs and the traffic
in the network links. The other two are maximum values of these same metrics.
The overallocation allows more flexibility in handling micro epoch dynamics.

—microQ, the micro quantity model, revises the maximimum projected importance,
computing more accurate mips allocation goals for the PEs than those of macroQ
by explicitly taking the candidate nodes into account. (Recall that macroQ does
not know this information.) It also deals with revisions due to changes in PN
states, PE states and the like. Thus, to some extent microQ acts as a “where to
quantity” feedback loop.

—microW, the micro where model, attempts to implement all these optimization
decisions: Its output is a set of fractional assignments of the PEs to the PNs
such that for each PE the sum of the allocated mips across all candidate nodes
is as close to the allocation goal from microQ as possible. There are constraints
on incremental movement, acceptable fractional allocations, fixed PE to PN as-
signments and PN utilization.
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5. MATHEMATICAL COMPONENT DETAILS

5.1 macroQ

The macro quantity model, macroQ, finds a set of jobs to admit during the next
macro epoch. For each job it chooses a template from among the options given to
it. Each template represents an alternative plan for performing the job. The jobs
have ranks, and the jobs that are chosen by macroQ must respect a rank-legality
constraint. Required jobs must be admitted. (Without loss of generality we can
assume required jobs have rank 1.) Minimum and maximum PE mips constraints
must also be respected. The goal of the macroQ model is to maximize the projected
importance of the streams produced by the admitted jobs and templates. In the
process of solving the problem macroQ computes the optimal importance, the list
of job and template choices, and finally the set of processing power goals (measured
in mips) for each of the PEs within the chosen list. We formalize this below.

1: Set OPT = 0
2: Set OK = false
3: while OK=false do
4: Pick resolution granularity Ḡ
5: for r = R to 1 by -1 do
6: Create list of Lr rank-legal job/templates with waterline r
7: for l = 1 to l = Lr do
8: Compute CJ ,T,l weak components
9: for c = 0 to c = CJ ,T,l − 1 do

10: NSDP scheme to solve component c RAP with granularity Ḡ
11: end for
12: Compute number of components with concave importance functions
13: if all are concave then
14: Galil-Megiddo scheme to solve inter-component RAP with granularity Ḡ
15: else if none are concave then
16: DP scheme to solve inter-component RAP with granularity Ḡ
17: else
18: Fox/DP scheme to solve inter-component RAP with granularity Ḡ
19: end if
20: if I > OPT then
21: OPT=I
22: end if
23: end for
24: end for
25: Evaluate OK
26: end while
27: Output OPT

Fig. 10. macroQ Pseudocode

The problem formulation and the algorithm in macroQ are fairly elaborate. For
the reader’s convenience, Table I provides a summary of notation used, in order of
appearance. And Figure 10 provides an outline of the macroQ pseudo-code. Note
that there are basically three nested loops.

—The outer loop, from line 3 to line 26, considers different levels of resolution
granularity for the resource allocation problems that will be solved. A coarse level
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Variable Definition
J Number of jobs offered
Πj Original rank of job j
Nj Number of templates for job j
J Job list
T Template list
TJ Set of all template lists for job list J
L Job/template list
DJ ,T Directed acyclic graph associated with job/template pair (J , T )
PJ ,T Set of nodes (PEs) in DJ ,T

dJ ,T Asymmetric distance function
DJ ,T,p Set of PEs which depend on PE p

D̃J ,T,j Set of jobs which depend on job j
ΠJ ,T,j Revised rank for job j

L̃ Rank-legal job/template list
gp mips allotted to PE p
Vs Composite value function for stream s
ws Weight for stream s
Is Importance function for stream s
H Total mips in system
mp Minimum mips for PE p if admitted
Mp Maximum mips for PE p if admitted
J̃ Jobs that must be admitted
Ḡ Number of resource units in discrete RAP
m̄p Minimum resource units for PE p if admitted
M̄p Maximum resource units for PE p if admitted
CJ ,T,l Number of weak components for lth job/template list (J , T )
Pc Set of PEs in weak component c
Ic Importance function for weak component c
m̆c Minimum resource units for weak component c

M̆c Maximum resource units for weak component c
Rmax Worst revised rank
Lr Number of job/template alternatives examined of revised rank r

Table I. Key macroQ Notation

of granularity provides a quick solution, while a fine level provides an accurate
solution. Because SODA is a real-time scheduler, macroQ must have a solution
by the time the macro epoch completes. The quick, coarse solution serves this
purpose.

—The middle loop, from line 5 to line 24, decrements the possible revised rank
waterlines, considering fewer and fewer jobs as it goes.

—The inner loop, from line 7 to line 23, is a divide and conquer approach based on
the number of so-called weak components of the relevant data flow graphs. The
overall resource allocation problem to be solved can be handled by solving an
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elaborate problem on each weak component, and then combining the solutions
via a simpler problem across all components. We will describe these in more
detail later in this section.

Ultimately we output the best solution discovered, on line 27.

5.1.1 Notation. Let J denote the number of offered jobs, indexed by j. Each
job j has a postive integer rank Πj . As noted previously, we adopt the convention
that lower numbers indicate higher ranks. So the best possible rank is 1. Each job
j comes with a small number of possible job templates. This number may be 1.
It will be 1 if the job has already been instantiated, because we assume that the
choice of a template is fixed throughout the “lifetime” of a job. It is, however, the
role of the macroQ model to make this choice for jobs that are newly admitted. Let
Nj denote the number of templates for job j, indexed by t.

Any subset J ∈ 2J will be called a job list. For each job list J a function
T : J → {1, ..., Nj} will be called a template list. Denote the set of all template
lists for J by TJ . Finally, define the job/template list to be the set L = {(J , T )|J ∈
2J , T ∈ TJ }. A major function of macroQ is to make a “legal and optimal” choice
of a job/template list.

We will make the assumption, for ease of exposition, that no cycles exist in the
directed flow graphs for a job and template choice. SODA can actually handle
intra- and inter-job cycles, but the details are somewhat complex.

So each job/template list (J , T ) gives rise to a directed acyclic graph DJ ,T whose
nodes PJ ,T are the PEs in the template and whose directed arcs are the streams.
(This digraph is “glued” together from the templates of the various jobs in the list,
and we omit the exact details. These PE nodes may come from multiple jobs.)
Assigning length one to each of the directed arcs, there is an obvious notion of
an asymmetric distance function dJ ,T between pairs of relevant PEs. Note that
dJ ,T (p, q) < ∞ means that PE p precedes PE q, or, equivalently, that q depends
on p. Let DJ ,T,p denote the set of PEs q ∈ DJ ,T for which q depends on p. This
notion of dependence gives rise, in turn, to the notion of dependence between the
relevant jobs: Given jobs j, j′ ∈ J , we will say that j′ depends on j provided there
exist PEs q and p, belonging to j′ and j, respectively, for which dJ ,T (p, q) < ∞.
Let D̃J ,T,j denote the set of jobs j′ ∈ J for which j′ depends on j.

We now define a revised job rank notion based on a particular job/template list
(J , T ) by setting

ΠJ ,T,j =
{

minj′∈D̃J ,T,j
Πj′ if j ∈ J

Πj otherwise.

This is well-defined. Now we can define the notion of a rank-legal job/template
list (J , T ). For such a list we insist that j ∈ J and j′ /∈ J implies that ΠJ ,T,j ≤
ΠJ ,T,j′ . (This is equivalent to the statement that there is a value for which all jobs
with lower revised ranks will be admitted and all jobs with higher revised ranks
will not be admitted.) Let L̃ denote the set of rank-legal job/template lists.

Define the decision variable gp to be the resource allocation, in mips, given to
PE p. As noted, any derived stream s associated with job/template list (J , T ) has
a value function. The stream, in turn, is created by a unique PE p associated with
(J , T ). The PE p gives rise to a set {q1, ..., qkp} of kp PEs qi for which p ∈ DJ ,T,qi .
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This set includes p itself. We have also introduced the notions of learned RFs
which can be iteratively composed to create a function from the processing power
tuple (gq1 , ..., gqkp

) to the domain of the value function. And so the composition of
these recursively unfolded functions with the value function yields a mapping Vs

from the tuple (gq1 , ..., gqkp
) to the non-negative real numbers for stream s. This

function is called the composite value function for s. Multiplied by a weight ws for
stream s it becomes a stream importance function Is mapping (gq1 , ..., gqkp

) to the
non-negative real numbers [0,∞). Finally, aggregating all the stream importance
functions together for all streams which are created by a given PE p yields a PE
importance function Ip.

Let H denote the total amount of System S processing power, in mips. Let mp

denote the minimum amount of processing power which can be given to PE p if it
is admitted, and Mp denote the maximum amount of processing power which can
be given to PE p if it is admitted. Suppose that the set J̃ represents the jobs that
must be admitted.

5.1.2 Mathematical Formulation. We seek to maximize the overall importance,
which is the sum of the PE importance functions across all possible rank-legal
job/template lists. The objective is therefore to find

max
(J ,T )∈L̃

∑
p∈PJ ,T

Ip(gq1 , ..., gqkp
)

subject to the following constraints:∑
p∈PJ ,T

gp ≤ G, (1)

mp ≤ gp ≤ Mp ∀p ∈ PJ ,T , (2)

J̃ ⊆ J (3)

Constraint 1 is the resource allocation constraint. It ensures that all of the
resource is used if it is useful and possible to do so. Constraint 2 requires a PE p
to be within some minimum and maximum range if it is admitted. Constraint 3
insists that required jobs are admitted.

5.1.3 Solution Approach. We discretize the above continuous resource allocation
problem by dividing the total amount of resource H into H̄ equal size atomic units
of “resolution” H/H̄ mips each. Assume that this value Ḡ is given. For each PE
p let m̄p = bmpḠ/Gc and M̄p = dMpḠ/Ge represent the discrete analogues of the
minimum and maximum mips constraint terms. Also assume a fixed rank-legal
job/template list (J , T ) ∈ L̃ containing all the required jobs J . Partition the PEs
and streams into CJ ,T weak components and fix one such component c. Let Pc

denote the PEs in component c.
We consider, using the natural change in notation, the corresponding discrete

resource allocation problem of maximizing
∑

p∈Pc
Ip(ḡq1 , ..., ḡqkp

) subject to the
constraints

∑
p∈Pc

ḡp ≤ Ḡ and m̄p ≤ ḡp ≤ M̄p for all p ∈ Pc. This problem can be
solved by a scheme known as Non-Serial Dynamic Programming (NSDP) [Ibaraki
and Katoh 1988]. NSDP is a complex dynamic programming scheme designed
specifically to handle difficult (non-separable) resource allocation problems. (See
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line 10 of Figure 10.) As part of the solution methodology we obtain the optimal
values Ic(ḡc) for every ḡc between 1 and Ḡ, as well as the PE mips allocations that
constitute this optimal solution. We can thus regard Ic as a component importance
function of the resources ḡc allotted to component c. Set m̆c =

∑
p∈Pc

m̄p and
M̆c =

∑
p∈Pc

M̄p.
Note that the objective function can be regarded as a “black box”, calculated by

iterative RF compositions followed by a weighted value function calculation. To
make this as efficient as possible the macroQ code has itself been carefully opti-
mized. Careful analyses are performed to determine which sub-graph calculations
are strictly necessary and which are redundant. A cache of previous results is also
employed. Also, macroQ code is aware of time and is given a deadline by SODA. So
it occasionally takes “shortcuts”, using a partially greedy scheme instead of a full
NSDP algorithm. This fits the design philosophy: SODA is a real-time scheduler.

Having performed this NSDP on each component we now consider the problem
of optimizing over all components. The good news here is that the problem is a
separable resource allocation problem: We wish to maximize

∑
c Ic(ḡc) such that∑

c ḡc ≤ Ḡ and m̆c ≤ ḡc ≤ M̆c for all c. Separability here means that each summand
is a function of a single decision variable, and such resource allocation problems are
inherently easier to solve. In fact, if the component importance functions happen
to be concave the problem can be solved by one of three algorithms: These are the
schemes by Fox, Galil and Megiddo, and Frederickson and Johnson, which can be
regarded as fast, faster and (theoretically) fastest, respectively. If the component
importance functions, on the other hand, are not concave, the problem may still be
solved by dynamic programming (DP). See [Ibaraki and Katoh 1988] for details on
all of these algorithms. Also see lines 14, 16 and 18 of Figure 10.

As one would expect from a “law of diminishing returns” argument, it is a com-
mon condition that our component importance functions is concave, or nearly so.
So we test each component for concavity and adopt one of three approaches, de-
pending on the results.

—If all component importance functions are concave we solve the resource alloca-
tion problem by the Galil and Megiddo algorithm. This algorithm is quite fast
in practice and much easier to code than the Fredrickson and Johnson scheme.

—If all the component importance functions are not concave we solve the resource
allocation problem by dynamic programming.

—In other cases we solve the concave portion of the problem by the Fox algorithm
(because it provides the needed intermediate values) and then solve the remainder
of the problem by dynamic programming.

At the end of this step we have computed the optimal mips allocations for each
PE. But this can be regarded as just the inner loop of a three step nested process. In
the central loop we evaluate all rank-legal templates. In the outer loop we evaluate
successively finer resolution granularities. Again, see Figure 10.

The evaluation of all rank-legal templates is obviously exponential [Cormen et al.
1985] in nature, though the problem is generally not large: SODA only evaluates
alternative for new jobs. Once a template decision has been reached it lasts for the
remaining epochs of the job. And most jobs, in fact, only have a single template.
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The rank-legality constraints adds another exponential term, but this process can
also be streamlined if time is an issue. The code loops through each revised rank
value, working from the worst revised rank Rmax to the best revised rank 1: For
any given revised rank value it assumes all poorer revised rank jobs will not be
admitted, all better revised rank jobs will be admitted, and has to decide which
jobs of that revised rank will be admitted. For all but the poorest revised rank
these jobs were admitted in the previous calculation. The code computes their
importance divided by their resource allocations and orders the jobs accordingly. If
a full exponential evaluation will not complete in time the code admits jobs of that
revised rank based on this ordering. The case where there are a large number of jobs
of the highest revised rank is obviously less satisfactory. And this case includes the
case where all jobs have the same revised rank. The code performs a greedy scheme
if pressed for time, but the results may be less than optimal. The philosophy is that
an imperfect macroQ solution is better than no solution at all. In the pseudo-code
we let Lr the be the number of job/template alternatives examined of revised rank
r, whether linear or exponential.

The resolution granularity loop is simple in nature: macroQ starts with a coarse
resolution to obtain a quick solution. Then it uses the time already spent to estimate
the finest resolution it believes it can solve in the remaining time, subject to a
reasonable minimum mips value (100 mips is typically used). It reports the best
importance found, and this is typically based on the finer resolution.

5.2 macroW

The macro where model, macroW, employs two types of input from macroQ. First,
it uses the set of resource allocation goals for PEs in the chosen templates of ad-
mitted jobs. Second, it uses the estimates of stream traffic rates between relevant
pairs of those PEs. (As noted in Section 3, value functions are typically rate-based.
Even if they are not, macroQ automatically computes the rates between PEs in the
optimal solution by the same type of black box calculations described in Figure 7
and Section 5.1.3.) The goal of macroW is to find a “balanced” assignment of can-
didate PNs for these PEs. Additionally, the macroW assignments must respect a
large number of practical constraints. The constraint types include resource match-
ing; security; licensing; fairness; incremental movement; PE colocation, exlocation
and isolation; minimum and maximum numbers of candidate nodes per PE; and
maximum numbers of PEs per PN. Recall that the candidate node choices made in
macroW will be respected during multiple micro model epochs.

To balance between the PN and the bandwidth usage, the objective function
in macroW minimizes a weighted average of four separate metrics: These consist
of the average and maximum estimated utilizations of the PNs, and the average
and maximum projected utilizations of the various network links. (We point out
that we are using the word utilization somewhat loosely here. We may theoretically
overload both the PNs and the links, yielding projected utilizations in macroW that
are over 100%. The reason for this is that we wish to over-allocate each PE, at
least in theory, to have the flexibility of handling fluctuations in actual requirements.
The implicit underlying assumption is that while some PEs will wind up being hot,
others will simultaneously be cold. In macroW the goal is to build for the uniformly
hot case. But typically, a running PE will not use all the resources it is assigned.
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(The dynamic reallocation of actual resources to the PEs is precisely the job of the
micro model.)

We note that the macroW problem can be modeled as an integer linear program
(ILP) [Nemhauser and Wolsey 1988], and solved using state-of-the-art commercial
software such as CPLEX [ILOG ]. Howerver, the problem is of potentially enormous
size, and ILPs cannot be solved efficiently. (In fact, the macroW problem is inher-
ently quadratic in nature, because of the pair of PEs associated with each stream.
We are “forcing” a linear formulation.) We therefore solve macroW in three stages,
the first two of which, taken together, represent a divide and conquer hierarchical
approach. These stages solve the TopLevelMILP problem, multiple BottomLevelILP
problems, and the miniW problem, respectively. It is this decomposition, not the
problems themselves, that is the contribution in our macroW approach. For the
reader’s convenience, Table II provides a summary of notation used, except for the
decision variables, in order of appearance. There are a large number of decision
variables in the macroW formulation, so we separate these out in Table III, also in
order of appearance. Figure 11 provides stage level pseudo-code for macroW.

—At the top level (line 1) of the hierarchy we are primarily concerned with making
decisions for clusters of PNs. Assume as input a partition of the PNs into clus-
ters, within each of which the network connectivity is sufficiently high to ignore
link traffic entirely. (In System S these clusters will typically consist of PNs
which are connected by a high speed backbone. They might also correspond to a
single BladeCenter chassis [BladeCenters ].) The top level optimization problem
makes the decision of what (single) cluster will contain the candidate nodes for
a given PE. The assumption of a single cluster per PE restricts the optimality
of the overall solution, but it significantly reduces the size of the problem. The
expectation is that the overall solution will not be too compromised. (As we shall
see, this assumption is temporary in any case.) The PN (and hence the cluster)
utilizations are balanced in the objective function, as are the network link utiliza-
tions. But the higher level problem is treated as a continuous relaxation of the
“real” macroW problem. Some fractional rather than binary decision variables
are allowed, speeding up the solution at the expense of fully modeling the exact
original problem. A few constraints are also omitted in the top level problem,
because they don’t make sense in the context of fractional decision variables.
The top level problem is specifically modeled as a mixed-integer linear program
(MILP)[Nemhauser and Wolsey 1988], and solved via CPLEX.

—At the completion of TopLevelMILP we have partitioned the PEs into clusters.
Moreover, we infer from the solution information about how many resources (such
as licenses) are required by each cluster. This knowledge allows us to decompose
the orginal problem into far smaller independent problems, one per cluster. We
call these the Inner-LevelILPs. See lines 2 through 4 of Figure 11. We can
also ignore the two network terms in the objective function, since they are now
constants. Instead, we add the few additional constraints missing from the top
level problem. We solve the lower level problems exactly, as ILPs, using binary
decision variables. Again we employ CPLEX.

—At the completion of the BottomLevelILPs we should have a macroW solution.
However, several potential problems may occur. For example, one of the CPLEX
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problems could fail to solve within time allotted to it by SODA. Second, feasible
solutions may not actually be found, perhaps due to the hierarchical structure of
our solution approach. And, finally, further improvements may be possible to the
solution, because of the continuous relaxation assumption made, or because we
now remove the assumption that all candidate nodes for a given PE be contained
within a single cluster. The good news is that the structure of the macroW
problem naturally lends itself to a local search heuristic. So we employ such
a heuristic, miniW, that serves as a back-up to the first two CPLEX stages of
macroW, and also as a post-processing heuristic to any solution CPLEX does
provide. See line 5 of Figure 11.

Ultimately, we output the candidate node decisions on line 6.

1: Solve TopLevelMILP
2: for κ = 0 to C − 1 do
3: Solve BottomLevelILP(κ)
4: end for
5: Solve MiniW
6: Output candidate node decisions vp,n

Fig. 11. macroW Pseudocode

5.2.1 Notation. Let C denote the number of clusters, indexed by κ. The cluster
which contains PN n will be denoted by κn. Let Hn denote the processing power of
PN n, in mips. (If a PE p is assigned to a multi-core PN n and is single-threaded, it
will not be able to use all of the processing power. To handle this and more general
scenarios we define Hp,n to be the maximum mips PE p can use on PN n.) Also
let E denote the set of links (edges) in the network connecting the various clusters,
indexed by e. Let Ke denote the bandwidth capacity of link e. Assuming that the
network routing table forms a tree, the removal of any link partitions the clusters
into two sets ke,1 and ke,2. (One can decide arbitrarily which is partition 1 and
which is partition 2.)

We obtain from macroQ the mips goals gp for each PE p. Let S denote the set of
PE pairs (p1, p2) which are connected by a stream. As noted, we also obtain from
macroQ the traffic rate estimate tp1,p2 for each (p1, p2) ∈ S.

There will be a number of decision variables. We define the most important
ones next. The key variable is vp,n, which will be 1 if PN n is a candidate node
for PE p, and 0 otherwise. (In solving TopLevelMILP, however, we will relax this
to be a fractional rather than a binary variable.) All other decision variables will
be computable once the candidate node decision variables are known. Specifically,
we add an auxilliary binary decision variable wp,κ, which we will turn out to be
1 if cluster κ contains the candidate nodes for PE p, and otherwise. To handle
the traffic issues, we add a decision variable yp1,p2,e, which we will force to be 1
if (p1, p2) ∈ S and uses link e, and 0 otherwise. Two auxilliary binary decision
variables are needed for this purpose. The first, yp1,p2,e,1, will be 1 if either PE p1

or PE p2 (or both) lies in the first cluster set, ke,1, and 0 otherwise. The second,
yp1,p2,e,2, will serve the analogous purpose for the second cluster set ke,2. A variety
of constraints will force the decision variable behavior we have described.
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Variable Definition
C Number of clusters
κn Cluster containing PN n
Hn mips of PN n
Hp,n Maximum usable mips for PE p on PN n
E Set of links between clusters in network
Ke Bandwidth capacity of link e
ke,1 Cluster set 1 formed by link e
ke,2 Cluster set 2 formed by link e
gp mips allotted to PE p
S Set of PE pairs connected by streams
tp1,p2 Traffic rate on stream between p1 and p2

N Number of PNs
E Number of links
Ap,n 1 if PN n is resource matched to PE p, 0 otherwise
L Set of (floating) licenses
λl Number of available tokens for license l
πl Set of PEs that require license l
ip Integrity level of PE p
∆n Relative integrity range for PN n
imin Minimum integrity level over all PEs
imax Maximum integrity level over all PEs
rp,n Risk of using PN n as a candidate node for PE p
R Global risk limit
cp Color of PE p
Xn Incompatible color pairs for PN n
φp Minimum aggregate multiple of gp allocated to PE p
v̂p,n Candidate node assignment for PE p and PN n in previous macro epoch
∆̄ Maximum cumulative candidate node change from previous macro epoch
∆̄p Maximum cumulative candidate node change for PE p from previous macro epoch
Vn Maximum number of PEs allowed on PN n
m̃p Minimum number of candidate nodes for PE p

M̃p Maximum number of candidate nodes for PE p
C̄ Set of pairs of colocated PEs
Ē Set of pairs of exlocated PEs
W1 Average PN utilization weight
W2 Maximum PN utilization weight
W3 Average link utilization weight
W4 Maximum link utilization weight

Table II. Key macroW Notation

To handle the objective function, we will define two auxilliary real-valued vari-
ables. αn will represent the utilization of PN n, and βe will represent the utilization
of link e. As previously noted, these two variables may exceed 1. (We note that
these two decision variables are for notational convenience. They are not crucial
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Variable Type Purpose
vp,n Binary 1 if PN n is a candidate node for PE p, 0 otherwise
wp,κ Binary 1 if cluster κ contains the candidate nodes for PE p, 0 otherwise
yp1,p2,e Binary 1 if PEs p1 or p2 uses edge e, 0 otherwise
yp1,p2,e,1 Binary 1 if PEs p1 or p2 lies in cluster set ke,1, 0 otherwise
yp1,p2,e,2 Binary 1 if PEs p1 or p2 lies in cluster set ke,2, 0 otherwise
αn Real Utilization of PN n
βe Real Utilization of link e
un Integer Maximum integrity level of all PEs p which have PN n as candidate node
xc,n Binary 1 if there exists a PE p with vp,n = 1 and color c = cp, 0 otherwise
∆p,n Binary 1 if assignment for PE p and PN n differs from previous macro epoch, 0 otherwise

Table III. macroW Decision Variables

to the problem itself. Without them the problem can be regarded as having only
integer decision variables.)

Let N denote the number of PNs and E denote the number of network links.
Now we will discuss notation for the various practical constraints. These are

either user-defined input or automatically calculated.

(1) Resource matching: For each PE, macroW is given a list of potential candidate
nodes. These are the PNs where this PE will be allowed to run. The set may
contain all PNs. But there are many possible reasons to restrict the set of
candidate nodes for a particular PE. Hardware requirements are one example,
and we shall give others shortly. Define Ap,n to be 1 if PN n is resource matched
to PE p, and 0 otherwise.

(2) Licensing: Some PEs use software for which licenses are required. The most
common type is the floating, or standard license. Let L denote the set of
floating licenses, indexed by l. For each l ∈ L let λl denote the number of
tokens available, and let πl denote the set of PEs which require this license.
macroW can also handle node-locked licenses, directly via resource matching
constraints.

(3) Security: macroW supports four types of security constraints. Each PE p is
assigned an integral integrity level ip. The first type of security constraint limits
the relative integrity levels on a given PN n. Let ∆n denote the maximum
allowable difference in integrity level between any two PEs which use PN n as
a candidate node. Define imin = minp ip and imax = maxp ip. We will add
an integral decision variable un between imin and imax, which will serve as
the maximum integrity value of any PE p assigned to PN n. The second type
of security constraint limits the absolute integrity on a given PN n between a
predetermined minimum and maximum. However, this can again be handled
via resource matching constraints. The third type of security constraint limits
global risk. Each PE p is assigned a risk level rp,n if PN n is a candidate node.
The constraint limits the global risk across all PNs and PEs to some fixed
maximum R. The last type is the so-called Chinese Wall security constraint.
We can best describe this in terms of colors. Assume that each PE p has a
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color cp. For each PN n there is a set Xn of incompatible color pairs. In other
words, if (cp1 , cp2) ∈ Xn, then PEs p1 and p2 cannot both be assigned to PN
n. To model this we add an additional decision variable xc,n which will be 1 if
there exists a PE with color c and PN n as a candidate node, and 0 otherwise.

(4) Fairness: To ensure that each PE p get a fair allocation of candidate PNs we
let φp denote the minimum aggregate multiple of the goal gp allocated to PE p
among all assigned PNs.

(5) Incremental changes: Several constraints ensure that the candidate node as-
signments do not change too significantly from one macro epoch to another.
To model these, let v̂p,n denote the candidate node assignment for PE p and
PN n in the previous macro epoch. We will form an auxilliary decision vari-
able ∆p,n, which will be 1 if assignment for PE p and PN n has changed from
previous macro epoch, and 0 otherwise. And we will constrain the incremental
changes on a global and a per PE level. Let ∆̄ denote the maximum allowable
cumulative candidate node change from the previous macro epoch, and ∆̄p de-
note the maximum allowable candidate node change for PE p from the previous
macro epoch. Of course, these maxima may be infinite, resulting in no incre-
mental change limits. Or they may be 0, fixing the corresponding candidate
node assignments.

(6) Cardinality constraints: There are three separate cardinality constraints. Let
Vn denote the maximum number of PEs allowed on PN n. Let m̃p denote the
minimum number of candidate nodes for PE p, and M̃p denote the maximum.

(7) Colocation: macroW can force two PEs p1 and p2 to have the same candidate
nodes. Let C̄ denote the set of pairs of colocated PEs.

(8) Exlocation: Similarly, macroW can force two PEs to never have the same can-
didate nodes. Let Ē denote the set of pairs of exlocated PEs. One can also
force a PE isolation constraint using exlocation. In other words, PE p can be
isolated on its own candidate nodes by adding (p, p′) to Ē for all p′ 6= p. (One
could also enforce isolation using a weighted version of one of the cardinality
constraints, but we omit details.)

5.2.2 Mathematical Formulation. Although we will solve variants of the macroW
problem in the three stages below we describe here the “actual” problem. (In fact,
only miniW attempts to solve the exact problem formulated here.)

We seek to minimize the weighted sum of four terms involving the average and
maximum utilizations of the PNs and links. Let W1 through W4 denote these
weights. The objective is therefore to find

min

[
W1

N

(∑
n

αn

)
+ W2(max

n
αn) +

W3

E

(∑
e

βe

)
+ W4(max

e
βe)

]
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subject to the following constraints:

αn =
∑

p

Hp,nvp,n/Hn ∀n (4)

βe =
∑
p1

∑
p2

tp1,p2yp1,p2,e/Ke ∀e (5)

vp,n ≤ wp,κn ∀p, n (6)
wp1,κ ≤ yp1,p2,e,1 ∀(p1, p2) ∈ S, e ∈ E , κ ∈ ke,1 (7)
wp2,κ ≤ yp1,p2,e,1 ∀(p1, p2) ∈ S, e ∈ E , κ ∈ ke,1 (8)
wp1,κ ≤ yp1,p2,e,2 ∀(p1, p2) ∈ S, e ∈ E , κ ∈ ke,2 (9)
wp2,κ ≤ yp1,p2,e,2 ∀(p1, p2) ∈ S, e ∈ E , κ ∈ ke,2 (10)

yp1,p2,e ≥ yp1,p2,e,1 + yp1,p2,e,2 − 1 ∀(p1, p2) ∈ S, e ∈ E (11)
vp,n ≤ Ap,n ∀p, n (12)∑

p∈πl

∑
n

vp,n ≤ λl ∀l ∈ L (13)

ipvp,n ≥ un −∆n − (imax −∆n)(1− vp,n) ∀p, n (14)
(1− vp,n)(imin − ip) ≤ un − ip ∀p, n (15)∑

p

∑
n

rp,nvp,n ≤ R (16)

vp,n ≤ xcp,n ∀p, n (17)
xc1,n + xc2,n ≤ 1 ∀(c1, c2) ∈ Xn (18)∑

n

Hp,nvp,n ≥ φpgp ∀p (19)

∆p,n ≤ vp,n − v̂p,n ∀p, n (20)
∆p,n ≤ v̂p,n − vp,n ∀p, n (21)∑

p

∑
n

∆p,n ≤ ∆̄ (22)

∑
n

∆p,n ≤ ∆̄p ∀p (23)∑
p

vp,n ≤ Vn ∀n (24)

m̃p ≤
∑

n

vp,n ∀p (25)∑
n

vp,n ≤ M̃p ∀p (26)

vp1,n = vp2,n ∀(p1, p2) ∈ C̄, n (27)
vp1,n 6= vp2,n ∀(p1, p2) ∈ Ē, n (28)

The first set of constraints are structural in nature. They ensure the right be-
havior of the various decision variables. Constraint 4 is the definition of αn, the
utilization of PN n. Similarly, Constraint 5 is the definition of βe, the utilization of
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link e. Constraint 6 forces consistency: The cluster decision variable wp,κn
to be 1

whenever the PN decision variable vp,n is. Similarly, Constraints 7 through 10 force
consistency for the first and second cluster set decision variables. Taken together,
Constraint 11 then implies consistency for the link decision variable yp1,p2,e.

Next there are user constraints. Constraint 12 enforces resource matching. Like-
wise, Constraint 13 handles licensing. Constraints 14 and 15 enforce relative secu-
rity. The trick employed is somewhat subtle, but the basic idea is that ip is forced
to lie between un −∆n and un whenever PN n is a candidate node for PE p. The
decision variable un is itself forced to lie between imin and imax, and will take the
maximum integrity level as its value if forced to do so for feasibility. (This will
happen when the constraint is actually tight.) Constraint 16 bounds the global se-
curity risk. Chinese Wall security is handled by Constraints 17 and 18. The former
forces the Chinese Wall decision variable xcp,n to be 1 whenever PN n is a candidate
node for PE p. The latter then ensures that PEs with incompatible color pairs are
never assigned to the same candidate PN. Constraint 19 ensures fairness among
the various PEs. (In fact, given the objective function, this is the single constraint
forcing macroW to allocate sufficient resources to the various PEs.) Constraints 20
and 21, taken together, insist that ∆p,n is 1 precisely when the candidate node
assignment for PE p and PN n have changed from the previous macro epoch. Next
Constraint 22 limits the global incremental changes, while Constraint 23 limits
the incremental changes for each PE. Constraint 24 limits the cardinality of PEs
assigned to each PN. Constraints 25 and 26 ensure that the cardinality of the candi-
date nodes for a particular PE falls between the minimum and maximum. Finally,
Constraints 27 and 28 enforce PE colocation and exlocation, respectively.

There are the normal constraints on the decison variables themselves. For exam-
ple, integral and continuous variables must be at least 0. We do not write these
here, since they are implicit from Table III.

The second and fourth terms in the macroW objective function may not look
linear at first glance, but the introduction of two auxilliary variables will transform
the problem into standard linear form. (This is a standard trick.)

5.2.3 Solution Approach. First, some generic comments about reducing the
problem size for each stage are in order. Although the formulation implies oth-
erwise, we point out that constraints such as resource matching need not be mod-
eled explicitly. We can simply define the variable vp,n only if Ap,n = 1. Note also
that the PE pairs (p1, p2) ∈ E are likely to be relatively sparse, much smaller in
cardinality than the square of the number of PEs. No PE pairs not in E need be
considered. The colocation constraint can be modeled via creation of coalesced
“super-PEs” with appropriately recomputed constraints, and thus not considered
separately. And, of course, any constraints that are not actually enforced do not
need to be added to the problem given to CPLEX. Recall Figure 11.

5.2.3.1 TopLevelMILP. : At the top level in macroW, we decide the (currently
single) cluster to which each PE will be assigned. But we do this “approximately”
in several ways. First, we solve an MILP in which we allow each variable vp,n

to be continuous rather than binary. We do insist that the variable is fractional:
This means we force 0 ≤ vp,n ≤ 1. This relaxation makes the problem substan-



26 · Joel Wolf et al.

tially quicker to solve. On the negative side, the single cluster assumption adds an
additional constraint, specifically

∑
κ

wp,κ = 1 ∀p (29)

On the positive side, the assumption allows us to reduce the cardinality of the
constraint set, replacing Constraints 7 through 10 with

∑
κ∈ke,1

wp1,κ ≤ yp1,p2,e,1 ∀(p1, p2) ∈ S, e ∈ E (30)

∑
κ∈ke,2

wp2,κ ≤ yp1,p2,e,1 ∀(p1, p2) ∈ S, e ∈ E (31)

∑
κ∈ke,1

wp1,κ ≤ yp1,p2,e,2 ∀(p1, p2) ∈ S, e ∈ E (32)

∑
κ∈ke,2

wp2,κ ≤ yp1,p2,e,2 ∀(p1, p2) ∈ S, e ∈ E (33)

Finally, we omit constraints that do not make sense in the presence of fractional
variables vp,n. These include relative security, Chinese Wall security, incremental
change, the maximum PEs per PN, and exlocation constraints. So we remove
Constraints 14, 15, 17, 18, 20 through 24 and 28. We enforce them instead in the
subsequent stages of macroW. The problem is solved by CPLEX.

5.2.3.2 BottomLevelILPs. : After the TopLevelMILP stage we know the cluster
to which each PE is assigned. Moreover, this phase also provides information about
how many resources (such as licenses) are required by each cluster. This allows
to decompose the problem and solve it for each cluster independently. At the
BottomLevelILP stage we solve the problem exactly using integer variables for the
decision variables vp,n, since each problem is now much smaller than the top-level
one.

There are other clear differences between each bottom-level problem and the
top-level problem. The cluster variables wp,κ are irrelevant, because we are only
considering PEs that are assigned to the cluster under consideration. Only the
first two summands now appear in the objective function, since inter-cluster traffic
(and the variables βe) are no longer relevant. We also naturally and dynamically
apportion certain global terms in the top-level problem to bottom-level quotas
as we work through the various cluster problems. Among these are the risk, li-
cense and reassignment quotas. For example, consider the value

∑
p

∑
n rp,nvp,n in

Constraint 16 of the TopLevelMILP solution. We partition this value into quotas∑
p

∑
n rp,nvp,nwp,κ for each cluster κ. Even though the values vp,n are fractional,

this term still makes sense. Next we apportion the slack R−
∑

p

∑
n rp,nvp,n evenly

among the clusters. Finally, as we loop through the various clusters, we continue to
evenly apportion the per cluster slack among the subsequent clusters. As noted, the
BottomLevelILP does consider relative security, Chinese Wall security, incremental
change, the maximum PEs per PN, and exlocation constraints. The problem is
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again solved by CPLEX.

5.2.3.3 miniW. : As we have noted, the nature of the macroW problem lends
itself to a local search heuristic [Papadimitriou and Steiglitz 1982]. Such heuristics
are natural and easy to implement. On the other hand, they do not generally solve
to optimality.

The miniW local search heuristic is useful for several reasons. First, CPLEX may
fail in one of the first two stages of macroW. Even if CPLEX does not fail per se, one
of the problems may not converge to a solution by its internal macroW deadline.
Second, the hierarchically decoupled nature of the first two stages may prevent the
finding of an existing feasible solution. Third, we have cut some corners in the
first two stages, so the quality of the solution found may be compromised. The
continuous relaxation in TopLevelMILP is one example. (The macroW problem is
inherently quadratic in nature, and this may result in weak LP relaxations.) The
simplifying assumption that all candidate nodes lie in a single cluster is another. A
good heuristic solution to an accurate version of the problem may actually perform
as well or better than an exact solution to an approximate version of the problem.
Fourth, and finally, even if all goes well in the first two stages of macroW, there
may still be time left in the macroW epoch, and using this time to improve the
quality of the solution is an obviously good idea. In fact, this is by far the most
common macroW scenario.

We will briefly outline the miniW local search heuristic here. Note that we
will discuss only the candidate node choices, that is, the values of the decision
variables vp,n. (The values of all other decision variables will then automatically
be determined.)

The initialization phase provides a first feasible solution. If the TopLevelMILP
and BottomLevelILP stages have completed successfully, there is nothing to be done
in this phase. If not, there are two cases: Either this is the first macro epoch, or
we are in some subsequent epoch.

—In the former case, we order the streams based on their traffic rates, and pro-
ceed greedily, finding candidate nodes for the source and destination PEs of this
stream. At any given stage we may find that one or both of these PEs has
been assigned candidate nodes. For those PEs that have not, miniW makes
the smallest number of candidate node assignments which meet the fairness and
minimum cardinality constraints (Constraints 19 and 25, respectively), satisfies
all other feasibility requirements, and minimizes the objective function. Ties are
adjudicated in favor of choices which retain the most slackness in the constraints.

—In the latter case, the solution from the previous epoch is adopted, at least for
the PEs that are not new this epoch. This obviously eliminates incremental
movement, at least for the moment. Because of changes to the input data it
is possible that this solution may not be fully feasible, but a greedy scheme is
employed modified as necessary eliminate these infeasibilities. The new PEs are
then assigned using an approach like that for macro epoch 1.

In the local improvement phase miniW attempts to iteratively improve the solu-
tion by a variety of techniques. It may move a single PE from one candidate node
to another, provided that move is feasible and the objective function decreases.
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Similarly, it may add or remove a candidate node for a PE, if that is feasible. In
the neighborhood search literature these are traditionally called 1-opt moves. If no
useful 1-opt moves exists the algorithm will consider the moving of both a candidate
node for a source PE and a candidate node for a destination PE associated with
some stream, again assuming feasibility and a decrease in the objective function.
These are called 2-opt moves. Note that candidate node swaps are included in this
category, as are the movement of both candidate nodes to a third PN. Such a move
can have the effect of trading a reduction in link utilization for an increase in PN
utilization. Each of these techniques can be helped by judicious orderings of the
PEs, streams and PNs. The idea is to calculate how important each is to the overall
solution, and sort by those metrics. For instance, PEs are ordered by decreasing
mips requirements. PNs are ordered by decreasing load. Streams are ordered by
decreasing traffic rates. In general this process can continue in a local search heuris-
tic through k-opt moves, for an arbitrary value k. However, the neighborhood sizes
typically increase exponentially with k. So miniW stops at k = 2.

Finally, there may be a perturbation phase. miniW is designed to run until it
reaches its deadline. But the local improvement phase may reach a local minimum,
and thus be unable to improve the solution. So if the local improvement phase
reaches a locally optimal solution before the deadline, miniW will perturb that
solution, insisting on feasibility but ignoring the fact that the solution does not
improve. This allows the heuristic to possibly escape a local minimum, and the
local improvement phase proceeds iteratively in this manner until the deadline is
reached. The best solution found at the macroW deadline becomes the macroW
output.

5.3 microQ

The role of microQ, the micro quantity model, is to adjust the mips goals of the
various PEs for use during the next micro epoch. Although macroQ also computes
mips goals, recall that it does so in advance of knowing the candidate nodes from
macroQ to which each PE can be assigned. So this alone may force a refinement to
the macroQ goals. Furthermore, microQ must adjust to dynamic changes occurring
at the micro epoch level.

microQ takes input from the macro level problem, including the importance
functions and goals from macroQ, and the candidate nodes from macroW. It also
knows the current set of active PNs and jobs. Recall that algorithmic speed is
critical for microQ, because it must be solved, along with microW, within a micro
epoch. In particular, a computational complexity comparable to that of the macroQ
scheme is not likely to be acceptable for microQ. We handle this by employing
two approximations derived from macroQ output. The first is a piecewise linear
approximation for each weak component of importance as a function of allotted
resources. The second is a linear approximation, within each weak component and
each piecewise linear segment, of the fraction of the resources allotted to each PE
in the component. Together, these approximations allow us to solve the microQ
problem iteratively to convergence, in each iteration solving computationally easy
linear programs (LPs).

Table IV provides a summary of notation used, in order of appearance. And
Figure 12 provides an outline of the microQ pseudo-code.
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Variable Definition
Hn mips of PN n
vp,n 1 if PN n is a candidate node for PE p, 0 otherwise
Pc Set of PEs in weak component c
Ic Piecewise linear importance function for weak component c
ηc Number of piecewise linear segments in Ic

εr,c Right endpoint for rth segment of Ic

σr,c Slope of rth segment of Ic

Rc,p,r Linear pacing constraint function for PE p ∈ Pc

mp Minimum mips for PE p
Mp Maximum mips for PE p
gp mips allotted to PE p
Gc mips allotted to component c
fp,n Fraction of PN n used by PE p
yr,c 1 if Gc is in rth segment of Ic, 0 otherwise
ṽc,n 1 if there exists PE p ∈ Pc for which vp,n = 1, 0 otherwise
f̃c,n Fraction of PN n used by PEs from component c
rc Current piecewise linear segment for component c

Table IV. Key microQ Notation

1: Compute piecewise linear approximation to importance function
2: Compute pacing constraints
3: Solve preprocessor network flow problem, computing {rc}
4: Set OPT = 0
5: Set CONV ERGED = false
6: while CONV ERGED=false do
7: CONV ERGED=true
8: Solve iterative LP, computing I and {rc

′}
9: if I > OPT then

10: OPT = I
11: end if
12: for c = 0 to c = C do
13: if rc

′ < rc then
14: CONV ERGED=false
15: rc −−
16: else if rc

′ > rc then
17: CONV ERGED=false
18: rc++
19: end if
20: end for
21: end while
22: Output OPT

Fig. 12. microQ Pseudocode

5.3.1 Notation. We use the following input data. Recall that Hn denotes the
total processing power, in mips, of PN n. Let vp,n be 1 if PN n is a candidate node
for PE p, and 0 otherwise. This is output from macroW. Index the set of weak
components derived in macroQ by c, and let Pc denote the set of PEs in compo-
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nent c. As noted, microQ first fits, from the component importance function of
allotted resources computed in macroQ, a piecewise linear concave approximation.
By abuse of notation we will also call this new function Ic. (Standard approxi-
mation techniques are employed, and we will omit details. Recall that we expect
most importance functions to have an essentially concave structure, because of
a diminishing returns argument. So forcing concavity should not, in general, be
a major assumption.) Let ηc be the number of piecewise linear segments in Ic.
Let εr,c denote the right endpoint, in mips, for the rth piecewise linear segment
of Ic. Let σr,c denote the slope of this segment. Second, microQ computes so-
called pacing constraints, for each piecewise linear segment r, each component c,
and each PE p ∈ Pc. These pacing constraints specify the linear proportion of
the incremental mips to be allocated for PE p within segment r. (Again, standard
approximation techniques are used. If the number of piecewise linear segments ηc

is reasonably large, these linear approximations should be sufficiently accurate.)
Said differently, we assume each entry for PE p and piecewise linear segment r is
a linear function Rc,p,r(g), and that the entries in segment r satisfy the properties∑

p∈Pc
Rc,p,r(g) = g, Rc,p,r(εr,c) = Rc

p,r+1(εr,c) and Rc,p,r(g) ≥ 0 for any value of
g in the rth segment. As before, let mp and Mp denote the minimum and maximum
mips which can be given to PE p.

We employ the following four decision variables: Let gp denote the processing
power goal, in mips, for PE p. This is the prime output to be used by microW.
Similarly, let Gc denote the processing power goal, in mips, for component c. This
will be the sum of all the processing power goals of the PEs p in component c.
A third decision variable, fp,n, will denote the fraction of PN n used by PE p.
Finally, there will be an indicator decision variable yr,c ∈ {0, 1}, r = 1, . . . , ηc. This
auxilliary variable will be 1 if Gc is part of the rth piecewise linear segment of Ic,
and 0 otherwise.

5.3.2 Mathematical Formulation. The objective is to find

max
∑

c

Ic(gc)

subject to the following constraints:

∑
r

yr,c = 1 ∀ c (34)

εr−1,cyr,c ≤ gc ∀ c, 1 ≤ r ≤ ηc (35)

gc − εηc,c ≤ [εr,c − εηc,c]
ηc∑

i=r+1

yi,c ∀ c ∈ C, 1 ≤ r ≤ ηc (36)

gp = yr,cRc,p,r(gc) ∀ c, p ∈ Pc, 1 ≤ r ≤ ηc (37)∑
vp,n=1

Hnfp,n = gp ∀ p (38)

∑
vp,n=1

fp,n ≤ 1 ∀ n (39)
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mp ≤ gp ≤ Mp ∀p (40)
yr,c ∈ {0, 1} ∀ c, 1 ≤ r ≤ ηc (41)
fp,n ≥ 0 ∀ p, n (42)

gc ≥ 0 ∀ c (43)

Constraint 34 ensures that precisely one piecewise linear segment will be chosen
for each weak component. Constraints 35 and 36, taken together, force Gc to be
between the left and right endpoints of that segment. (Constraint 36 is somewhat
technical.) Constraint 37 determines gp based on the appropriate pacing constraint.
Constraint 38 ensures that gp can be achieved by the fraction assignments fp,n to
the various PNs, while Constraint 39 ensures that these fractions are not beyond
range. Constraint 40 requires the goals gp to be within their minimum and max-
imum values. Finally, Constraint 41 insists that the variables yr,c be binary, and
Constraints 42 and 43 ensure that the other decision variables are at least 0.

5.3.3 Solution Approach. The above optimization problem is difficult on its face.
Some variables are binary. The objective function, while separable and concave,
is non-linear, and the pacing constraints, taken together, are non-linear and not
concave. We therefore do not solve the problem directly. Instead, we take the
following approach. We first solve a simpler problem as a preprocessing step, to
obtain an initial estimate of the segment in which each Gc lies. (The simpler
problem is solvable via network flow or LP techniques, using CPLEX [ILOG ].)
The solution determines a set of pacing constraints to enforce. We then solve an
LP that is a network flow problem with these additional linear pacing constraints,
also using CPLEX. If the values of Gc returned by this program lie in the same
segment as the initial estimates, then we are done. Otherwise, we modify our initial
estimate of the segments, impose the newly appropriate pacing constraints, and re-
solve. The final solution is obtained when this iterative process converges, or when
time runs out. In the latter case, we take the best solution (according to objective
value) seen so far.

In more detail, the preprocessor solves a variant of the microQ problem, max-
imizing the importance, but ignoring pacing constraints entirely. We essentially
“blur” the PE information in the problem. Instead of using vp,n, we define ṽc,n

to be 1 if there exists a PE p ∈ Pc for which vp,n = 1, and 0 otherwise. Instead
of using the decision variable fp,n we employ a component-based decision variable
f̃c,n. (The other decision variables are Gc and yr,c, as before.) The problem has
the same objective function as before, but with Constraints 34 through 36, 43, and

∑
ṽc,n=1

Hnf̃c,n = gc ∀ c (44)

∑
ṽc,n=1

f̃c,n ≤ 1 ∀ n (45)

f̃c,n ≥ 0 ∀ c, n (46)

These three are the natural analogues of Constraints 38, 39 and 42, respectively.
Because of the piecewise linear, concave objective function this problem can be
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Fig. 13. microQ: Preprocessor Network Flow Problem
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converted via a standard trick into an LP, and more specifically into a minimum
cost network flow problem [Ahuja et al. 1993].

To understand this network flow problem, see Figure 13. There is a source, a
sink, a node for each component c, and a node for each PN n. The source node s
is connected to a component node c with ηc arcs. Each arc represents one of the
piecewise linear segments. The capacity of segment r is εr,c − εr−1,c. The cost of
segment r is the negative of the slope σr,c of the component importance function.
There is an arc from a component node c to a PN node n if and only if ṽc,n = 1.
The capacity of these arcs is infinite and the cost is 0. All PNs are connected to
the sink node t. The arc from a PN n to t has capacity Hn and cost 0.

We compute a minimum cost flow in this network, which maximizes importance.
The “flow” through the network is in mips. Then Gc is the sum of flow on the
parallel arcs from s to c. (The trick mentioned above is that the flow will auto-
matically fill from left to right segment because of the concavity of the importance
function.)

This preprocessing stage yields initial estimates of Gc for each component c, and
the corresponding piecewise linear segment rc (which satisfies yrc,c = 1) determines
the first set of pacing constraints to enforce for each component in the iterative
stage of the problem. We now describe this problem, which has the basic structure
of a network flow problem, but with the additional pacing constraints.

Consider Figure 14. The network is formed from the network of Figure 13 by
adding in nodes for each PE p. These are between the component nodes and the
PN nodes. The previous arcs from components to PNs are replaced by two sets of
arcs. There is an arc from a component c to a PE node p if and only if p ∈ Pc.
The capacity of this arc is Mp and the minimum flow is mp. The cost is 0. There
is an arc from a PE node p to a PN node n if and only if vp,n = 1. The capacity of
these arcs is infinite and the cost is 0. As noted, for each component c there is are
additional linear pacing constraints which determine, based on the flow into c, the
flow from c to each PE p ∈ Pc. We solve this LP, finding a flow that minimizes the
cost subject to the additional constraints. This maximizes importance, as before.
The new value of Gc is then the sum of the flows on the parallel arcs from s to c.
The value gp is the flow on the arc from c to p. The value fp,n is the flow on the
arc from p to n, normalized by Hn.

Next, we check for each component c if the new value of Gc corresponds to the
same piecewise linear segment as the previous value. Let rc

′ be this new segment. If
Gc lies in a segment below its original segment r we switch to the pacing constraints
for the (r − 1)st segment. (In other words, if rc

′ < rc we decrement rc by 1.)
Similarly, if Gc lies in a segment above its original segment r we switch to the
pacing constraints for the (r + 1)st segment. (If rc

′ > rc we increment rc by 1.)
Then we iterate the process, solving the LP again. If at some iteration, the new and
old values of Gc lie in the same segment for all components c, we have converged.
So we output the PE goals. The linear program solves quickly, so we can afford
many iterations. If it does not converge, however, due to cycling, or if we run out
of time, we return the best feasible solution found.
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Variable Definition
fp,n Fraction of PN n used by PE p
χn 1 if PN n is touched, 0 otherwise
gp mips goal for PE p

f̂p,n Fraction of PN n used by PE p in previous micro epoch
Hn mips of PN n
δ Maximum cumulative change in fractional assignment from previous micro epoch
δp Maximum cumulative change in fractional assignment from previous micro epoch for PE p
ζ Maximum number of PNs that can be modified from previous micro epoch
Ap,n Legal fractions of PN n for PE p
vp,n 1 if PN n is a candidate node for PE p, 0 otherwise
Fp PNs whose fractional allocations for PE p are fixed from previous micro epoch
G Network flow directed graph of PNs, over- and under-allocated PEs
U Number of under-allocated PEs
O Number of over-allocated PEs
P Number of PEs

Table V. Key microW Notation

5.4 microW

The goal of microW is to make new fractional assignments of PEs to PNs for the
current micro epoch. The idea is to match as closely as possible the overall process-
ing power goals computed for each PE by the microQ model, while respecting the
candidate nodes computed by the macroW model and meeting additional practical
constraints:

—Three of these are incremental in nature. One limits the cumulative amount
change in fractional assignment values from the previous micro epoch. One limits
this amount on a per PE basis. A third constraint limits the number of PNs that
can be “touched” during the current micro epoch. (Touched here means any
change in the fractional assignments to the PN.)

—Another constraint ensures that only acceptable fractional assignments are made.
These restrictions may come from a variety of sources. For example, the only
acceptable fractional assignment for a PE on a PN not chosen as a candidate
node by the macroW model is 0. We will give other examples shortly.

—Still another constraint fixes certain fractional assignments to their values from
the previous micro epoch.

—And a final constraint ensures that no PN becomes overloaded.

Table V provides a summary of notation used, in order of appearance. And
Figure 15 provides an outline of the microW pseudo-code.

The microW problem is solved via suitably modified techniques borrowed from
the network flow literature [Nemhauser and Wolsey 1988].

5.4.1 Notation. We will employ two decision variables. First, fp,n ∈ [0, 1] will
be the fraction of PN n used by PE p. This is the primary output of the microW
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1: Set DONE = false
2: while DONE == false do
3: Set DONE = true
4: Compute OPT =

P
p |

P
n fp,nHn − gp|

5: if OPT > 0 then
6: Index under-allocated PEs from most under-allocated (index 0) to least under-allocated

(index U − 1)
7: Index over-allocated PEs from least (index P −O) to most (index P − 1)
8: Compute directed graph G
9: for p1 = 0 to U − 1 do

10: for p2 = P − 1 to P −O by −1 do
11: Find shortest path in G from p1 to p2

12: if path exists then
13: Find maximal flow f from p1 to p2 subject to constraints
14: if f > 0 then
15: Push flow f from p1 to p2

16: Go to line 4
17: end if
18: end if
19: end for
20: end for
21: end if
22: end while
23: Output OPT

Fig. 15. microW Pseudocode

model. Second, χn ∈ {0, 1} will effectively be an indicator variable, being 1 if PN
n is touched during the current micro epoch, and 0 otherwise.

We use the following input data. Let gp be the processing power goal, in mips,
for PE p and is the output of the microQ model. f̂p,n is the fraction of PN n used
by PE p during the previous micro epoch. Hn denotes the total processing power,
in mips, of PN n. δ is the maximum allowable cumulative change in fractional
assignment values from previous micro epoch. The number may be infinite. δp, on
the other hand, denotes the maximum allowable cumulative change in fractional
assignment values from previous micro epoch for PE p. The number may also be
infinite. ζ will be the maximum number of PNs that can be modified from the
previous micro epoch, again possibly infinite. Ap,n ⊆ [0, 1] consists of all legal
fractional allocations for PE p on PN n. As noted, if vp,n = 0, that is if macroW
does not assign n as a candidate node for p, this subset will be {0}. Recalling the
candidate node decision variable vp,n, the prime output from the macroW model,
this means that vp,n = 0 implies that Ap,n = {0}. Similarly, if p must use all or
nothing of a PN n this subset will be {0, 1}. As a final example, a single-threaded
PE cannot use more than one core at any time in a multiprocessor candidate node.
So, on a 4-core PN such a PE would be restricted to fractional assignments between
in the range [0, .25]. It is assumed in general that Ap,n is a finite set of (closed)
ranges in the unit interval. In particular, it may be the entire unit interval, meaning
that there are no restrictions on legal fractional allocations. Fp ⊆ {0, ..., N} is the
subset of PNs whose fractional allocation for PE p is fixed from the last micro
epoch.
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5.4.2 Mathematical Formulation. We would like to reassign allocations of PEs
to PNs in order to minimize the cumulative difference between the PE processing
goals and achieved allocations. Hence the objective is to find

min
∑

p

|
∑

n

fp,nHn − gp|

subject to the following constraints:

∑
n

∑
p

|fp,n − f̂p,n|Hn ≤ δ (47)

∑
n

|fp,n − f̂p,n|Hn ≤ δp ∀p (48)

(1− χn)(fp,n − f̂p,n) = 0 ∀p, n (49)∑
n

χn ≤ ζ (50)

fp,n ∈ Ap,n ∀p, n (51)

fp,n = f̂p,n ∀n ∈ Fp (52)∑
p

fp,n ≤ 1 ∀n (53)

Constraint 47 limits the cumulative change in fractional assignment values from
previous micro epoch. Constraint 48 performs the same function on a per PE basis.
Constraint 49 effectively defines χn as an indicator variable. It forces χn to be 1
if there exists 1 ≤ p ≤ P such that fp,n 6= f̂p,n, and either 0 or 1 otherwise. But
then constraint 50, which limits the number of PNs that may be affected during the
current micro epoch, ensures that χn will take on the value 0 if the PN is untouched
and the constraint is not slack. Constraint 51 ensures that the individual fractional
assignments are acceptable. Constraint 52 allows certain fractional assignments to
be fixed to their values during the previous micro epoch. Finally, constraint 53
ensures that PNs do not get overloaded. If an input data term (such as δ, δp or ζ)
is infinite, there is no limit associated with the relevant constraint (47, 48 and 50,
respectively), which means that the constraint is not enforced.

5.4.3 Solution Approach. This optimization problem is solved heuristically, but
using techniques borrowed from the theory of network flows [Nemhauser and Wolsey
1988]. At any stage in our heuristic we can compute for any PE p the total amount∑

n fp,nHn of allocated mips. Comparing this term to gp we partition the set of PEs
into those which are under-allocated, those which are over-allocated and, finally,
those which are properly allocated. Obviously the goal is to get all PEs into the
properly allocated state. We attempt to do this essentially via iteration of a doubly
nested loop, to be described shortly.

A key concept in the scheme is the construction, use and maintenance of a di-
rected graph G which is illustrated in Figure 16. Note that the PEs are represented
by colors in the figure.

This digraph has three types of nodes, as follows.
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—On the left side of the figure the nodes are the under-allocated PEs, ordered from
most under-allocated to least under-allocated.

—In the middle of the figure the nodes are the PNs themselves.
—On the right side of the figure the nodes are the over-allocated PEs, ordered from

least over-allocated to most over-allocated.

These nodes are annotated by their “sizes”. For an under-allocated PE node p
the size is the degree gp −

∑
n fp,nHn to which the PE is under-allocated. For a

PN n the size is its processing power Hn. For an over-allocated PE node p the size
is the degree (

∑
n fp,nHn)− gp to which the PE is over-allocated.

Similarly, there are three types of directed arcs.

—There is a directed arc from an under-allocated PE p to a PN n provided

(1) vp,n = 1. That is, n is a candidate node for PE p.
(2) fp,n < 1. That is, there is some fractional allocation increase that is possible

for PE p on PN n.
(3) n /∈ Fp. That is, PE p is not fixed on PN n.

—There is a directed arc from PN n1 to PN n2 for a particular PE p provided

(1) vp,n1 = vp,n2 = 1. That is, both PNs n1 and n2 are candidate nodes for PE
p.

(2) fp,n1 > 0. That is, there is some fractional allocation for PE p that can be
moved from PN n1.

(3) fp,n2 < 1. That is, there is some fractional allocation for PE p that can be
moved to PN n2.

—There is a directed arc from a PN n to an over-allocated PE p provided

(1) vp,n = 1. That is, n is a candidate node for PE p.
(2) fp,n > 0. That is, there is some fractional allocation decrease that is possible

for PE p on PN n.
(3) n /∈ Fp. That is, PE p is not fixed on PN n.

These directed arcs are annotated by their “widths”. Specifically, a directed
arc from an under-allocated PE p to a PN n has width min(gp −

∑
n fp,nHn, (1−

fp,n)Hn). This is the maximum amount of fractional allocation for PE p that can
be moved to PN n. A directed arc for PE p from PN n1 to PN n2 has width
min(fp,n1H1, (1− fp,n2)H2). This is the maximum amount of fractional allocation
for PE p that can be moved from PN n1 to PN n2. A directed arc from PN
n to over-allocated PE p has width min((

∑
n fp,nHn) − gp, fp,nHn). This is the

maximum amount of fractional allocation for PE p that can be moved from PN n.
Consider an arbitrary path (p1, n1, ..., nk, p2) in the directed graph G from an

under-allocated PE p1 to an over-allocated PE p2. All interior terms in this path
will be PNs. If we move a given amount f of flow along this path the effect will
be to reduce the under-allocation of PE p1 and to simultaneously reduce the over-
allocation of PE p2 by f . The load on the interior PNs remains constant, though
the composition of the load changes: For some PE pi the fractional allocation will
increase by f , but for some other PE pj the fractional allocation will decrease by



38 · Joel Wolf et al.

O
u
te

r fo
r lo

o
p

In
n
e
r fo

r lo
o
p

Processing NodesSources  (Under-allocated PEs)

Sinks (Over-allocated PEs)

Fig. 16. microW: Network Flow Digraph

the same amount. The objective function will thus be reduced by 2f if we make
this flow push.

How should we choose f? The obvious answer is as large as possible, which
would suggest picking f to be the minimum width of the directed arcs along the
path. But we also have to respect the constraints. The idea is to check each of the
relevant constraints in turn, possibly shrinking f as we proceed. If we reduce f to
0 at any point in the process we will regard the push of flow along this path as a
failure. If on the other hand the revised f remains positive at the completion of our
constraint checks we will regard the push as a success. Constraint 47 can be looked
at as a simple problem of finding the maximum γf for which the hypothetical
constraint remains intact. There will be k summands of the form |fp,n + γf − f̂p,n|
and k summands of the form |fp,n − γf − f̂p,n|. (γ may or may not be forced to
0 if the constraint was previously tight.) Then f is replaced by γf , and a similar
test is performed for Constraint 48. Constraints 49 and 50 can be handled by
recomputing and checking the number of hypothetically touched PNs. If the number
exceeds χ we have a failure. Constraint 51 can be handled in a manner similar to
Constraints 47 and 48. Constraints 52 and 53 are not relevant by construction.

It remains to give an overview of the entire flow pushing process: This is per-
formed as a doubly nested loop. The outer loop is performed on the under-allocated
PEs, from most under-allocated to least under-allocated. (Line 6 of the pseudo-
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Cliques of various colors

Fig. 17. microQ: Surrogate Graph in macroW

code assumes there are U under-allocated PEs.) The inner loop is performed on
the over-allocated PEs, from most over-allocated to least over-allocated. (Line 7
of the pseudo-code assumes there are P total PEs and O over-allocated PEs.) The
path chosen between under-allocated PE p1 to over-allocated PE p2 is determined
via a shortest path algorithm [Ahuja et al. 1993]. (The idea here is to affect as few
PEs and PNs as possible.) After each successful flow push we perform the relevant
bookkeeping and maintenance, adjusting the constraints, recomputing the under-
and over-allocated PEs and incrementally reconstructing the directed graph G. If
there are no under- or over-allocated PEs microW ends with a perfect solution. The
microW scheme also ends if flow push failures occur through an iteration of the en-
tire doubly nested loops or if microW reaches its deadline. (The latter condition is
not noted in the “pure” pseudo-code.)

Although we will not go into details, the scheme above can easily be modified to
handle cases where the PNs are not fully utilized. One simply adds a dummy PE
corresponding to the unutilized portions of each PN.

The microW scheme can also be randomized by picking arbitrarily amongst short-
est path ties. In practice this has limited utility. We also comment that macroW
could, in principal, consider the (undirected) graph G̃ defined as follows. The nodes
are the PNs themselves. There is an arc between PN n1 and PN n2 for a particular
PE p provided vp,n1 = vp,n2 = 1. That is, both PNs n1 and n2 are candidate
nodes for PE p. Note that this condition mimics the first interior condition for the
directed graph G. The idea is that G̃ serves as something of a macroW surrogate
for G. See Figure 17 and compare it with Figure 16. It is “likely” that G̃ will



40 · Joel Wolf et al.

be highly connected if G is. So it would be a reasonable SODA strategy to add a
heuristic to the end of macroW which improves the connectivity of G̃. We have not
yet implemented this, however. (Improving connectivity turns out to be a difficult
optimization problem.)

6. OBTAINING KEY INPUT DATA

Clearly SODA is a sophisticated scheduler with many capabilities. But equally
clearly it depends critically on good quality input data. In this section we will de-
scribe three infrastructure components. The components are known as the Resource
Function Learner (RFL), the Rank Manager (RM) and the Weight Manager. They
supply SODA with resource functions, ranks for the jobs, and weights for the rele-
vant streams, respectively. They are intentionally designed to be separate from the
rest of the SODA scheduler, and modular: One can remove one RM, for example,
and replace it by another. Such a change may significantly impact the scheduling
in System S without any changes to the scheduler itself.

6.1 Resource Function Learner (RFL)

The RFL component is primarily responsible for managing RF s and providing the
right RF to SODA (macroQ) as needed. Managing the RF s is driven by how the
PEs are used. A PE from a job may be resubmitted at a later time, either as part
of the same job or a different job. Users may share PEs (for example, a classifier)
in their own applications. The same PE may run in the system under a different
set of circumstances, such as different parameterizations or context (that is, with
different upstream or downstream PEs). Since even PEs that have never been run
before do need to be scheduled, it is very helpful for good resource allocation to
have some initial estimate of the PE’s resource usage.

In order to construct RF s for a PE, we take an empirical approach: a specific
model structure is chosen and actual system observations are used to learn or cali-
brate the model parameters. There are potentially many choices for the right func-
tional form for an RF . Our experiences with both parametric and non-parametric
forms are described in an earlier work [Hildrum et al. 2009]. For the rate-based RFs
in this paper, we used a simple mathematical model for the RF s and trained that
model with data collected from prior runs. For transform PEs (with both input
and output streams), we employ the model ro = min(Arim,Bri), where ro is the
output rate, ri is the input rate, m is mips, and A and B are constants picked to
best fit the data. The intuition behind this choice is that there are two regimes.
In the first regime, where the allocated resources are insufficient, the output rate is
constrained by the mips themselves, and more mips leads to higher output rates.
This is the first term. The second regime occurs when the mips are plentiful. In
this case, the output rate is constrained by the input rate. This is the second term.
This surprisingly simple model has performed well in our experiments, actually
better than more complex models based on regression trees. At its core, we have
a classic online machine learning problem, and we are actively exploring the use
of more advanced techniques that may yield more accurate models. We note that
macroQ “expects” that the RF s will initially be strictly increasing. (Once they
stop increasing, SODA will stop further exploration.)

Over time, the RFL seeks to use system measurements to obtain and evolve a
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set of RF s that can be as accurate as possible, while also making maximal use of
any metrics collected for PEs running in the system. This leads to the following
questions:

—How do we identify a PE so we can associate an RF with it?

—What should we do about PEs when they are seen by the system for the first
time, and there is no empirical data available for them yet? What sensible initial
RF can be provided?

—How can we identify whether previously collected data (or a model built from it)
is applicable for a PE that runs in a slightly different environment than where the
data is collected? The environment may include factors such as PE configuration
(via, for example, command-line arguments), or systems issues, such as processing
node architecture. This issue also arises when the same PE is reused in multiple
applications.

—In a similar vein, how should RF s be shared between instances of a PE, and
how can observing one instance of a PE yield clues about the resource usage of
another, slightly different instance?

—How should metrics be stored and used to build and update the PE RF s?

From a functional perspective, the RFL performs the following two tasks: (a)
given a specific instance of a PE in a specific job that is submitted to the system,
choose an RF to be used by the scheduler, and (b) given an observation of the
resource usage of a specific PE instance, identify which RF s should be updated,
and update them.

To facilitate the model management, we identify each PE based on a multi-part
signature. The RFL learns and maintains an RF for each signature. For a specific
PE, the scheduler uses the signature to decide which RF should be used. In our
system, we use the following four parts of the signature, in order of increasing
specificity:

—PE type: The first part of the signature may be a source, a transform or a sink.
(A source has no input streams, while a sink has no output streams.) In the
future, it is possible to envision a much finer granularity of PE classification into
types.

—Executable: The second part of the signature is the most general, consisting of an
MD5 hash of the PE’s executable. If the PE has been run before in any context,
a learned model will be available. This will likely be better than a default model
based only on PE type.

—Arguments: The third part is a MD5 hash of the arguments. A PE’s command-
line arguments may alter its behavior, so this attempts to capture the dependency.
Using an MD5 hash means that there is no need to understand the structure of
the arguments (i.e., knowing that a particular argument is window size).

—Flowspec: The fourth part is a representation of how the PE is connected to its
upstream PEs, which is known as the flow specification or flowspec. In System
S , it represents the most specific attribute of a particular instance of a PE that
is connected in a specific way to other PEs.
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Fig. 18. Hierarchical PE signature management

The signature captures key attributes of the PE which are knowable at job submis-
sion time. This allows the scheduler to choose an RF before the PE even begins
execution. After execution, the PE RF may be refined further based on ongoing
observations, but the initial lookup addresses the bootstrap problem.

The collection of signatures constitutes a hierarchical organization, as depicted
in Figure 18. There is an RF for each node in this hierarchy. The node labeled
‘bGlm’ represents all PEs whose executable hashes to that string. Its two child nodes
represent that PE executable being run with two different command-line arguments.
Thus each node in the tree represents a generalization of all its children. To look
up the RF for a specific PE, we find the most specific node which matches the PE
signature. In the figure, the lookup for ‘bGlm | ABCD | EFGH’ stops at the PE level
node ‘bGlm’ because the rest of the signature represents entries that are not (yet)
in the database. Thus, if specific information about the PE in that context was
available, that is the information that would be used. If no specific information was
available, the system uses information based only on the executable. In the case of
a brand new PE that has never been run before in any configuration, the system
uses either (a) a generalized RF based on the root node (PE type), or (b) a default
type-based RF which is hand-populated based on calibrations from earlier System
S applications.

Analogously, when a new data point is collected for a PE, we update the model
at each of these three levels, starting at the most specific node and propagating
up the tree. Thus, an observation < rI

j ,mp, r
O
k > for PE p with input port j and

output port k whose signature is ‘bGlm | BTI5 | WMor’ can update not only the
model at the most specific node, but at every generalization above it in the path to
the root, namely ‘bGlm | BTI5’ and ‘bGlm’. Thus, a leaf model reflects observations
about the PE in the most specific context, while an internal tree node generalizes
data across the sub-tree rooted at that node. When a known PE is encountered in
a new context, the RFL can obtain some information about that PE’s behavior by
using this generalized information.

To highlight the possibility of reuse in actual applications, Table VI shows the
number of unique nodes at each level in the tree for three separate System S ap-
plications. (DAC [Wu et al. 2007], already mentioned regarding Figure 2, is an
insurance claims fraud detection and alerting system. SKA [Biem 2008] is a ra-
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Level
Application Executable Arguments Flowspec

DAC 40 64 81
SKA 27 102 102
VWAP 25 365 365

Table VI. Signature counts by level

dio astronomy application which reconstructs images from data received by radio
telescope antennas. VWAP [Andrade et al. 2009] represents a financial markets
scenario in which real-time quotes are processed to detect bargains and trading op-
portunities.) SKA and VWAP (and most SPADE -based applications) do not use
flowspecs on their streams, so each argument-level node has only one child node
(the ‘null’ flowspec). However, these applications contain several replicas of the
same PE, executing with different arguments. This indicates that maintaining the
executable-level information is likely to be useful if we encounter a new PE with a
different set of arguments than seen before.

6.2 Rank Manager

We have noted that the SODA macroQ component decides, among other things,
whether to admit jobs or not subject to the rank-legality constraints. So rank
is a highly important input metric. It is the role of the Rank Manager (RM)
to supply the rank information for jobs to SODA. We have designed two different
RMs, depending on the requirements of the system: One is called the Budget Driven
Rank Manager (BDRM) and the other is called the Merit Driven Rank Manager
(MDRM). We will describe both of these briefly. The idea behind multiple RMs
is that while rank is critical data, different System S customers will have different
perspectives about how to compute the various job ranks. The appropriate solution
is therefore to provide an easy interface by which different customers can plug in
their favorite RM choices.

6.2.1 Budget Driven Rank Manager. The BDRM uses a notion of budget to
determine ranks, employing a temporal fairness policy. The BDRM actually gives
“users” submitting jobs some control over the ranks, but full control would not be
workable: Savvy users would quickly adopt a greedy approach and assign all their
jobs a rank of 1. So the BDRM does not allow users to submit actual ranks, just
the relative ordering of all the jobs they are submitting.

To begin with, the BDRM employs a separate process to create a budget alloca-
tion for each of the users over a relatively long time interval. This interval might
be months or quarters. This is done in a top-down tree-like fashion, presumably
following the organizational structure. The users correspond to the leaves in this
tree. The budget allocation process may be political in nature, just as monetary
budget allocation schemes typically are. (There is no magic here. The BDRM
cannot compare apples and oranges. People will do a better job of that.) In the
end, each user receives a rank budget for the time interval. The BDRM’s job is to
deplete that long term budget in a “fair” manner, and it employs a simple greedy
scheme to do so. Fairness is based on the apportionment of processor resources
used by SODA during overloaded periods. This requires a bookkeeping mechanism
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to keep track of resource usage. Ideally, every user’s budget should deplete at the
same rate, and the BDRM attempts to enforce this.

Consider the amount of remaining user budgets. The BDRM first marks all
required jobs. These jobs will be done, so the rank Π for these jobs is set to 1.
They are removed from consideration and the remaining user budgets are adjusted
accordingly. Then the BDRM sets Π = 2. Among the remaining jobs it compares
the most preferred jobs per user and picks the one(s) with the largest remaining
user budgets. The BDRM sets these to have rank Π, removes them from the list,
hypothetically recomputes the remaining user budgets and increment Π by 1. This
process is repeated until the list is exhausted.

After running SODA for an actual epoch the actual remaining user budgets are
recomputed and the process begins again. (We don’t deplete budgets during un-
derloaded epochs: Every jobs gets in, and it is a good idea to encourage users to
submit jobs during underloaded epochs.)

We optionally allow the ranks computed by the BDRM to be visible and over-
ridable by the System S site administrator.

6.2.2 Merit Driven Rank Manager. The MDRM is an inherently simpler design
than that of the BDRM. The rank of a job in the MDRM will be calculated based
on its merit, which is the weighted sum of one or more terms. The exact number
and definitions of the summands is outside the scope of System S . We list two
examples of types of terms.

—There are so-called external priority terms, terms which a System S customer
may already be comfortable using. They are typically relatively static.

—There are so-called precomputed analytic terms, which are typically dynamic and
can be computed by independent analytic modules in more or less real time. One
example might be a failure factor, that is, an estimate of how likely the job is to
fail. Lower would mean less likely to fail. Another example might be a deadline
factor. Lower would mean closer to a (meetable) deadline. The design of these
analytic modules are essentially outside the scope of System S .

Note that this approach can also automatically incorporate either a full or a
partial Dewey Decimal variant, by judicious choice of weights. A scenario in which
one term is deemed absolutely more important than a second can be accommodated
by picking the first weight much greater than the second.

Next the jobs are partitioned into buckets of fixed size, say B. Thus the jobs
with merit less than B will go into the first bucket and assigned a rank of 1; the
jobs with merit greater than or equal to B but less than 2B will go into the second
bucket, assigned a rank of 2, and so on. This bucketing process is designed to deal
with the obvious fact that the merit value is a somewhat imprecise measure. Bigger
buckets will result in more ties in rank. If B is tiny this will basically cause rank
to be based on the ordering of the merit values. But even without bucketizing it is
possible to have ties in rank.

We allow the weights to depend on time of day, day of week and so on. We
optionally allow the ranks computed by the MDRM to be visible and overridable
by the System S site administrator.
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6.3 Weight Manager

Weight is also a key metric of each stream that SODA uses to decide which jobs to
schedule, and the quantity of resources to allocate to them. The Weight Manager
(WM) supplies this data to SODA. As with the RM, we have created a modular
design into which various WMs can be plugged in. We have designed two different
WMs, depending as before on the requirements of the system: One is called the
Budget Driven Weight Manager (BDWM) and the other is called the Simple Weight
Manager (SWM).

The BDWM is very much like the BDRM in design, so we will omit details here.
The SWM is indeed extremely simple. Weights of 1 are assigned to all terminal
PEs streams in job templates. All other streams are given a weight of 0.

The Weight Override Module optionally allows the site administrator to revise
weights arbitrarily, only enforcing the rule that they must be between 0 and 1. A
weight of 0 will definitely force the kind of behavior indicated in the description
of Figure 5. Effects of non-zero weights will be more subtle. A weight of 1 will
encourage the system to give as many resources as is possible to the PEs upstream
of the relevant stream. Longer term plans include a much more elaborate machine
learning WM based on “discoveries” made during the operation of System S .

7. EXPERIMENTS

We present two sets of experiments, focusing on two critical functions of SODA:
job admission and placement. The first set of experiments illustrate the perfor-
mance of macroQ. The second set of experiments are end-to-end, demonstrating
the performance of SODA in placing jobs admitted to the System S cluster.

7.1 Job admission experiments

In this section we experimentally evaluate SODA performance, focusing on the
functions of job admission and resource allocation. The tradeoffs between the two
can be quite subtle, as we will show.

First we will describe the experimental setup. The largest system installation we
consider has 100 PNs with a rating of 11,000 mips each. In the experiments we
examine the effect of removing 5 PNs (and thus 5% of the processing power) from
the system at a time. The jobs presented to macroQ always remain the same: There
are 19 jobs (labeled A through S), consisting of 7 required jobs of rank 1, 6 optional
jobs of rank 2, and 6 optional jobs of rank 3. The jobs are not interconnected, so
rank and revised rank are identical for each job. The experiments are designed so
that at 100 PNs the jobs will nearly (but not quite) use all the resources in the
system when each is allocated their maximum useful resources. This occurs, as per
the previous section, when each of the component importance functions becomes
flat as a function of allocated resources. In fact, when macroQ is run on the full
100 PNs all 19 jobs are admitted and the average utilization of the processors is
97%.

Figure 19 shows the number of jobs admitted by rank as the number of PNs
decreases in 5% increments from 100 PNs to 25 PNs. At 95% all jobs are still ad-
mitted, though the processor utilization now is 100%. From there on the utilization
remains at 100%, as one would expect based on macroQ’s design: The system is
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Fig. 19. Admitted Jobs by Rank

% Rank 1 Rank 2 Rank 3
A B C D E F G H I J K L M N O P Q R S

100 786 882 462 540 558 318 336 786 870 462 702 264 366 786 870 516 558 294 336
95 780 840 462 540 558 318 336 780 780 462 696 264 366 780 780 516 558 294 336
90 786 792 462 540 558 318 336 780 780 462 612 264 366 696 780 516 558 294
85 696 792 372 540 468 318 318 696 780 372 612 264 366 696 780 516 468 294
80 690 786 366 534 462 312 312 690 780 366 606 258 366 696 774 510 288
75 684 780 366 534 354 270 312 626 768 366 606 258 360 684 774 510
70 690 786 366 534 444 312 312 690 774 366 606 258 360 690 510
65 696 792 372 540 468 318 336 696 780 390 612 264 366 516
60 696 792 372 540 468 318 324 696 780 372 612 264 366
55 696 792 462 540 552 318 336 696 780 612 264
50 690 786 366 534 426 312 312 692 774 606
45 690 792 366 534 462 318 312 696 780
40 696 792 462 540 558 318 336 696
35 626 710 354 494 426 300 314 626
30 510 558 344 426 354 272 292 544
25 510 558 344 426 354 272 286

Table VII. mips x 100

overloaded. At 90% 1 job of rank 3 is rejected, and all of the rank 3 jobs are gone
by the 60 PN level. But rank 1 and 2 jobs remain during the 65% to 100% range.
In other words, the rank waterline is 3. In the 30% to 60% range the rank waterline
is 2. All rank 1 jobs are admitted, but more and more rank 2 jobs are rejected
as the processing power decreases. At 25 PNs only the required rank 1 jobs are
admitted. The system is fully stressed at this point, and a macroQ run at 20% of
the PNs would not find a feasible solution: There would not be sufficient processing
power to admit all of the required jobs even at their minimum acceptable resource
allocations.

Figure 20 shows the contribution to overall importance by rank as the number
of PNs decreases from 100 to 25. The importance is decreasing as a function
of system resources, as should be the case. But between 100 and 85 PNs the
importance curve is actually quite flat: The component importance curves turn
out to be concave or close to concave, and there are sufficient resources available
so that the solution lies near the flat part of each curve. Job S is rejected at 85%
and 90%. But its importance is low and its resource requirements is high. One
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% Rank 1 Rank 2 Rank 3
A B C D E F G H I J K L M N O P Q R S

100 402 389 136 262 222 279 13 402 389 136 261 250 291 402 390 304 222 279 13
95 402 388 136 262 222 279 13 402 388 136 261 250 291 402 388 304 222 279 13
90 402 388 136 262 222 279 13 402 388 136 259 250 291 400 388 304 222 279
85 400 388 129 262 216 279 10 400 388 129 259 250 291 400 388 304 216 279
80 395 383 126 260 212 275 9 395 388 126 257 245 291 400 383 301 275
75 389 377 126 260 215 274 9 389 377 126 257 245 286 389 383 301
70 395 383 126 260 205 275 9 395 383 126 257 245 286 395 301
65 400 388 129 262 216 279 13 400 388 129 259 250 291 304
60 400 388 129 262 216 279 11 400 388 129 259 250 291
55 400 388 136 262 221 279 13 400 388 259 250
50 395 383 126 260 178 275 9 395 383 257
45 395 388 126 260 212 279 9 400 388
40 400 388 136 262 222 279 13 400
35 359 355 125 259 178 273 10 389
30 301 333 116 253 170 262 6 380
25 301 333 116 253 170 262 5

Table VIII. Importance
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Fig. 20. Importance by Rank

can see this in Tables VII and VIII. The first table shows the allocated resources
(in hundreds of mips) by individual jobs as the number of PNs decreases. The
second table shows the corresponding importance values. Job S contributes an
importance of only 13 at 33600 mips, so it is clearly highly expendable, and being
of rank 3 it is jettisoned as soon as the offered load exceeds available resources.
The effect on overall importance is minimal. The only other job with a poor ratio
of importance to resources is job G. Job G is a twin of Job S, but it is required
and macroQ cannot reject it. Observe in Figure 20 that importance does start to
decrease linearly from 80 down through 25 PNs. The available mips dictate that
the solution to the component resource allocation problems occur on the steeper
portion of each importance curve.

Examine Table VII in the 3 ranges of resource allocations for which the admitted
jobs remains identical. (The 100% and 95% rows have this property. So do the
90% and 85% rows. And finally, so do the 40%, 35% and 30% rows.) If the
component importance curves are concave for each admitted job in these ranges,
the separable resource allocation problems in macroQ would solve where the first



48 · Joel Wolf et al.

differences (effectively the derivatives) at each job would be as close to equal as
possible. And that would, in turn, imply that the resource allocations for each
job would be monotone non-increasing as the number of processors decrease. In
fact, this is the case in each of the three ranges, as an examination of the relevant
columns shows.

Overall, however, the allocated resources for each job will not be monotone as
the number of processors decrease. Consider, for example, the column for Job C
in Table VII. The mips allocated are high in the 85% to 100% range, because the
system is not heavily overloaded. As the number of processors decrease the mips
allocated to Job C exhibits somewhat oscillatory behavior, decreasing through 70%,
then increasing back to its maximum useful allocation at 55%, and so on. This
behavior is primarily due to the changes in admission of the other jobs. As jobs get
rejected the allocations they would have received become available, and macroQ
will distribute these to the jobs that remain. (A secondary reason for the lack of
monotonicity is the slight deviations from concavity.) At the 25 and 30 processor
levels the system is truly stressed and there the job is given minimum acceptable
mips allocations.

We have focused on the macroQ problems of job admission and resource allocation
in these experiments. We present extensive experimental analyses of the overall
performance of SODA next.

7.2 SODA Experiments

7.2.1 Methodology. In this section we describe quantitative and qualitative ex-
periments for analyzing the performance of SODA and the quality of the RF s
generated. We present experiments on three applications: SrcSink, LSD [Amini
et al. 2006], and DAC [Wu et al. 2007]). SrcSink is a toy application with two PEs;
it has been included in the test to more easily illustrate some key points. The LSD
application is a large application intended to process high incoming data rates. It
is composed of 104 jobs and 737 PEs. The LSD PEs are generally lightweight. The
DAC application is smaller but provides scheduling challenges because its PEs have
a wide range of processing requirements. It consists of six jobs and 51 PEs. For
the experiments, the jobs corresponding to each application are submitted to the
System S cluster, where they are run for ten minutes to collect relevant data.

We compare the SODA PE placement decisions to three other approaches:

—Random (RAND): PEs are assigned to PNs uniformly at random. In expec-
tation, each PN hosts the same number of PEs, but in fact, the number of PEs
hosted by a PN may vary quite a bit.

—Round-robin (RR): PEs are processed sequentially and each PE is assigned to
a PN with the minimum PEs assigned so far. This is a very naive load balancing
of PEs across the PNs.

—Expert (EXP): The application developers for LSD and DAC decide on the
number of PNs and an allocation of PEs to PNs based on both their knowledge
of the application as well as several trial-and-error runs where all PEs are re-
source matched to specific PNs. These placements are often tested in underloaded
test environments, and cannot be expected to scale to overloaded environments.
But they offer a reasonable measure of performance, one that must at least be
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matched, even in overloaded settings, by the scheduler.

These three schemes only perform PE placement–they do not address admission
control, template choice or PE fractional allocations.

7.2.2 Metrics. We use a variety of metrics to measure the quality of a solution.
Recall that each job consists of at least one source PE and one sink PE. A source PE
has no input streams internal to the system. It obtains data from primal streams.
A sink PE, on the other hand, produces no output streams internal to the system.
However, its output maybe be written to disk, or sent to a query.

We evaluate each scheduler using the following metrics:

—Ingest rate: This is a measure of how much data (in Mbps) could be processed by
the system. It is intended as a measure of the system’s “effective capacity” and
should be correlated to importance. This measurement is made at the output of
the source PEs, and compared with the predicted rate (for SODA runs).

—Importance: The importance of a job is measured at the sink PEs as a quantity-
based metric that depends on the data rates at the sink PEs. In our experiments,
the streams into the sinks have unit weights and identity value functions, while all
other streams have zero weights and value functions. As a result, the importance
of a job is measured by the data rate flowing into its sink PEs. This is compared
against the predicted importance (for SODA runs).

—Stream affinity : One way to measure the quality of the placement is in terms
of the traffic load on the system. We compute the amount of traffic that is
sent between PEs on the same PN divided by the total traffic. The higher this
quantity, the better, since PEs which share a stream should be put on the same
PN (or nearby) to minimize network utilization. We can measure this at two
levels. The stream level is the fraction of parent-child pairs on same PN and the
traffic level is the fraction of intra-PN traffic.

—Execution time: The total time taken for the execution of the scheduler. For
SODA, this corresponds to the sum of the time taken by the four separate SODA
modules.

—Utilization: The total amount of CPU utilization, counting all the PEs. We
compare this against the predicted utilization (for SODA runs).

—Direct prediction accuracy : The average prediction error of the RF s, for each
stream in the submitted jobs.

Most of these are placement metrics and are useful to evaluate SODA (and indi-
rectly the RFL). The direct prediction accuracy is an abstract metric for comparing
various RFs against each other, which is described by the final metric, specifically
designed to evaluate the RFL.

7.2.3 Input Parameters. Now we describe all the knobs (input parameters) that
were changed in the experiments, to quantitatively measure SODA’s performance.
In the experiments below, we test the scheduler performance under different re-
source conditions ranging from under-provisioned to over-provisioned, which is
achieved by varying the number of PNs made available to the scheduler. This allows
us to see how the performance will change as the raw system capacity changes, and
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also which scheduler is better at achieving higher system utilizations and better
effective system capacity. For each application (SrcSink, LSD, DAC), we perform
three runs for each combination of scheduler and node pool size, and analyze the
average across these runs.

We also describe two SODA configuration parameters that can be configured
from the command line (or during run time). For our experiments, these were set
as described below:

—Exact (CPLEX macroW) vs heuristic (miniW): We can measure the impact of
employing the exact optimization scheme of macroW by turning CPLEX on and
off. Based on the initial experiments, we decided to turn off CPLEX.

—Network information: We can run SODA with and without network informa-
tion. Based on the initial experiments, we always ran with network information
available.

—Defaults RFs vs Trained RFs: We can run SODA with parametric RFs of the
same type as the defaults, but have been fitted/trained to data obtained from the
best EXP run. (Default RF s are ones that are used if SODA does not recognize
the PE signature.) For these experiments, SODA always ran with trained RFs.

7.2.4 Data Gathered. All of the runs are incorporated within a standard unit-
test framework, so that the process is controlled, organized and repeatable. These
metrics are computed from the raw system metrics such as CPU usage per PE and
traffic consumed and produced by each PE. For analyzing performance, this data
is gathered and converted into the information we need: the total mips used by
the system; the mips used, the bytes prepared, and the bytes actually sent for a
particular subset of PEs; the total PN-to-PN traffic, and the total traffic that is
intra-PN; and the accuracy of predictions generated from the RF s.

7.2.5 Results. First, we present the time taken by SODA to solve these in-
stances. For the small SrcSink test, the time is 26 seconds, most of which is taken
by macroW since it continues to compute until its time limit of 25 seconds is
reached. Otherwise, these instances can be solved in less than 3 seconds. On the
other hand, for the much larger LSD job, SODA takes 42 seconds. For DAC, which
is of intermediate size, SODA takes 33 seconds.

Next we describe the effect of learning RF s from actual traffic, as opposed to
using default RF s. This is a direct measure of the performance of the RF s. This
comparison is best illustrated using prediction accuracy. We present results for this
metric for SrcSink. (We repeated the experiments for a variety of configurations,
presented here.) As one can see in Figure 21, accurate RF s make a huge difference to
SODA’s accuracy in predicting mips usage and traffic; the lower the error the better.
The average error drops from 27 to 7 percent. In this chart, “new” corresponds to
the learned RF s.

Finally, we analyze the performance of SODA in scheduling LSD and DAC. The
carefully constructed EXP placements use 82 PNs for LSD and 30 PNs for DAC.
SODA uses far fewer PNs yet achieves a higher quality placement than EXP. In
particular, SODA performs favorably with as few as 30 PNs for LSD and 9 PNs for
DAC, 36% and 30% of the number of PNs used in the expert placement, respectively.
To compare with these, we also present the results for RAND and RR for two
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scenarios: 30 and 70 PNs for LSD, and 9 and 29 PNs for DAC. These allow us
to compare their performance with SODA’s placement at one end of the spectrum
(less PNs), and with EXP at the other end (more PNs).

Figure 22 compares the ingestion rates of SODA, EXP, RR, and RAND. From
the figure, we see that SODA is able to ingest as much traffic as EXP with far fewer
PNs (30) for LSD. For DAC, SODA outperforms EXP by over 50% with just 9 PNs.
For a given node pool size, the SODA-computed placement also consistently ingests
more traffic than RAND or RR. The performance of both RR and RAND is, not
surprisingly, poorer than EXP. For instance, with 70 PNs for LSD, RR is able to
ingest 25% less traffic than EXP, and with 29 PNs for DAC, RR is able to ingest
15% less traffic than EXP.

One of the metrics that SODA tries to maximize is the importance. Figure 23
presents the importance of DAC, as optimized by SODA in macroQ; recall that in
our case this corresponds to the net traffic flowing into the sink PEs. Here, we see
that SODA matches the performance of EXP in spite of using a third of the PNs.
On the other hand, RR and RAND perform more than 10% worse than EXP, even
when using 29 PNs. In particular, RR achieves only 84% of the traffic rates at the
sinks attained by EXP and SODA.

Another goal of SODA is to ensure the network is not overloaded. Figure 24
plots the stream affinity, showing the fraction of traffic that is sent on streams that
have both source and destination PEs on the same PN; higher is better. From the
figure, we see that SODA placements fare much better than the hand-placement
on this metric. For instance, with 30 PNs, the SODA placement for LSD sends less
than 30% of the traffic over the network (over 70% on the same PN); compared
to 66% for EXP with 82 PNs. In addition to helping reduce network congestion,
this also contributes to the stronger throughput results obtained by SODA, since
the overhead of sending to a PE on the same PN is lower. Naturally, RAND and
RR fare poorly on this metric since they do not use stream information in their
placement algorithm. Thus, they do not utilize the network wisely and in fact are
susceptible to exceeding the network capacity. For DAC, with 9 PNs, SODA places
20% of the traffic on the same PN, resulting in significantly larger ingest rate than
any of the other schemes.

In all our experiments, we observe that SODA requires significantly fewer PNs,
and utilizes much less network capacity to perform as well, if not better than, a care-
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fully constructed expert placement. Furthermore, we see that naive approaches like
RAND and RR perform worse than SODA in general. This illustrates the strength
of the scheduler, and its ability to schedule effectively in overloaded systems.

8. RELATED WORK

Stream processing systems have been an active area of research in recent years. Ex-
ample systems include Borealis [Abadi et al. 2005], TelegraphCQ [Chandrasekaran
et al. 2003], STREAM [Arasu et al. 2003], Aurora and Medusa[Zdonik et al. 2003].
These systems process voluminous quantities of incoming stream data, typically
performing relational operations such as joins and selections on them. In contrast,
System S is much more general, allowing arbitrarily complex operators, including
relational ones.

Most of these stream processing systems are designed to be run on more than
one PN, and thus there has also been work on scheduling and load-balancing the
operators. While these scheduling approaches have some of the flavor of the work
we present here, none targets our problem exactly. We describe some of these
related approaches here.
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The FIT algorithm [Tatbul et al. 2007] is a load-shedding algorithm which intel-
ligently drops load. Determining where best to drop load can be quite a complex
problem, since dropping at a particular operator has an effect on the downstream
operators, sometimes an unintended one. In some cases, shedding load on a par-
ticular operator increases the resources for other operators on that PN, and so
could increase load at PNs downstream. FIT cleverly addresses this problem in a
distributed way, but without a global notion of importance. The SODA scheduler
provides this same functionality as part of its resource allocation and scheduling,
and does so in a way that takes into account the processing graph for a job and the
total system objectives.

Xing et al. [Xing et al. 2006; Xing et al. 2005] addresses the problem of variance
in stream rates. Both papers describe a way to distribute the load so that changes
in input rate have a smaller chance of overloading the system. However, they do
not address the case when the system is overloaded, and make no decisions about
job admission.

Pietzuch et al. [Pietzuch et al. 2006] provides a scheduling algorithm for a wide-
area network that places operators so as to minimize network latency. In the local
area network that we address, bandwidth, not network latency, is the main concern.
In addition, their work does not address the problem of job admission. Lakshmanan
et al. [Lakshmanan and Strom 2008] also addresses scheduling to minimize latency.

The STREAM project [Motwani et al. 2003] has goals somewhat similar to those
presented in this paper. Their system handles queries in an SQL-like language.
When resources are tight, they revise queries by dropping packets and/or changing
internal parameters.

Xia et al. [Xia et al. 2007] address admission control problem in a hypothetical
stream processing systems. Their model assumes a linear processing graph. In
other words, input stream is processed, successively, by a series of operators. Thus,
no operator takes input from more than one source stream.

9. CONCLUSIONS

In this paper we have described SODA, a new scheduler for very large-scale dis-
tributed stream processing applications. This scheduler is a major component in
the System S project. We believe SODA is practical, novel, and effective. This
paper is intended to be as complete a description of SODA as we can practically
provide, focussing on the mathematical details. We have provided an introduction
to System S , an introduction to the scheduling problem, an overview of the solu-
tion, descriptions of the input data and the modules that determine these data,
and an experimental analysis.

There are many interesting SODA variants and related tools that space prevents
us from describing completely. We list three of these here.

—While System S is stream-oriented there will always be more traditional work-
loads which coexist with the streaming applications. Traditional jobs have end
times in addition to start times. We therefore refer to them as non-continual (NC)
jobs. We have designed a companion scheduler for these workloads, known as
NC-SODA. The streaming and non-continual problems contain surprising analo-
gies.
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(1) Instead of PEs we consider tasks with finite execution times.
(2) In the streaming problem jobs consist of PEs interconnected with streams into

a dataflow graph. In the non-continual problem we consider jobs consisting
of tasks which are interconnected via precedence constraints.

(3) In the streaming problem we have value functions. In the non-continual
problem we have penalty functions (such as response times, completion times,
lateness and tardiness) which depend on the completion of the makespan task.

(4) In the streaming problem we have value functions which increase with allo-
cated resources. In the non-continual problem we have execution times which
decrease with allocated resources.

(5) Instead of maximizing total importance we will attempt to minimize the total
penalties.

(6) Instead of the RFL we learn the relationship between task execution times
and allocated resources.

For further details see [Wolf et al. 2007].
—Note that communications between PEs in System S are long-lived, on the or-

der of minutes or more. So there is a natural affinity between System S and
circuit switching. Optical Circuit Switches (OCS) provide the benefits of circuit
switching, using mirrors to allow the configuration of the network to be changed
as needed. The overhead of making these changes is sufficiently low to allow
such changes on an epoch by epoch basis. An OCS prototype of System S has
been built, and an enhanced scheduler, OCS-SODA, makes network topology
configuration decisions in addition to its usual optimizations. For more details
see [Schares et al. 2009].

—We have noted that the SPADE compiler can partition operators into PEs for
efficiency. We have built an optimizer named COLA to help solve this difficult
optimization problem. In order to maximize throughput, COLA attempts to
minimize the processing overhead associated with inter-PE stream traffic while
simultaneously balancing load across the PNs. For further details see [Khandekar
et al. 2009].
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