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ABSTRACT

The design of composite service deployments (including software,
hardware, network and storage), is complicated due to multiple cross
cutting concerns, both functional and non-functional, and organiza-
tional division of expertise to multiple overlapping domains. In [1],
we proposed an approach for deployment design that includes the
usage of an abstract requirement graph, and its refinement into a
concrete (physical) “desired state” deployment topology using a set
of fine grained transformation rules expressing configuration knowl-
edge, best practices and policy. The approach reduces the amortized
complexity of the deployment process, and the associated risk, and is
suitable for a distributed deployment design activity, where multiple
domain experts collaborate, which is the reality in large enterprises.
IBM Rational’s deployment modeling platform is based on this ap-
proach.

In this paper, we lay out the theoretical foundations of the graph
transformation approach for distributed design of composite service
deployments. We propose a formal model for deployment design
based on the Double Push Out (DPO) graph transformation tech-
nique. Our formal model includes a configuration domain containing
abstract and concrete graph classes, and a configuration framework
associating a graph transformation set with a configuration domain.
We formally define what it means for a configuration framework to
satisfy correctness, completeness and convergence. We demonstrate
the approach on an example configuration framework (in the area of
communication networks). We prove that the example configuration
framework satisfies correctness and convergence, weak complete-
ness, but not completeness.

1. INTRODUCTION

2. BACKGROUND AND CONTRIBUTION

The science of system and configuration management is
concerned with reducing the total cost of ownership as-
sociated with large IT infrastructures and optimizing their
multi-objective performance. Most academic work in sys-
tem management focuses on optimizing a particular aspect,
such as optimizing the placement of new components, per-
formance tuning, or managing the configuration of individual
components in isolation. In our research, we focus our atten-
tion on challenges that arise specifically in deployments of
composite applications in distributed environments. Some of

the specific challenges are attributed to the the complex, and
often implied, cross dependencies between different types
of resources such as software, system and network. Large
organizations suffer from extreme inefficiencies in compos-
ite deployments that manifest themselves in unexpected and
unpredictable labor cost and time spent.

We attribute the complexity, cost and unpredictability to
the compositional nature of the deployment: multiple depen-
dent components must be cross configured correctly, while
satisfying cross-cutting concerns such as performance, avail-
ability, and security, and obeying organizational policy. It has
been shown ( [2, 3]) that most Internet service failures are
due to operator mistakes, where mis-configuration is the most
common mistake. In [4], a formal model is offered to quantify
the complexity of the configuration process and it is claimed
that a main source of complexity for operators is the need
to cross configure systems consistently where parameter val-
ues must be copied across distant locations (both in time and
space).

Another complicating aspect that is often overlooked is
the large and distributed nature of the organization responsi-
ble for composite deployments. In large enterprises, multiple
domain experts are involved in the deployment design and
planning process, dividing the work to multiple, often over-
lapping, areas. A typical organization will be divided to teams
separetly responsible for software, system and network con-
figuration. Further, the software team may be subdivided
to application vs. database experts; additional teams may
be responsible infrastructure security, or performance tun-
ning. This division, while necessary, greatly complicates the
process, as decisions made by one expert affect the set of
valid choices for other expert. These groups have no for-
mal way to communicate the decisions they make, and their
reasoning. Large enterprises report weeks wasted due to mis-
communications. Any solution to the composite deployment
and configuration problem must take into account the dis-
tributed nature of the deployment design process.

In [1], we proposed a new approach to address the chal-
lenges involved in composite deployment design. Our ap-
proach is based on a semantically rich formal language to de-
scribe deployment topologies, requirements and constraints
in different levels of abstractions. Abstract topologies de-



scribe the high level structure of the topology (e.g., number
of tiers, and division into zones) and the associated set of
requirements, such as communication and capacity. Concrete
topologies map these requirements to a detailed description of
software stacks, network topologies, and storage. These con-
crete topologies include a detailed configuration specification
and can serve to guide the actual deployment.

Further, in our approach we apply a set of model transfor-
mation rules to iteratively transform an input logical topology
into a realizing concrete topology. Each transformation rule
maps one requirement to a resource configuration structure
specification implementing it. The same set of transformation
rules can be reused in multiple deployments. The deployment
design process proceeds in iterations where transformation
rules are selected and applied in order to consistently refine
the input requirement graph.

The benefits of our approach include support for a col-
laborative process among the different teams involved where
decisions made are formally communicated through the use
of the deployment model. The amortized complexity of the
deployment process is reduced and the degree of assurance
and predictability is increased due to the consistent use of
model transformations that formally codify organizational
policy and configuration rules. The set of transformations,
defined once, can be reused in multiple different design ac-
tivities, in or across organizations. The set of transformations
may also vary to account for organization specific policy.
IBM’s Rational recently released a deployment modeling
tool (packaged as part of the Rational Software Architect
7.5). that is based on the principles outlined here [5].

In this paper, we develop a theoretical framework to for-
malize the study of our approach for composite deployment
design. We develop a formal model, where we use typed
(attributed) graphs to represent abstract and concrete deploy-
ment topologies. We use the Double-Pushout graph trans-
formation technique (e.g., [6]) to formally represent model
transformation rules. In our formal model, a configuration
domain includes definitions of the classes of abstract (require-
ment) graphs, concrete (physical) graphs, and a realization
relationship that maps abstract graphs to valid concrete im-
plementations. Note that an abstract requirement graph may
have multiple valid implementations. The construction of a
valid implementation for a given input will depend on many
different factors such as organizational policy, and situational
resource state and availability. A configuration framework
includes a configuration domain and a set of transformation
rules that codify a set of valid choices involved in the deploy-
ment design. The output of a deployment design process is
a concrete graph that is a valid implementation of an input
requirement graph. The deployment design process proceeds
iteratively, where at each step a graph transformation rule is
applied in a certain location in the graph. Note that the pro-
cess lends itself to a distributed application where different
experts will apply different subsets of the rules. The current

topology is used to formally communicate requirements and
decisions.

Further, we define and investigate key properties of con-
figuration frameworks; we define what it means for a set of
transformations to satisfy properties of completeness, conver-
gence, and correctness w.r.t. a given configuration domain.
We apply our formal model in the area of communication
networks, where we formally define the classes of abstract
and concrete graphs, the refinement relationship and an ex-
emplary set of transformation rules (that is by itself useful for
practical network configuration planning). We investigate the
properties of our network framework and prove that the trans-
formation set satisfies correctness, convergence, weak com-
pleteness, but not strong completeness.

To summarize, the novel contribution of this paper include

– Formal model for the investigation of the graph transfor-
mation approach to deployment and configuration design.

– Formal definition of correctness, completeness and con-
vergence properties.

– Demonstration of the approach in the area of network
configuration: the NET framework.

– Proof that NET satisfies correctness, weak completeness
and convergence, but not strong completeness.

The structure of the paper is as follows. In the rest of this
section we elaborate on the motivation for this work, and we
review related works. Next, in Section 3, we define a formal
model for deployment and configuration design using graph
transformations. In Section 4, we introduce a specific exam-
ple: the NET CM framework, for which we formally define
the classes of abstract and concrete graphs, the realization re-
lationship, and a set of transformation rules. In Section 5,
we formally define key properties of CM frameworks. Last,
in Section 6, we prove that the NET CM framework satis-
fies correctness, weak completeness and convergence, but not
strong completeness. We conclude in Section 7 with a short
summary.

2.1. Motivation

Configuration design involves multiple roles, and is compli-
cated due to the need to incorporate knowledge from multiple
management domains, understand and respect cross-domain
resource configuration dependencies and constraints, and also
honor and apply case-specific policy rules.

In our approach, a solution design process starts with a
logical topology representing the components of the solution
and their requirements. For example, Figure 1(a) shows a log-
ical topology representing a typical three-tier Web Service
with three logical nodes labeled web, app and data (of type
LDNode). Each node represents one or more servers execut-
ing a defined set of applications. The annotation filtered =
true on the link between the app and data nodes indicates
that communication between the link should be secure.
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In each design iteration step, a transformation rule is ap-
plied to the current topology in order to replace an abstract
requirement with a concrete structure representing a possible
implementation. In many cases, there will be more than one
possibility to satisfy a requirement. The process completes
when the current topology is fully concrete (physical). The
resulting topology describes a concrete resource configura-
tion that satisfies all requirements in the input topology. Fig-
ure 1(b) shows a possible concrete topology that corresponds
to the logical topology in the same figure. Note that there can
be many different concrete topologies that realize a given log-
ical topology.
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Fig. 1. Logical and Concrete topologies.

Hereafter, we informally present a set of transformations
that can be used to construct the exemplary concrete topol-
ogy (Figure 1) from the input logical topology (Figure 1). In
fact, these are the same transformations that will be formally
defined and explored later in subsequent sections. In our in-
formal representation, each transformation rule contains a left
hand side pattern, and a right hand side transformer. The pat-
ten is matched against the current topology to define the con-
text, while the transformer informally illustrates the changes
to the topology.

Figure 2 shows two connectivity transformations that
share a common pattern. Both transformers express ways
to replace the abstract requirement of two connected nodes
into a sub graph that describes actual physically connectivity.
The first transformer interconnects the nodes using a com-
mon VLAN. The second, interconnects the nodes using two
disjoint VLANs routed through a firewall.

A third transformation, depicted in Figure 3 is used to
combine two communication paths onto a single interface.
The pattern identifies a logical node containing at least two
connections (network interfaces). After applying the trans-
formation, traffic over one of the connections is routed over
the second connection. A firewall is inserted to ensure that
the traffic pattern remains the same; that is, to prevent traffic
from other nodes connected to VLAN 1 to nodes connected
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Fig. 2. VLAN insertion and firewall insertion transformations.

to VLAN 2. Prior to the consolidation, such traffic was pre-
vented by the node itself, assuming that the multi-homed node
is not routing traffic.
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Fig. 3. Interface consolidation and firewall consolidation transfor-
mations.

Repeated application of the interface consolidation rule
leads to a proliferation of firewalls. The last transformation,
also shown in Figure 3, addresses this problem by convert-
ing two firewall requirements into a single firewall. In this
transformation, any connections to one firewall are moved
to the second firewall and the first firewall is removed from
the topology. This can be done because a firewall is a multi-
homed device that acts as a router in addition to filtering traf-
fic.

Given these transformations, the aforementioned concrete
topology (Figure 1(b)) can be generated from the input log-
ical topology (Figure 1(a)) by sequentially applying (1) the
VLAN insertion transformation on the web-app link, (2) the
firewall insertion transformation on the app-data link, (3)
the interface consolidation transformation on the app node,
and (4) the Firewall consolidation transformation on the two
firewall. See [1] for details.
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2.2. Related Work

Approaches to IT deployment and configuration management
can be roughly divided into two categories: (1) reactive: tech-
niques to diagnose and potentially fix operator mistakes after
they occur (2) proactive: methodology and tools for IT ar-
chitects and operators to design and plan large deployments,
increase the level of governance and assurance, and reduce
the risks for mistakes. Clearly, both approaches are needed
and are complementary. IT administration tends to be a bit
more dis-organized and ad hoc in smaller companies, while
in large enterprises, there is a serious attempt to put some
order into the mess by adopting a clear methodology and a
comprehensive set of tools for IT management. Even with the
best attempt to follow a precise methodology, including pre-
execution design, and review phases, techniques to discover
mistakes and configuration drifts at runtime will be useful.

In the first category, many works attempt to discover, re-
port, and potentially even automatically fix configuration er-
rors. Many of these works focus on individual servers, irre-
spectful of their potential role in a larger composite service. In
[7] mis-configurations in stand alone servers are diagnosed by
pinpointing the instant in time where the system transitioned
into an erroneous state. In [8], correctness constraints are au-
tomatically generated by analyzing a large number of Win-
dows registries. Similarly, In [9], Windows registries of mal-
functioning servers are compared against registries of healthy
servers in an attempt to pin-point the problem. [10] use sta-
tistical techniques and a large sample of servers to attempt to
automatically fix problems. All of the aforementioned works
focus on single servers, cross dependencies and inconsisten-
cies between servers comprising a composite service, result-
ing in an erroneous service behavior, are not handled. The
focus of our work is to address the complexities that arise in
composite service deployment and configuration.

Still focusing on the first approach (reactive), Validation
[2] shares similarities with our work in focusing on Internet
Services where intricate cross dependencies between config-
uration of multiple components exist. They attempt to de-
tect operator mistakes by proposing a validation environment,
to validate the new configuration state before re-configured
components are migrated into the running system. [11] at-
tempts to correct configuration errors by understanding inter-
dependencies between components and automatically gener-
ating configuration files based on the semantic knowledge.

In contrast to the works described above, the approach
described in this paper is “proactive”. It focuses on pro-
viding methodology and tools for the design and planning
of complex deployments such that constraints and cross-
dependencies are evaluated at design time to create a detailed
“desired state’ topology specification (plan) that satisfies
these constraints and dependencies “by design”. A few other
works followed the same path. The work described in [12],
is a tool for IT architecture design based on the Architectural
Description Standard [13]. While the tool is used extensively

by IBM Global Services, it is manily used to describe IT
architecture, and is not suitable for detailed deployment and
configuration specification. Thus, it can be used to prevent
only a subset of configuration mistakes and inconsistencies.
SmartFrog [14], also focuses on composite deployments, and
divides the deployment process into specification and exe-
cution stages. In the specification stage, the user defines an
object relationship model that describes the components of
the solution and their interdependencies. This model is in-
terpreted and traversed in order to deploy the solution. The
focus on a declarative object-relationship model to describe a
“desired-state” is similar to our work, though the respective
specification languages are quite different: in SmartFrog the
specification language is Java-like, in our case, the language
is based on XML and the topology can be expressed graphi-
cally. More fundamentally, SmartFrog does not discuss a way
to construct the detailed “desired-state”, or how to validate
that indeed this specification meets all of the requirements
and constraints. This paper, focuses on the collaborative and
iterative process to define a detailed “desired-state” model
based on a high level (logical) specification. We describe an
approach to capture and leverage functional configuration
rules, policy and best practices as a set of graph transforma-
tions used to iteratively construct the “desired state” topology.

Other works such as [15], and [16] focus on techniques
to automatically generate provisioning workflows to automate
deployments from a “desired state” specification. [15] gener-
ates the workflow using topological traversal of the graph as-
suming that temporal dependencies are included. In [16] we
use AI planning techniques to match the desired state model
to any given set of automation building blocks providing that
they declare their requirements and affects. In contrast, this
paper focuses on the construction of the “desired state” topol-
ogy specification. The detailed topology that is the output of
the distributed design process can be used as input to the
workflow generation phase for automatic workflow genera-
tion (e.g., as we describe in [16]).

Last, cfengine [17] and LCFG [18] are two examples of
technologies that attempt to automate the IT configuration.
cfengine is based on a directive language that describes how
a large class of machines should be configured. Similarly,
LCFG is based on a declarative description of some aspects
of the installation. These works are best suited for cases were
a large number of individual resources have to be configured
in a similar manner. The focus is on starting servers and in-
stalling software, not the configuration of installed software
components. Both cfengine and LCFG have no semantic un-
derstanding that a set of resources comprise a higher level
composite service, thus there is no way to infer and drive
cross-configuration of components necessary for the correct
behavior of the service as a whole.

Graph Grammar. Graph Grammer originated in the
60’s and was applied significantly in multiple areas such as
software engineering, pattern recognition, and even biology.
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Multiple techniques as been proposed such as the Double-
Pushout (DPO) approach, the node labeled controlled (NLC)
approach. For a comprehensive overview of these and other
graph transformation techniques see [6]. Numerous works
focus on development of general purpose or specialized tools
for graph transformations (e.g., PROGRESS and AGG) -
see [19] for a comprehensive overview of these and other
tools.

A substantial amount of research applies graph transfor-
mations in diverse areas. In software engineering research,
graph transformations are used in the design of a software
component model used in the design, development and life
cycle of software (see, e.g., [20], [21], [22]). In [23]
graph transformations are used to manage versioning of soft-
ware under development. In [24], graph transformations
are used to formally codify the permissible set of configura-
tion changes at runtime. We are not aware of any work that
attempts to use graph transformations in the design of IT
deployments.

3. FORMAL MODEL

In this section we define a formal model for the multi-domain
investigation of software and system deployment and config-
uration design using graph transformations. We demonstrate
the approach in the area of network connectivity configuration
design.

3.1. Preliminaries

Our graphs are node and edge labeled.

Graphs

Given two fixed alphabets ΩV and ΩE for node and edge
labels, respectively, a (labeled) graph (over (ΩV , ΩE)) is a
tuple G = 〈GV , GE , sG, tG, lGv , lGe 〉, where GV is a set of
vertices (or nodes), GE is a set of edges (or arcs), sG, and
tG: GE → GV are the source and target functions, and lGV :
GV → ΩV and lGE : GE → ΩE are the node and edge label-
ing functions, respectively. A graph morphism f : G → G′

is a pair f = 〈fV : GV → G′V , fE : GE → G′E〉 which pre-
serve sources, targets, and labels. The category having labeled
graphs as objects and graph morphisms as arrow is called
Graph. We interchangeably refer to node labels as types. We
later extend the definition of our graphs to include attributes.

Given a category C and two arrows b : A → B, c : A →
C of C, a triple 〈D, g : B → D, f : C → D〉 is called
pushout of 〈b, c〉 if (1) [Commutativity] g · b = f · c, and (2)
[Universality] for all objects D′ and arrows g′ : B → D′ and
f ′ : C → D′, with g′ · b = f ′ · c, there exists a unique arrow
h : D → D′ such that h · g = g′ and h · f = f ′.

Graph Transformations

For a comprehensive overview of graph transformations
the reader is referred to [6]. We will be using one of the
most common graph transformation techniques called Double
pushout (DPO) (see [6]). In the Double Pushout (DPO) ap-
proach for graph transformations, a graph transformation rule
is defined as a graph production, as follows. A graph pro-
duction p : (L l← K

r→ R) is composed of a production
name p, and a pair of injective graph morphisms l : K → L,
r : K → R. The graphs L, K, and R, are called the lhs (left
hand side), interface, and rhs (right had side), respectively.

A double-pushout (DPO) diagram is a diagram as in fig-
ure 4, where 1 and 2 are pushouts. Given a rule p, the cor-
responding direct transformation on a graph G is denoted by
G

p,m⇒ H , where m = (m1,m2,m3) is termed the context.

L K R
l r

G D H

m1 m2 m3

l* r*

1 2

Fig. 4. Double Pushout diagram

Intuitively, L specifies a sub-graph in the source graph G
that is replaced when the production is applied with R, where
K serves as an interface. Thus, to apply a production p to a
graph G we find a match m : L → G; we delete nodes and
edges in L \ K; and we glue nodes and edges in R \ K to
produce a resulting graph H .

Formally,

Definition 1. Given a graph G, a graph production p : (L l←
K

r→ R), and a match m : L → G, a direct derivation from
G to H using p based on m exists if and only if the diagram in
Figure 4 can be constructed, where both squares are required
to be pushouts in the category Graph. In this case we write
G

p,m⇒ H .

For simplicity, for our needs, a simpler set theory defini-
tion may be used. Assume that all graphs are defined over the
same alphabet (Ωv, ΩE) (so that L ∪R is defined).

Definition 2. A graph transformation rule can be repre-
sented as a production p : L → R. Note that K can be
reconstructed as L ∩ R, thus can be omitted. A direct trans-
formation from G to H using rule p : L → R is given by a
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graph morphism m : L ∪ R → G ∪ H , called occurrence,
such that

1. m(L) ⊆ G and m(R) ⊆ H , (i.e., the left hand side is
embedded into the pre-state and the right-hand side into
the post-state).

2. m(L \ R) = G \H , (i.e., the part of G matched against
the parts of L not in R is deleted)

3. m(R \ L) = H \ G (i.e., the parts of R not in L are
added).

The resulting graph H is determined up to isomorphism
by the rule p : L → R and the occurrence m. Figure 5, is an
example of a graph transformation rule, and its application to
a graph G to produce a graph H (the use of attributes will be
explained later in this section).

Definition 3. A sequential derivation (over G) is either a
graph G (called an identity derivation and denoted by
G : G

∗→ G), or a sequence of direct derivations, ρ =
{Gi−1

Pi⇒ Gi}i∈1 ··· ,n such that pi is a production of G for
all i ∈ 1, · · · , n. In the last case, the derivation is written as
ρ : G0

∗⇒G Gn, or simply ρ : G0
∗⇒ Gn. If ρ : G

∗→ H
is a (possibly identity) derivation, then graphs G and H are
termed the starting and the ending graphs of ρ, and will be
denoted by σ(ρ) and τ(ρ), respectively. The length of a se-
quential derivation ρ is the number of direct derivations in ρ,
if it is not identity, and 0 otherwise. The sequential composi-
tion of two sequential derivations ρ1 and ρ2 is defined if and
only if τ(ρ1) = σ(ρ2), and denoted ρ1; ρ2 : σ(ρ1)

∗⇒ τ(ρ2)
(and is obtained by identifying τ(ρ1) with σ(ρ2)).

3.2. Formal Model for Deployment and Configuration
Design with Graph Transformations

A configuration management domain (CM domain, in short)
identifies a class of abstract graphs, representing logical
deployment structure and requirements; a class of concrete
graphs, representing concrete deployment implementation
possibilities; and a refinement relationship identifying the
valid concrete implementations for each abstract requirement
graph. Note that for an abstract requirement graph, there
could be any number (incl. 0) of valid concrete implemen-
tations. Graphs in the abstract class are valid inputs to the
deployment and configuration design process, and graphs in
the concrete class are possible outputs.

Formally,

Definition 4. A configuration management (CM) domain (in
short domain) D is a tuple (ΩV = ΩA

V ∪ ΩC
V , ΩE = ΩA

E ∪
ΩC

E ,GA,GC , ΓD), where, GA (GC , resp.) is a class of graphs
termed abstract (concrete, resp.) over the node alphabet ΩA

V

(ΩC
V , resp.) and edge alphabet ΩA

E (ΩC
E , resp.). The refine-

ment relationship ΓD ⊆ GA × GC identifies valid concrete
implementations. For graphs G ∈ GA and H ∈ GC , we say
that H is a valid implementation of G iff (G,H) ∈ ΓD.

Definition 5. A configuration management framework is a
pair (D, T ) where, D is a configuration management domain
as defined above, and T is a set of productions (also termed
transformations), representing configuration rules, defined
over the class of all graphs with alphabet ΩV and ΩE .

As discussed in Section 1, the motivation for the formal
model stems from the need to support collaboration between
domain experts in the area of deployment design and plan-
ning. A user in a role of an architect may define an abstract
model representing a deployment on a high level, including
requirements, and constraints. The architect does not have
to understand the specifics of the infrastructure such as sit-
uational resource availability, network topology, or cost con-
straints.

At this point there may be multiple possible deployments
that satisfy all of the requirements. To design a concrete de-
ployment, multiple design decisions have to be made, such
as selection of the specific middleware vendor and hardware
technology, defining the physical network topology, and the
configuration.

Large organizations usually have different experts respon-
sible for defining the network configuration, allocating re-
sources, and defining the configuration of the middleware el-
ements. Each such domain expert will have to make design
decisions based on policy, cost, resource availability and so
on. In multiple cases, a decision of one domain expert will
affect the valid choices available for a different domain ex-
pert (e.g., due to version competability issues, selection of a
particular product and version will limit selection choices of
other products and versions in different parts of the solution).

In our model, we formalize the collaborative design pro-
cess using a set of transformation rules. Domain experts de-
fine transformation rules in their area of expertise to cap-
ture different aspects that have to be taken into account in
the decision making process, and different implementation
choices. The transformation rules are reused in multiple de-
ployment design activities. Each transformation rule, when
applied, changes the state of the model and the sub set of ap-
plicable transformations. The interaction between the domain
experts is formalized through the use of the model that serves
as an interchange format. Usage of transformation rules en-
sures consistency, and traceability, and reduces the risk of
mistakes. At the end of the process a graph in the concrete
graph class is reached that describes a detailed deployment.

Note that the set of transformation rules may and likely to
vary between organizations, and so is the definition of what
is considered a valid implementation for a given deployment
requests (formally, the refinement relationship). Clearly, it is
important to ensure that the set of transformations used is cor-
rect w.r.t. a given refinement relationship, namely, applying
transformations to a logical graph will only result in concrete
graphs that are considered valid implementations of the ab-
stract graph. The correctness property, as well as other prop-
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erties such as convergence and completeness, will be formally
defined and investigated in subsequent sections.

The deployment design activity is formally defined as fol-
lows.

Definition 6. Given a configuration management framework,
(D, T ), the deployment design activity over (D, T ) is con-
cerned with iteratively identifying a sequence of direct deriva-
tions ρ : G

∗⇒ H , for an input abstract graph G ∈ GA, where
H ∈ Gc.

Incorporating Attributes

It has been noted (e.g., in [25]) that graphs and graph
transformations have limited applicability to software devel-
opment design (and other areas) without extending the graph
definitions to include attributes. The paper [25] presents and
discusses the theory of attributed graphs, and graph transfor-
mations. For our needs, it is enough to consider a some how
limited treatment of attributes in graphs.

In this paper, attributes may be associated with nodes, and
edges. In our domain graphs, attributes are assigned values.
In a production rule, attributes may take parameters, may be
associated with constraints, or functions producing their value
set.

Consider Figure 4, representing a Double Pushout con-
struct. Attributes on nodes and edges on the lhs graph L have
the affect of further restricting valid matches (m1). In partic-
ular, constraints associated with attributes must be evaluated
to true on the corresponding attribute values in G. For a valid
match, the attributes in L act as parameters that take their val-
ues from the corresponding attributes in G.

In the rhs graph R attributes are associated with functions
that are exercised to generate new attribute values. If an at-
tribute in R is assigned a value, then this value is interpreted
as the singleton function. Note that we assume that attributes
can be uniquely identified, thus a match implicitly produces
a mapping between the respective attributes in the source and
target graphs.

As an example, Figure 5(a) is a definition of a production,
where one of the nodes is associated with an attribute x and a
constraint x ≤ 10. The rhs graph R defines a function x′ =
a + 2 associated with x that will be used to generate a new
value. Figure 5(b) shows how the production is applied to a
graph G to produce a graph H . First, a valid match is found
(also satisfying the constraint on x) and a is assigned the value
1; second, the nodes and edges in L\K are deleted; third, the
nodes and edges in R \K are added; last, the new value of x
is calculated.

For readability and space conservation, the full formal
treatment of attributes is deferred to the journal version of
this paper.

L K R

x=a,a 10 x=a+2

G: H:

(a)

x=1 x=3
(b)

Fig. 5. Syntetic example of a production with attributes

4. NETWORK CONFIGURATION DESIGN

In this section, we show how we apply the formal model to
the area (domain) of communication networks. In this exam-
ple, abstract graphs represent logical communication require-
ments, and concrete graphs represent physical network con-
figuration.

4.1. Definition of the NET Domain

Alphabets

We begin by defining the alphabets for our domain ab-
stract and concrete graph classes.

– ΩV = ΩA
V ∪ ΩC

V , where ΩA
V = {V Node}, ΩC

V =
{V Node, V FW,PFW,V LAN},

– ΩE = ΩA
E∪ΩC

E , where ΩA
E = {V CON, V CONfiltered},

ΩC
E = {V CON, V CONfiltered, CON, REALIZE}.

Attributes: In our domain definition, every edge with
a label in the set {V CON, V CONfiltered} is associated
with a boolean attribute satisfied (taking values in the set
{true, false}). Nodes of type V LAN and V FW are asso-
ciated with a boolean attribute match.

Abstract and Concrete Graph Class Definition We de-
fine the NET domain abstract and concrete graph classes.

The class GANET of abstract graphs (also termed in-
put or requirement graphs) includes all graphs over ΩA

V

and ΩA
E where for every edge e (with labels V CON or

V CONfiltered), the attribute satisfied is set to false, and
all match attributes on both V FW nodes and V LAN nodes
are set to false.

The class GCNET of concrete (also termed, output) graphs
includes a subset of graphs over ΩC

V and ΩC
E satisfying the

following conditions:

1. (Type rules) V CON and V CONfiltered edges con-
nect nodes with labels LDNODE; CON edges connect
nodes of type V LAN with nodes in the set

7



{V FW,PFW,LDNODE}; REALIZE edges con-
nect V FW s and PFW s.

2. (communication-realization rule) All edges with labels in
{V CON, V CONfiltered} have satisfied = true

3. (firewall-realization-1 rule) All V FW nodes have match =
true.

4. (firewall-realization-2 rule) For every pair of V FW node
t and PFW node t′ connected via a REALIZE edge:
every V LAN node connected to t is also connected to t′.

As an example, consider Figure 9, where G ∈ GANET and
H1,H2 ∈ GCNET .

The Refinement Relationship ΓNET

To complete the definition of the network configuration
domain NET , we define the refinement relationship ΓNET .
Recall that in a CM domain the refinement relationship Γ
identifies for each abstract graph the set of concrete graphs
that are considered valid implementations of it.

To define the implementation function ΓNET we need the
following preliminary definitions. An unfiltered requirement
path in a graph G ∈ GANET is a path between two nodes
that does not contain any V CONfiltered edges. A direct
connectivity requirement exists between two nodes s, t in G
if they are connected by a V CON edge. For a graph H ∈
GCNET , we define the physical configuration subgraph H∗ as
the subgraph of H obtained by deleting all V FW nodes (and
their adjacent edges), and all V CON and V CONfiltered
edges. Note that H∗ is the portion of the graph that corre-
sponds to the actual physical configuration of the network. An
unfiltered physical path between two V Nodes s, t in H∗ is a
path between s and t that does not contain any PFW nodes.
A physical direct connectivity exists between two V Nodes
in H∗ only if they are both connected to the same V LAN
node. As an example, consider again Figure 5, where graphs
H1 and H2 are shown with their respective physical configu-
ration subgraphs H∗

1 and H∗
2 (resp.).

Finally, the definition of ΓNET follows. For graphs G ∈
GANET and H ∈ GCNET , let H∗ be the physical configuration
subgraph of H .

(G,H) ∈ ΓNET iff

1. For every V Node v ∈ G, v ∈ H (up to isomorphism).
(i.e., no V Nodes are deleted.)

2. A pair of V Nodes is disconnected (no path) in H∗ only
if they are disconnected (no path) in G.

3. There exists an unfiltered physical path between two
V Nodes in H∗ only if there exists an unfiltered require-
ment path in G between the corresponding nodes.

4. There exists a physical direct connectivity between two
nodes in H∗ only if there exists a direct connectivity re-
quirement between the corresponding nodes in G.

Note that the definition of the refinement relationship
ΓNET above is concerned with maintaining the communi-
cation requirements in the concrete implementation. First, it

ensures that no nodes get disconnected. Secondly, it allows
for stricter implementation in some cases: a communica-
tion requirement is considered satisfied even if only filtered
routes exist. Third, a communication path can be created be-
tween two disconnected nodes only if the path is filtered (the
reasoning is that proper firewall rules can limit or prevent
communication). Last, direct communication is allowed only
if in the input graph the corresponding nodes are directly
connected via a V CON edge.

As an example, consider again Figure 9 where the graphs
G,H1,H2, and the corresponding physical configuration sub-
graph H∗

1 , H∗
2 are shown. Note that both (G,H1) ∈ ΓNET

and (G,H2) ∈ ΓNet. The difference between H1 and H2 is
that V Node 3 is connected to only one V LAN in H1 per-
mitting usage of a single homed server to implement V Node
3. H2 in contrast, mandates the use of a dual homed server
for V Node 3 implementation.

Definition of NET Framework

To define a CM framework (NET, TNET ) we now define
the set of transformations TNET .

TNET = {insertFWi}i=1,2∪{insertV LAN, IFMerge}∪
{FWMergei}i=1,2,3.

The transformations are formally defined in Figures 6,7,
and, 8. Note the color coding used to distinguish between dif-
ferent node types.

L K

VCON VCON

satisfied = false satisfied = false

R

VCON

satisfied = true

VLAN

VLAN

VFW

match = false

insertFW1

insertFW2

L K

VCON-filtered VCON-filtered

satisfied = false
satisfied = false

R

VCON-filtered

satisfied = true

VLAN

VLAN

VFW

match = false

VNODE VLAN VFW PFW

Fig. 6. The {insertFWi}i=1,2 family of transformations

The purpose of the InsertFWi transformation group is
mapping connection requirements (expressed as a V CON
edge or a V CONfiltered edge) to an implementation that
includes a firewall. The purpose of the insertV LAN trans-
formation similarly, is to implement a connection requirement
simply by using a virtual Local Area Network (LAN). Note
that these transformations give the user the freedom to chose
if to implement a virtual connection with no explicit require-
ment for a firewall (V CON edge) with or without a firewall.
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L

VCON

satisfied = false

insertVLAN

K

VCON

satisfied = false

R

VCON

satisfied = true

VLAN

L

CON

IFMerge

K R

CON CON
VLANVLAN

VLAN

CON
VLAN

VLANVLAN VFW
CON

CON

matched = false

Fig. 7. The insertV LAN and IFMerge transformation

FWMerge1

L K R

VFW

matched = false

VFW

matched = false

VFW

matched = true

PFW

FWMerge2

REALIZE

VFW

matched = false

VFW

matched = false

VFW

matched = true

PFW

REALIZE

VFW

PFW

VFWVFW

PFW

FWMerge3

L K R

L K R

VFW

matched = 

true

PFW

REALIZE

VLAN
CON

CON

VFW matched = true

PFW

REALIZE

VLAN
CON

VFW matched = true

PFW

REALIZE

VLAN
CON

matched = false matched = true

Fig. 8. The {FWMergei}i=1,2,3 family of transformations

Also note the use of the attribute satisfied to prevent multi-
ple applications of the same transformation on the same con-
text.

The purpose of the IFMerge (read: interface merge)
transformation is to allow usage of the same network inter-
face to implement two different connections. The transfor-
mation will have a side affect of creating a route between all
nodes connected to the two virtual LANs. The addition of a
firewall on the route between the virtual LANs is needed to
prevent undesirable connectivity as a result of this side affect.
The IFMerge transformation is necessary, since in a given
infrastructure the number of interfaces per server is bound
(usually it is a small number between 1 to 3).

Last, the FWMergei transformation group maps virtual
firewalls (V FW ) to physical firewalls (PFW ). A V FW
node represents a requirement for firewall usage. In practice,
a single firewall can be used to filter multiple different con-
nections. The set of REALIZE edges define the mapping
between virtual firewall requirements (V FW ) and actual
firewalls to be used (PFW ). FWMerge1 adds a new PFW
node to the graph; FWMerge2 maps a virtual firewall re-
quirement to an existing physical firewall (to allow multiple
virtual firewall requirements to be implemented with a single
physical firewall); the goal of FWMerge3 is to connect ev-

ery V LAN adjacent to a V FW also to the realizing PFW
(so that H∗ will have all the information). The matched
attribute ensures that a virtual firewall is realized by at most
one physical firewall.

As an example, consider Figure 9. The graph H1 can be
constructed from G by applying the following sequence of
transformations: (1) InsertV LAN on edges x and z, (2)
InsertFW1 on edge y, (3) IFMerge on V Node 3, (4)
FWMerge1 on V FW 5, (5) FWMerge2 on V FW 6 (and
the PFW added in the previous step), (6) three applications
of FWMerge3 to connect all V LAN nodes to the PFW
node.

G:

H1:

H1*:

H2:

H2*:

VCON VCONfiltered VCON

Satisfied = F Satisfied=F Satisfied=F
1 2 3 4

x y z

VCON VCON-filtered VCON

VLAN VLAN
VFW

VLAN VLAN

VFW

PFW

Satisfied = T Satisfied=T Satisfied=T

R
E

A
L

IZ
E

REALIZE

VCON VCON-filtered VCON

VLAN VLAN VFW VLAN VLAN

PFW

Satisfied = T Satisfied=T Satisfied=T

R
E

A
L

IZ
E

VLAN VLAN VLAN VLAN

PFW

VLAN VLAN VLAN VLAN

PFW

5

66

Fig. 9. Example of applying transformations in the NET domain

5. FRAMEWORK PROPERTIES

In this section, we define some useful properties for the in-
vestigation of CM frameworks. Specifically, we define what it
means for a set of transformations to satisfy correctness, com-
pleteness, and convergence relative to a given CM domain.

LetD = (ΩV = ΩA
V ∪ΩC

V , ΩE = ΩA
E∪ΩC

E ,GA,GC , ΓD)
be a CM domain, and T is a transformation set over the class
of graphs with alphabets ΩV and ΩE .

To effectively support a deployment design activity, it is
necessary that the set of transformations used, will only lead
to valid concrete implementation. Formally,

Definition 7. A transformation set T satisfies correctness
w.r.t. a CM domain D iff for every sequential derivation
G

∗⇒ H , where G ∈ GA and H ∈ GC , (G,H) ∈ ΓD.

Another question of interest, is if the transformation set
is strong enough to be able to generate all valid solutions.
Formally,

Definition 8. A transformation set T satisfies completeness
w.r.t. a CM domain D iff for every (G,H) ∈ ΓD, there exists
a sequential derivation G

∗⇒ H over T .
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In many cases, it is enough if the transformation set is able
to generate at least one valid solution, in case such solution
exists. Formally,

Definition 9. A transformation set T satisfies weak com-
pleteness w.r.t. a CM domain D iff for every (G,H) ∈ ΓD,
there exists H ′ ∈ GA where (G,H ′) ∈ ΓD, and a sequential
derivation G

∗⇒ H ′ over T .

The next property deals with characteristics of sequential
derivations. For our usage of graph transformations it is some-
times desirable to have a transformation set that cannot pro-
duce infinite sequential derivations. Formally,

Definition 10. T satisfies convergence w.r.t. a CM domainD
iff there are no infinite sequential derivations ρ ∈ T , where
σ(ρ) ∈ GA.

This means that for any input graph, and for any valid ap-
plication of transformations, eventually, a graph H is reached
where there are no applicable transformations. Note that H
may or may not be a member of GC (the later case is termed
dead end).

Convergence is often a desirable property, but not strictly
required. In some cases, if one wants to enable solutions that
include unbound number of objects of a certain type, infinite
sequential derivations are necessary.

6. CORRECTNESS, COMPLETENESS,
CONVERGENCE IN OUR NETWORK CM DOMAIN

We investigate the correctness, completeness and conver-
gence properties in our network domain. Specifically, we
prove that the ΓNET set of transformations satisfies correct-
ness, weak completeness, and convergence, but not complete-
ness w.r.t. the DNET CM domain. Weak completeness is
satisfied even under stricter definition of GC . We also reason
about what is needed to satisfy completeness.

Proposition 1. The transformation set TNET is correct w.r.t.
the CM domain DNET .

proof.
We first observe that none of our transformations delete

nodes. Thus, if a node exists in G it will also exist in any
sequential derivation of G. We also observe, that no V CON
or V CONfiltered edges are ever deleted.

The proof proceeds along the following steps. First, we
define a transitive refinement relationship between graphs, de-
noted Ã. Second, we prove that if G′ is a direct derivation of
G, then G Ã G′. It follows: G

∗⇒ H implies G Ã H . We
complete the proof by showing that if G Ã H and H ∈ GC
then (G, H) ∈ ΓNET .

To proceed with the proof we need the following prelim-
inary definitions. A path in any a graph G (over alphabets

ΩV and ΩE) between two V Nodes is unfiltered if it does not
contain any V FW or PFW nodes, nor does it contain any
V CONfiltered edges.

Consider any two graphs G,G′ over alphabet ΩV and ΩE

(note, for both G, G′ we do not assume membership in the
classes GA or GC). A graph G′ is a refinement of G (denoted
G Ã G′) iff the following conditions are satisfied.

1. (no disconnect) If V Nodes s and t are connected in G
they are also connected in G′.

2. (filtering) There exists an unfiltered path between two
V Nodes in G′ only if such path exists in G.

3. (no regression) If there exists a CON -path (ie, a path
consisting only of CON edges) between two V Nodes
in G then there exists a CON -path between these nodes
in G′.

4. (directness) Two V Nodes are connected to the same
V LAN node in G′ only if either they are connected to
the same V LAN node in G or they are connected via a
V CON edge in G.

The proof that the refinement relationship is transitive
is left as an exercise for the reader (note that transitivity
or property 4 is implied by the fact that no V CON edges
are ever deleted). Consider any two graphs G and G′ (over
(ΩV , ΩE)) where G′ is a direct derivation of G (G T⇒ G′ and
T ∈ TNET ). We prove G Ã G′. We first observe that only the
transformation IFMerge removes edges (it removes a single
CON edge). However, this transformation has the affect of
creating an alternative CON path between the two endpoints
of the CON edge deleted. The “no disconnect” and “no re-
gression” properties follow (for all of the transformations
in TNET ). Next, we observe that only the InsertV LAN
transformation have the affect of connecting two V Nodes
to a same V LAN node, and it is also the only one to cre-
ate a new unfiltered path between two V Nodes. Properties
“filtering” and “directness” follow since the condition for
InsertV LAN is the existence of a V CON path between the
two V Nodes (observe that the V LAN node is a new node
thus no undesired connectivity side affects are possible). This
concludes the proof that G

T→ G′ implies G Ã G′. In fact,
because of the transitivity of the refinement relationship, it
follows that if G

∗⇒ G′ then G Ã G′.
Next, consider G

∗⇒ H , H ∈ GC , and let H∗ be its phys-
ical connectivity subgraph. From the above, G Ã H . First
we prove H Ã H∗. Since H ∈ GC , every V CON and every
V CONfiltered edge has satisfied = true. The only trans-
formations that set the satisfied attribute is InsertFWi and
InsertV LAN . These transformations must have been ap-
plied in the derivation sequence (since in GA satisfied =
false). All these transformations have the affect of creating a
CON path between the respective V Nodes. Since we proved
that all transformations preserve the refinement relationship
the “no regression” property implies that a CON path exists
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between any two V Nodes. Clearly, such CON path is not af-
fected by the deletion of V CON and V CONfiltered edges.
In addition, the firewall realization rules that are part of the
definition of the class GC guarantee that any path containing
a V FW has an alternative path going through the realizing
PFW . Thus deletion of V FW s does not disconnect CON
paths. Properties “no disconnect” and “no regression” follow
for H and H∗. Since H∗ is a subgraph of H clearly “filter-
ing” and “directness” are satisfied. It follows H Ã H∗ and
thus G Ã H∗. Also observe that clearly H∗ ∈ GC .

To complete the proof we show that if for G ∈ GA, G Ã
H ∈ GC then (G,H) ∈ ΓNET . Let H∗ be the physical con-
nectivity subgraph. An unfiltered path in H∗ is guaranteed
to be a unfiltered physical path. The rest of the conditions
constituting ΓNET follow directly from the definition of the
refinement relationship.

ut
Next, we show that our NET framework does not sat-

isfy completeness. Refer to the example in Figure 10. Clearly,
(G, H) ∈ ΓNet but H cannot be sequentially derived by ap-
plying a sequence of transformations in the set TNET . Our
set of transformations introduces a new V LAN node for ev-
ery V CON edge. Consequently, the set of transformations
ΓNET may result in graphs that are non-optimal in the num-
ber of V LANs used. If we were to extend our transformation
set with an infinite number of transformations, each consist-
ing of a lhs that is basically a clique (with increasing size) and
a rhs that adds a V LAN node connected to all of the V Nodes
then this would allow re-use of V LAN without compromis-
ing correctness (an example with 3 LDNodes is shown in
Figure 10).

VCON

VCONVCON
VLAN

G: H:
VCON

VCON

VCON

VCON

VCONVCON

L K

VCON

VCONVCON

R

VCON

VCONVCON
VLAN

(a)

(b)

Fig. 10. Completness property counter example

Next, we show that weak completeness is satisfied.

Proposition 2. The transformation set TNET satisfies weak
completeness w.r.t. the domain DNET .

proof. We only have to apply a single InsertFW1

transformation on each V CONfiltered edge, and a sin-
gle InsertV LAN transformation on each V CON edge to
construct a graph H ∈ GC , where G

∗⇒ H . ut
More interestingly, weak completeness can be proved

even if the class GC is constrained to have only LDNodes

with a degree smaller than a number x, for any x > 1, and/or
the total number of PFW is bound (but not if we also put a
limit on the degree of PFWs). These are very practical con-
straints, since most data center servers have 3 or less network
interface cards. The proof is deferred to the journal version.

Last, we prove convergence.

Proposition 3. The transformation set TNET satisfies con-
vergence w.r.t. the CM domain DNET .

The number of InsertFWi and InsertV LAN transfor-
mations in any sequential derivation G

∗⇒ G′ is bounded
by the number of V CON and V CONfiltered edges in G
(since each one of them sets satisfied to true which prevents
subsequent applications). The number of IFMerge transfor-
mations is bounded by the sum of degrees of all LDNodes
in G (formally,

∑
v∈Gv,l(v)=V Node deg(v), where deg(v) is

the number of adjacent edges) since each such transformation
reduces the degree of a LDNode by 1. The maximum num-
ber of V FW nodes in any graph that is sequentially derived
from G is bounded since it must be smaller that the number of
InsertFWi rules applied plus the number of IFMerge rules
applied (since these are the only rules to add V FW ). Simi-
larly, the maximum number of V LANs is bounded as a func-
tion of the number of InsertFWi and InsertV LAN trans-
formations applied. Last, the number of FWMergei trans-
formations is also bounded. FWMerge1 and FWMerge2

are bounded by the number of V FW , and FWMerge3 is
bounded by the number of (V LAN, V FW ) pairs.

ut
.

7. SUMMARY

In this paper we proposed a theoretical framework for the in-
vestigation of the graph transformation approach for compos-
ite deployment design. We formally defined the concepts of a
CM domain comprising abstract and concrete graph classes,
and the realization relationship. We further defined the con-
cept of a CM framework consisting of a configuration domain
and a set of graph transformations that can be used to con-
struct graphs in the concrete graph class. We defined what
it means for a CM framework to satisfy properties of cor-
rectness, completness and convergense. We demonstrated the
concepts with an example CM domain and CM framework,
termed NET , focusing on configuration of networks for com-
munication. We proved that NET satisfies correctness, con-
vergence, and weak completness.

Future suggested work will explore the expressivness of
the graph transformation approach for distributed deployment
design and its limitations. Another interesting direction is to
quantify deployment complexity reduction and error reduc-
tion using the proposed approach.
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