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ABSTRACT

With wide availability of commodity multi-core systems,istim- instructionsin parallel. So, whereas the trend before was to in-
perative to understand what, if any, changes are neededsb exrease processor speeds between hardware generations, in the last
ing software systems to harness the newly available cortipnéh few years a new trend has emerged where the difference between
power. In this context, this work explores acceleration &filX hardware generations is in the number of cores. Nowadays, it is not
processing systems. Specifically, we investigate paizdiébn of uncommon to find eight cores, even in commodity hardware.
individual XPath queries over shared-address space cwiépro- Of course, to take advantage of these multiple cores, the paral-
cessors. Unlike past approaches that have consideredibutisti |elization of existing software systems comes at a cost. The sys-
setting or ad hoc parallel solutions, ours is the first meittal@nd-  tems often cannot be used as such and might need to be changed.
to-end proposal. Our solution first identifies if a particufPath |ndeed, there has been a lot of interest in systems research, includ-
query should be parallelized and then determines the optima ing database systems research [21], on how to harness this pro-
of parallelizing that query. This decision is based on a-base cessing power. In this context, we investigate here the problem of
approach that relies both on the query specifics and datat&®it how to parallelize the evaluation of XPath [9] queries over XML

At each stage of the parallelization process, we evaluate thiter- documents in a shared-address space multi-core system. To em-
native approaches, namely, data-, query-, and hybridtpaitg. phasize the importance of this problem we note that XML is the de
For a given XPath query, our parallel cost model uses seiscti facto data representation format used nowadays, and XPath queries
and cardinality estimates to compute costs for these diftegiter- are commonly used as such (or as part of XQuery expressions) to
natives. The costs are then fed to parallel query optimizgrden- query XML data. Parallel query evaluation in this setting is as im-
erates an optimal parallel execution plan. We have impléetenportant, and not unlike, the early works on parallel evaluation of

a prototype end-to-end Parallel XPath processing systeminh SQL queries over relational data [15]. In spite of sharing motiva-
tegrates the XPath parser, cost estimator, query optiméet a tion however, the commonalities between the relational/SQL and
parallel runtime library . We use this system to evaluateatfy of XML/XPath settings are few and techniques from the former set-
our proposal by an extensive set of experiments using welisk  ting do not carry to the latter. In what follows, we review some of
XML documents. These results conclusively validate oualper the main challenges in the parallelization of XPath queries.

cost model and optimization framework, and demonstrateitha Consider the XML document in Figure 1(a) (conforming to

is possible to accelerate XPath processing using commoiti-  XMark [25]) whose document tree is shown in Figure 1(b). Assume

core systems. that we want to evaluate the XPath quésy t e/ r egi ons/  to re-
trieve the names of all regions from our document (whedenotes
1. INTRODUCTION the wildcard and can match any element). Should we parallelize

) the evaluation of the query or not? Clearly, this decision depends
For a number of years, the evolution of hardware systems f@ls, o the query itself and on the characteristics of the document.
lowed a rathepred_lctabletrend in terms of processing capabilities;,, XMark, there is usually only a limited number of region nodes,
the latest generation of processors was significantlyfaisé the - ¢.4ch corresponding to a continent. Therefore, our query will access
previous, with the rate of speed increase following clodébpre’s 5 small number of nodes. Given that any form of parallelism
law. However, higher processor speeds did not always @@ g gynected to also incur some cost in the evaluation, it seems that
corresponding gains in system performance (with memorgdipe i, this particular setting any benefits from parallelism are either
and instruction sets often becoming the new performanctebot;,qiqnificant or are alleviated by the cost of parallelism. There-
necks). This led hardware manufactures to consider atféena@- {q0 ' 5 serial execution seems preferable. However, what if a region
chitectures in which multiple processitgresare used to execute node exists for each, say, county in the United States? Then, with
approximately 3,000 possible region nodes, for the same query it
seems reasonable to try to parallelize the evaluation of the query by
considering, in parallel, all the regions, say, by state. In general,
given a document and a query, dust challenge here will be to
decide whether or not to parallelize the evaluation of the query.

For the simple example query, once the decision is made to
parallelize, it is rather straightforward to decidew the query is
parallelized: each core evaluates the initial query over a subset of
the regions (i.e., document), which is an example of what we call a
data partitioning[5] parallelization strategy (more on this later). In



<site>

<regions>...... </regions>
<categories>...... </categories>
<catgraph>...... </catgraph>
<people>...... </people>

<open_auctions>

X regions
<open_auction>

site

open_auctions closed_auctions
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<bidder> operl_aucnon
</date>

</bidder> bidder privacy e annotation
<annotation>

<author> .... </author>

<description>....</description> date ... increase author ... description
</annotation> (b)

<open_auction>
</open_auctions>
<closed_auctions>....</closed_auctions>
</site>

@

/site/lopen_auctions/open_auction[annotation/author and annotation/description and bidder/date and privacy]

(©

Figurel: An Example XML Document: xmark.xml. Thetraversed edges of the tree by the XPath query are highlighted.

reality however, there will be multiple ways to parallelaeuery,
each of which might use a different strategy. To see thissicien

for example the query in Figure 1(c). Assuming that therdésge
number ofopen_auct i on nodes in the document, we might de-
cide to parallelize on the thirstepof the query (hereafter referred
to as apartitioning poin). Data partitioning here dictates that we
evaluate the first three steps of the query sequentiallylzmdgach
core evaluates the predicate over a subset obtie_auct i on
nodes retrieved by the serial evaluation. However, another
parallelization strategy is also possible here. Usingytinery parti-
tioning [5] parallelization strategy, we rewrite the initial quenyo
three new queries, with each of the three predicates of itialin
query appearing in only one of the resulting queries. Fomple,

/ si te/ open_aucti ons/ open_aucti on[ annot ati on/ aut hor ]

is one of the three queries. Then, each rewritten query ikieva
ated by a different core and the final result is computed by the
intersection of results in all the cores.

Given the two alternative strategies, how can we choosetwhic
one to use to parallelize our query? Even if it is clear tha on
of the two strategies is the most promising, how can we be cer-
tain that parallelizing our initial query at a different gtesay, in
annot at i on might not give better response times. In general, for
an XPath query with a total of steps (including steps within pred-
icates), each step could be a candidate partitioning poirdral-
lelization. A parallel query plan might contain a subsethaf parti-
tioning points. Hence the number of possible parallel quay is
O(2"). For a given subset of partitioning points, the paralleicra
strategy at each point, and the order of the partitioningtsainay
further result in differenparallelization plans Coming up with a
way to systematically search and find good parallelizatiangin
this huge search space is tbecondchallenge we address in this
paper. Unlike the work by [5] which builds such plans inaghhoc
manner, our objective here is to provide a solution that asasst-
based approach to distinguish between alternative plaosir@
up with an appropriate cost-model for the parallelizatibixXBath
queries is outhird challenge.

The contributions of this paper are summarized as follows:

e We introduce and address the problem of optimizing XPath

queries on shared memory, multi-core processors. To theobes
our knowledge this is théirst work that offers a systematic way to
address the challenges in this domain.

e We adapt and extend current sequential XPath cost estimatio
models to model the cost of parallel XPath processing plans.

e \We propose an optimization algorithm that uses the cost mode
together with several heuristics to find and select paradigbn
points in an XPath query. Once the parallelization poinés se-
lected, parallel query plans are generated and executed.

e We implement our optimizer in a prototype end-to-end XPath
processing system. We provide experimental results orsyisiem
that validate the effectiveness of our optimizer on reialiZxtML
workloads.

The rest of the paper is organized as follows: Section 2 digzs)
related work in parallel query processing of relational afidL
data. Section 3 introduces the three strategies for pbeatéeution
of XPath queries: data, query, and hybrid partitioning. ti®ac4
describes the models used to estimate costs of differeall@lagx-
ecution strategies. Section 5 presents the cost-basekepgueery
optimizer. Section 6 presents experimental evaluatiorhefap-
timizer using queries from realistic XML workloads. Finalive
conclude in Section 7.

2. RELATED WORK

Orthogonal to our work, and thus not the focus of this paper,
the problems of XML cardinality and selectivity estimatibave
been extensively studied [2, 7, 23, 24, 16, 11, 29, 28, 1778, 2
Our work adapts and uses many of the estimation models {eeg.,
Markov model) proposed in the literature.

Cost-based query optimization in XML databases, althougth n
as well covered in the literature as selectivity estimatlwas been
employed successfully in commercial databases like IBM DB2
pureXML [3, 4]. Balmin et al. [3, 4] outlines some of the cost
models and optimization heuristics used in DB2 pureXML. &kia
et al. [13] outlines a cost model for XQuery. Zhang et al. glsn
posed a statistical learning-based approach [30] for nlindehe
cost of XPath queries. These cost-based query optimizaien



proaches deal solely with sequential execution plans. @uk ad-
dresses cost-based optimization issues associated withetiaa-
tion. We adapt some of the existing cost models for sequentia
portions of our parallel execution plans, but the cost modeht

we developed for evaluating parallelization decisionehast been
addressed in previous literature.

Parallelization of SQL queries has been extensively stliie
the context of both distributed and centralized repostofi4, 15,
18]. Most commercial database systems support parallalyque
processing in either shared-nothing or shared-everytaingitec-
tures. Parallelization has been extremely effective irtra, for
both OLTP, OLAP/data warehousing, and web applicationgalPa
lelization of SQL queries differs from the XPath parallalibn as
follows: (1) The SQL workload supports in-place updatesilevh
XPath processing is read-only; (2) The relational data heega
ular 2-dimensional structure that is suitable for pantitig either
along rows or columns. The rooted hierarchical structurgMt
is not inherently suited for balanced data partitioning);, (&ing
hash-partitioning, it is easier to physically distribugtational data
across multiple storage nodes while maintaining data affiior
XML documents, it is very difficult to effectively physicgltluster
related items; and (4) Unlike relational data, XML can beessed
and stored in many different ways, e.g., in-memory, stregnte-
lational or native storage. XPath parallelization alduoris need to
be tuned to match the XML storage and access characteristics

Past studies have evaluated XML processing either in biged
or concurrent scenarios. Most existing XML processing eegi
are thread-safe and allow multiple threads to issue coeotrr
XPath queries againts an XML document. Distributed XML pro-
cessing is discussed in [6, 8]. The work in [6] considersatit
Boolean XML queries expressed in a language containingdaw
axes, labels, text and the Boolean operators and, or andTinat.
algorithms are inspired by partial evaluation. In esseti@whole
query and all its sub-queries are evaluated in each disédbivag-
ment. During query evaluation, data unknown at some fragmen
is replaced by Boolean variables. Therefore, the communtadt
a fragment may result in a Boolean expression in terms ofethes
variables, hence the relationship to partial evaluationhewall
fragments complete computing, the final Boolean result neeseb
solved. The main advantage of the scheme is that computation
various fragments proceeds in parallel and incurs a cortipntd
overall cost similar to that of a centralized mechanism. Woek
in [8] extends the ideas from Boolean to node-returning igser
The idea is to normalize queries, and to treat separatelyubé-
fiers in a query and the selection (main skeleton) part of thexyg
The various qualifiers are treated using the techniques pfTlge
evaluation of the selection path also uses partial evalnateas
to "transmit” information between fragments. The overelieame
of [6, 8] is elegant and theoretically efficient. Howevereamf its
limitations is that these fragments need be constructdataits.
Issues of load balancing and performing the partition oglliyror
dynamically have not been addressed.

The work of [26] treats distributed query evaluation on
semistructured data and is applicable to XML query proogsas
well. It treats three overlapping querying frameworks. Tingt
is essentially regular expressions. The second is based ai+ a
gebra,C, and is aimed at restructuring. An algebraic approach
based on query decomposition is provided for solMingueries.
Here a query is rewritten into subqueries implied by theritist
tion. These queries are evaluated at the distributed fratgrte
produce partial results which are later assembled into arisalt.
The third isselect-where queriegleclarative queries combining
patterns, regular expressions and some restructuringe, kbeo-

cessing is done in two stages where the first is evaluatintatede
query that is expressible iff, and hence parallelizable, which pro-
duces partial results that are then used to form the finaltratstne
client. The focus is on communication steps.

One may approach the problem of parallelizing XML query pro-
cessing within the general framework of efficiently prograimg
and coordinating multiprocessor computations (see [12 fcom-
prehensive treatment). This is the approach taken in [20,R2&-
cution of various XML processing tasks (not including quprg-
cessing) appears in [20] in the context of multicore systefise
idea is to have a crew of processes each taking tasks outmfiits
work queue. Once tasks are exhausted, a processsteaptasks
off queues of other processes. Tasks are ordered so thatsgroc
ing is done at the top whereas stealing is done at the bottdns. T
creates less contention. A scheme is presented for cotistyuhe
final result. The paper presents the ideaegfion-based task par-
titioning to increase task granularity. Parallel XML DOM parsing
is presented in [19, 22]. The first paper uses a dynamic scfame
load-balancing among cores. The idea in the second pajestistt
ically load-balance the work among the cores. This latterkvi®
targeted at large shallow files containing arrays and doesaade
to many cores (beyond six).

3. PRELIMINARIES

3.1 XPath queries

We briefly review the fragment of XPath considered in thisgrap
We consider the clasg of XPath queries of the form:

Qu=c |t | x| Q/Q | Qlp],
p ==Q | Q/text()="c | Q/label()=1 | Q/pos(Jopi |
ONQ | Qv

wheree is the empty pathsel), ¢ is a tag is a wildcard (matches
any tag), and/’ is the child-axis [p] is referred to as aredicate
in which Q is an expression; and! are string constantsp is any
one of<, >, <, >, =,iis aninteger, and, Vv are the Boolean con-
junction and disjunction, respectively. Notice that in ffaper we
are currently considering only queries with downward mitigel,
since these are the most commonly used in practice. Péetgl
such queries is already challenging, as the following esstillus-
trate. For these queries, we do support complex nestedcptedi
which include boolean combinations of sub-predicates tests on
label names, contents and positions.

In the next sections, we often distinguish the processing of
query Q from that of its predicates at the various query steps.

3.2 Partitioning Strategies

As mentioned in the introduction, ad hoc parallelizatioriref
dividual XPath queries was first explored in [5]. The authdiss
cussed various factors affecting the XPath parallelinatind pre-
sented three strategies for parallelizing individual XPatieries:

1) Data partitioning; (2) Query partitioning; and (3) Hydbparti-
tioning. In what follows, we review these strategies in mieéail.

The three parallelization strategies are defined over thrati
XML data model. As a result, they apply to any storage imple-
mentation of the XML data model. In this work, we assume that
the pre-parsed XML document is stored using an in-memony; no
relational representation and it can be concurrently astbdy
multiple application threads in a shared-address spadeanent.
The three parallelization strategies differ in the way thared
XML data is logically partitioned across multiple processand
how the input query is executed on the partitioned data. ke
strategies require some form of query re-writing.
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Figure2: Data and Query Partitioning Strategies

In the data partitioning approach, the input XPath queryais p
titioned into serial and parallel queries. The serial parthe in-

put query is executed by a single processor over the entice do

ument. The resulting node set is then equally distributedsac
multiple processors. Each participating processor thes tie lo-
cally assigned node set as the set of context nodes and egehat
parallel sub-query. This approach achieves parallelisradmgur-
rently executing thesameXPath query ordistinct sections of the
XML document. The scalability in the data partitioning sctee
is determined by the sequential sub-query; an expensiveeseq
tial execution can degrade the performance of the entireyque
Therefore, in the data partitioning approach, it is impatrta par-
tition the query so that the serial portion performs thetleasount
of work. Figure 2(a) illustrate the execution of the XPattexyu
presented in Figure 1 using the data partitioning approake
original query is split into two sub-queries: a serial suleiy,
/ si t e/ open_aucti ons/ open_auct i on and the predicated sub-
query,./[anno.. and ..]. The serial query is executed by a
processor and the resulting node sebpén_auct i on nodes is
distributed over the participating processors. Each msmethen
executes the predicated sub-query on its assigned nodese3it
of the original query can then be computed by merging locallts
from participating processors.

In the query partitioning approach, the input query is réemn
into a set of queries that can ideally navigate differentises of

secting two local result sets. Alternatively, the querytitianing
approach rewrite a query using range partitioning. For g@tam
consider the query, a/ b, where the noda has 20b children.
The query partitioning strategy can rewrite this query f@r@ces-
sors by partitioning the node’s node set by 2, i.e., processor 0
will execute the query, a/ b[ posi ti on() <11], and processor
1 will execute the query| a/ b[ posi ti on() >10]. Since the
execution pattern of such plan is very similar to the dataitpzn-
ing plan, we do not evaluate this query partitioning stratagy
further.

Virtual Processor 0 Query Partitioning Virtual Processor 1

| Isitel open_aucti ons/ open_auct i cn}
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.
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NN
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Figure 3: Hybrid Partitioning Strategy

The data and query partitioning approach can be integratedi
hybrid partitioning approach. Figure 3 illustrates two sibke im-
plementation of the XPath query using the hybrid partitionap-
proach. In the firstimplementation (Figure 3(a)), the inguery is
first re-written using the query partitioning approach feetofvir-
tual processors for the entire XML document. Each virtual preces
sor is a set of physical processors and it executes its a&sbigrery
using the data partitioning approach. Specifically, if thiesal pro-
cessor consists of two physical processors, one of the gsoce
will first execute the serial portion of the assigned querg gren
the two processors will concurrently execute the paraltetipn

the XML tree. The number of sub-queries matches the number of of the query using their allocated context nodes. Altevedyj the

participating processors. In many cases, the modified ggeam
invocation of the original query using different paramsteEach

input query can be first re-written using the data partitigrétrat-
egy over a set of virtual processors and the parallel subyqran

processor executes its assigned query on the entire XML-docu be then executed using query partitioning strategy ovephysi-

ment.
either the union or merge of the per-processor node setsikdJnl
the data partitioning approach, this approach achieveslpbsm
via exploiting potentially non-overlapping navigatiomeltterns of
the queries. In this approach, the overall scalability i®deined
by the range of the concurrent queries. If their traversalmat
overlap significantly, the query performance will scaletesium-
ber of processors is increased. Figure 2(b) illustrate Xeewion

of the XPath query presented in Figure 1 using the querytjmarti
ing approach. In this scenario, the original query is rettemi into
two distinct predicated queries, each executing a parteobtiginal
predicate. Each new query is executed by a separate processo
the entire XML document. The final result is computed by inter

The final result of the query can be then computed using cal processors within a virtual processor (Figure 3(b))e ibrid

partitioning strategy is a generalized form of the query dath
partitioning strategy and can be used recursively.

Experimental results presented in [5] have demonstratedtie
three parallelization strategies are indeed very effedtipractice.
For a majority of XPath queries under evaluation, the pertorce
scaled linearly as the number of threads was increased. \Howe
there were a few cases where the performategradedwhen the
original query was parallelized. Further, the performavfagueries
parallelized using the data partitioning strategy depdnuie the
way the original query was split into serial and parallelige In
[5], the query splitting was performed in ad hocmanner, without
using any rule- or cost-based heuristics.
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Figure4: An example of an XML datatree.

4. COST MODEL

Our optimizer uses a cost-based model together with hagrist
in order to find an efficient parallel query plan. Recall tha t
search space of all possible query plans (parallel and s&gle
is super-exponential. A cost model is used to quickly evelsa
candidate plan (or relevant portions of a plan) to deterrifiités
likely to be an efficient plan. However, running the cost niaie
every possible plan in the search space is infeasible. Herease
heuristics in combination with the cost model to prune trerde
space.

The following factors affect parallelization decision:

e cardinality of a step: if there are too few node instanceshiag
a particular step, performing parallelization via datifianing at
that step is not feasible.

e number of branches in the predicates of a step: If there are no

predicates or very few branches in the predicate, perfaymparal-
lelization via query partitioning at that step is not fedsib

e amount of work done via sequential and via parallel procgssi
For overall speedup, the sequential work should be minidhéred
the maximum amount of work parallelized.

Our cost model quantifies the processing cost of three basjs w
of processing an XPath query: sequential, data partitggnamd
query partitioning. The cost functions for data partitimpiand
query partitioning both rely on the cost function for sediapro-
cessing. Key components of these functions are the notiocare
dinality and selectivity While the two terms are sometimes used
interchangeably in the literature, in our work there is aaclgis-
tinction between the two. There is a substantial body of wark
cardinality and selectivity estimation. None of these peots is

pute the above three statistics, it is sufficient to colléale tag
and tag-tag pair counts, as described in [2, 16].

4.2 Cardinality

We first use the collected statistics to estimate the calityirat
each step in an XPath expression. The cardinality of a stgmin
XPath expression is the number of nodes in the XML data trae th
satisfy the conditions of that step.

ExamMpPLE 1. Consider the XML data tree in Fig. 4. The cardi-
nality of /a, /a/band/a/b/c are 1, 3, and 8 respectively.

Consider an XPath expressiaB = /to/t1/.../ts/ ... [tk
(with no predicates for now), where eathis either a tag or the
wildcard x. Let Q; denote the sub-expression @fup to stept;.
Then, the cardinality 0®; is estimated by the recurrence relation,

1 ifi=0
card(Q;) :{ f(tilti—1)card(Qi—1) otherwise

Cardinality, as define here, is similar to the definition ih [3

@)

ExAaMPLE 2. Consider the XML data tree in Fig. 4. The cardi-
nality of /a/b/c can be estimated as,

card(/a/b/c) = f(c|b)card(/a/b)
= [f(c|b)f(bla)card(/a)
8 3
Similarly, it is not hard to see that the cardinality p§/b/x is 10.
4.3 Selectivity

In order to estimate the cardinality of more complex XPath ex
pressions that contain predicates, the notion of selégts/needed.
Selectivity is a fraction associated with a predicate thetrifies
the filtering power of the predicate.

ExampPLE 3. Consider the XML data tree in Fig. 4. The selec-
tivity of predicatele/f] in /a/ble/ f] is 2.

Consider the XPath expression

Q = /to/tl/.../ti[ti,o/tijl/.../tiﬁj/.../ti$7yl]/.../tk, and

let Q; denote the sub-expression @f up to stept;. Also, letp;

the main focus of our work. Instead, we rely and extend (where denote the predicateo/ti,1/.../ti;/ ... /tim of t; andp; ; the

appropriate) existing definitions.

41 Statistics

XML statistics collection is a well-studied topic, and heve
summarize the statistics needed by our cost model and @etimi
For details on the algorithms for collecting and storingsthstatis-
tics we refer to [2, 16, 17, 3]. We collect three types of stats:

Singletag count f(¢;) counts the number of node instances in the
XML data tree that matches the tag

Fanout count f(¢;|t;—1) counts the average number of child node
instances matching for each parent node matching 1,

Children count f(x|t;—1) counts the average number of child

node instances (regardless of tag) for each parent node

matchingt;_1.

Although we use a first order Markov model for our statistmg,
optimizer is general and higher order Markov models or othed-
els can be used as well. Under this simplifying assumptmoon-

sel(pig) = {min(f(ti,j|ti,j,1)71.0)Sel(pi$j,1) otherwise

sub-predicate gb; up to stept; ;. Then, the selectivity of; ;, de-
noted bysel(p;,;), can be computed using the recurrence relation,

min(f(tiyg|ti), 1.0) if 7=0

®)

ExaMPLE 4. Consider the XML data tree in Fig. 4. The selec-
tivity of predicatep = [e/f] in /a/ble/ f] can be estimated as,

sel(e/f) = min(f(fle),1.0)sel(e)
= min(f(f|e),1.0) min(f(e|b),1.0)

2 2
= min(§7 1.0) min(=, 1.0)

2 3 -3

When a predicate is a boolean combination of sub-predicétes
selectivity of the whole expression is computed from thedlity
of the component sub-predicates using the following rules,

4)

sel(p AND p') =
sel(p ORp')

©)
(6)

min(sel(p), sel(p"))
= max(sel(p), sel(p’))

wherep andp’ are the predicate sub-expressions.



Given the selectivity of predicates, we can now refine thdiear
nality estimation (of Eqn. 1) to account for the presencereflp
icates. This can be done by multiplying the cardinality oteps
with the selectivity of the associated predicate.

1 ifi=0
card(Qi[pi]) = {f(ti|ti,1)card(Qi,1[pifl])sel(pi) ot;lerwise
(7)

Of course, not all steps in a query have predicates. For egamp
in the query/a/ble/ f] only the second step has a predicate. In
order to be able to use the above formula uniformly for alpste
of any query, we introduce the notion of teenptypredicate|e]
(note that the empty predicate is supported by the query rpgam
introduced in the previous section). We define the seldégtdfithe
empty predicate to be equal to 1 and therefore any query in our
grammar can be rewritten to an equivalent query where e&gh st
has a predicate. For example, quény/ble/ f] can be rewritten to
query/ale]/blele]/ f]€]]- Then, Eqn. 7 can be used to compute the
cardinality of each step. Hereafter, whenever we computtirca-

ity, we will always use this formula on queries whose stepags
includes (empty) predicates.

4.4 Sequential Cost

Consider the XPath expression Q =
/to[po]/ ... /ti71 [plfll/tl[pz]/ . /tk[pk], where eachpi is
either a predicate of the query or an introduced empty pagelic
Suppose the prefiQ;_1[p;—1] has been processed (all the steps
and predicates up and including stgp,) resulting in a node set
Ni—1. For each node in the node s&f_1, the average cost of
traversing the remaining suffix (starting with step of the XPath
expression on a single processor model can be estimated by,

f(tilti—1)

F(ti|ti=1) [cost(ps)
+ f([ti) Ctep)
f(tz|t271) [COSt(ti+1)

+ cost(ps) + f(|t:)Cstep) Otherwise

if i = kandp; = ¢

cost(t;) = if i = kandp; # ¢

(8
wherecost(p;) is the cost of processing the predicateandCl:cp
is the overhead associated with processing a step. Théomtor
the recursion is as follows. Starting from a single node hiate
t;—1 (henceforth the parent node), there are on avefdggt;—1)
child nodes that match. For each node that matchgs(hence-
forth current node), the average cost can be computed asrhefs
cost(ti+1) (computed recursively), the cosist(p;) of processing
the predicatey; associated with the current node, and an overhead
associated with processing child steps from the currenéndd
order to process both the predicate andithe step, all the chil-
dren of the current node need to be scanned once. The coss of th
scan is captured by the average number of children of thewurr
node multiplied byCs..p, the overhead associated with process-
ing a child step. In terms ofost(p;), in general, a predicatg;
is a boolean combination of XPath expressions. Hene€,(p;)
can be estimated recursively computing the cost of the itoast
XPath expressions and summing the costs together.

EXAMPLE 5. The cost for the XPath expression /a/b[c and e/f]

can be estimated by essentially estimating the cost of thiygoot.

f(a|root) [cost(b) + f(*|a)Clstep]
1 [cost(b) + 4Cs¢ep]
{f(bla) [cost(cand e/ f) + f(x|b)Cstep]} + 4Cstep

3 {cost(c ande/f)+ ?Cstep] + 4Cstep

cost(a)

3 [cost(c) + cost(e)] + 14Cstep
3{f(c|b) + f(elb) [cost(f) + f(x|e)Cstep]} + 14Cstep

3{§ + ; |:f(f|e) + gcstep:| } + 14Cstep
523

3
3
114 17Ctep

3
+ Ecstep:| + 14Cstep

Note that the cost computed by Eqgn. 8 is for each instance of
the node set matching the previous step. To obtain the tosalaf
traversing the suffix starting &}, the average cosbst(t;) needs to
be multiplied by the cardinalityard(Q;—1[p:—1]) of the nodeset
from the previous step.

45 Data Partitioning Cost

Once more, consider the XPath expressio@
Jtolpol/ti[p1]/ ... [tilpi]/ - .- /tx[pk]. The cost of evaluat-
ing the XPath fragment starting &t using data partitioning at;
overn processors can be estimated as

DPcost(ti,n) % -card(Qi—1[pi—1]) - cost(t;)

+card(Qi[pi]]) - tempResultOverhead
+n - Cpar 9)

Note thatDPcost(t;,n) does not take into account the cost of
traversing from the beginning of the XPath expressioty to

The first pass of our optimizer does not consider the number of
processors when deciding whether a particular step shewudchn-
didate for parallelization via data partitioning. Moreovihe data
partitioning cost function (Egn. 9) is non-monotonic. Henthe
candidacy decision is made based on the optimal data paitig
cost over any number of processors,

DPcostopt(ti) = min DPcost(t;,n) (10)
Nopt = argmin DPcost(t;,n) (11)

4.6 Query Partitioning Cost
Consider the XPath expressiofto/ ... /ti[ps]/ ... /tk. The

predicatep; is a boolean combination of predicate XPath expres-
sions of the formp; o oppi,10p ... op pi,.n—1, Where eactop can

be a conjunction or a disjunction. The cost of evaluating the
boolean combination of predicates associated withsing query
partitioning of then predicates oven processors can be estimated

predQPcost(p;) = card(Qi-1[pi-1]) - {Oglaj COSt(pi,j):|
ji<n
+booleanOverhead(p;)
+TZ N Cpar (12)

In fact the boolean combination is parenthesized into arpina
tree and the overhead of merging the results after the phraidi
predicate XPath expressions have completed is dependehison



Algorithm 1 oPTIMIZER(zpath, S)

Algorithm 2 ANNOTATEQUERYTREE(Q)

Input: XPath Expressiorpath, Data StatisticsS

Output: multi-threaded query plan

I Q «— XPathParsergpath)

P—0

. ANNOTATEQUERYTREE(Q, FirstStep(Q), S, P)

. I* Choose Patrtitioning Points */

. SortP by depth and parallel cost

. Popt «+— Pick topk points according to heuristics (Sec. 5.2)
. Plan «— Construct parallel plan usin@®,+

NOUTAWNE

binary tree. The overhead is computed using the followiroyire
sive formula,

booleanOverhead(p)
0 if p is atomic
AN Doverhead [sel(lhs(p))

Tsel(rhs(p))]

“+booleanOverhead(lhs(p))
+booleanOverhead(rhs(p))
= if Op(p) is AND
ORoverhead [sel(lhs(p))

Fsel(rhs(p))]

+booleanOverhead(lhs(p))
+booleanOverhead(rhs(p))

if Op(p) is OR
13)
Note again that the query partitioning cost at steis computed
as the average cost for each instance node matchitgence, the
total query partitioning cost at needs to be computed by multi-
plying with the cardinality of;.

5. COST-BASED PARALLELIZATION AL-
GORITHM

Our high level multicore query plan optimizer is outlinedAh
gorithm 1. The input XPath expression is first parsed intoeryju
tree using a standard XPath parser. The optimizer then ntakes
passes over the query tree. In the first pass (line 3), thenaar
uses data statistics to estimate the cardinality and cbstsoh step
in the XPath expression and identifies a Beof candidate points
for parallelization based on local conditions. In the secpass
(line 4-7), the optimizer evaluates each candidate péizteon
points using heuristics that take into account global daoni, and
picks the most promising parallelization point(s). Once plaral-
lelization points have been chosen, a multi-threaded geveegu-
tion plan can be constructed (line 7). We describe the twegsisn
greater detail next.

5.1 Finding Candidate Partitioning Points

The first pass in our optimizer identifies candidate partitig
points in the query tree using a cost model.
query tree is traversed and evaluated using two mutuallyrrec
sive procedureaNNOTATEQUERYTREE and ANNOTATEQUERY-
TREEPRED. Conceptually, the proceduriNOTATEQUERYTREE
iterates over each linear step of an XPath expression, wahile
NOTATEQUERYTREEPRED iterates over the boolean expressions
contained in predicates.

Algorithm 2 outlines the logic oOANNOTATEQUERYTREE. The
ANNOTATEQUERYTREE procedure takes as input the query tree
for the XPath expression, a pointer to the current node imtiezy
tree and data statistics, and returns the selectivity aaddst of
the XPath fragment starting from the current node. The teigc
is used mainly in the case that the XPath fragment startorg the
current node is part of a predicate. The cost is an estimatieeof

Input: Abstract Query Tre&), Current Nodet;, Data StatisticsS, Current set of
candidates?
Output: Selectivity att;, Cost estimate at;, adds candidates ®
1: minpredsel — oo
2. (sumpredcost, sumntwigs, QPcost) — (0,0, 0)
3. if t; is the end of list symbdhen
4:  return (1,0)
5: if ¢; is root then
6: sel — 1
7 card «— 1
8: eseif t; is a stepthen
9. sel «— min(f(t;|ti—1),1.0)
0: card — card(ti—1) - f(tilti—1)
1: forall p € Predicates(t;) do
(predsel, predcost, predQPcost, ntwigs) «—
ANNOTATEQUERYTREEPRED(Q, p, S, P)
13: sumntwigs «— sumntwigs + ntwigs

14: QPcost — max(QPcost, predQPcost)
15: minpredsel «<— min(minpredsel, predsel)
16: sumpredcost < sumpredcost + predcost
17: if sumpredcost > 0 then

18: cardWithPred < card - minpredsel

19: QPcost < QPcost + sumntwigs * Cpar

20: (rsel, rcost) «— ANNOTATEQUERYTREE(Q, t;11, S, P)

21: sel — sel - min(rsel, minpredsel)

22: cost « f(ti|ti—1) - [sumpredcost + rcost + Csiep - f(*]t:)]
/* Logic for DP candidacy */

23: if card > minCardFor DP then
. DPcost— Eqgn. 10

25: if DPcost < cost then

26: P «— P Ut; {/*add t; as a DP candidate */}

/* Logic for QP candidacy */

7. if sumntwigs>0 then
28: QPcost « card - [QPcost + rcost + Csiep - f(*[t:)]

29: if QPcost< costthen
30: P — P Ut; {/*add t; as QP candidate */}
31: card(t;) «— cardWithPred

32: return Gel, cost)

amount of work required to traverse the XPath fragmentistart
from the current node using a single thread or processorcé&nn
tually, the algorithm consists of four main blocks: the baase
(line 3), the pre-recursion processing (line 5), the rewarsall
(line 20), and the post-recursion processing (line 21). base
case of the recursion occurs when all the steps in the XPatlegx
sion has been processed and the current node is pointing anth
of list, i.e., beyond the last step (line 3).

In the pre-recursion processing block (line 5), there are tw
cases: the current node may be a root or a step. If the curoelet n
is a root, the contribution to the overall selectivity is ajs 1.0
and the contribution to the cost s If the current node is a step,
the contribution to the selectivity is dependent on thedahinto
the current node, and the contribution to the cost is prapuat to
the fan-out into the current node multiplied by the cardigabf
the previous node. Moreover, one or more predicates maydue as
ciated with a step. The block from line 10 to line 17 handles th

Each node in the predicates associated with a step. Each predicate is pextédsy

invoking the ANNOTATEQUERYTREEPRED procedure. TheuN-
NOTATEQUERYTREEPRED procedure returns the selectivity of the
predicate, the sequential cost of processing the preditteecost
of processing the predicate if parallelization via querstipaning

is used, and the number of twigs or branches in the predicate e
pression. Multiple predicates associated with a step aatdd as if
they are AND’ed together. Hence, the combined query paniitig
cost is the maximum of the query partitioning cost of eacldipre
cate, the sequential cost of processing all the predicatsisnply
the sum of the individual predicate costs (line 16), and tsilr
tant selectivity is estimated using the minimum. Once tiseltant
selectivity has been computed, the cardinality of the curstep
needs to be adjusted using the selectivity of the predi¢knes18).



Algorithm 3 ANNOTATEQUERYTREEPRED(Q, pi, S, P)

Input: Abstract Query Tre€), Current Predicate Expression Nggg Data Statistics
S, Current candidate®
Output: Selectivitysel, Sequential costost, QP cosipred@ Pcost, QP branches
ntwigs, adds candidates B
1: if p; is a simple xpath expressiohen
(sel, cost) «— ANNOTATEQUERYTREE(Q, Expr(p;), S, P)
return(sel, cost, cost, 1)
. elseif p, is a boolean expressiothen
(lhssel, lhscost, lhsQPcost, lhsntwigs) «—
ANNOTATEQUERYTREEPRED(Q, LeftExzpr(p;), S, P)
(rhssel, rhscost, rhsQPcost, rhsntwigs) «—
ANNOTATEQUERYTREEPRED(Q, Right Expr(p;), S, P)
if boolean operator is ANBhen
sel < min(lhssel, rhssel)
predQPcost «— max(lhsQPcost,rhsQPcost) + (lhssel +
rhssel) - AN Doverhead
elseif boolean operator is Ofhen
sel «— max(lhssel, rhssel)
12: predQPcost «— max(lhsQPcost,rhsQPcost) + (lhssel +
rhssel) - ORoverhead
13: return(sel, lhscost+rhscost, predQPcost, lhsntwigs+rhsntwigs)

e
o

Line 19 adds the parallelization overhead (a tunable paexn®
the combined query partitioning cost.

In line 20, ANNOTATEQUERYTREEIs called recursively on the
next step in the XPath query tree. The recursive call retimase-
lectivity and estimated sequential cost of the XPath fragrseart-
ing from the next step.

number of ways that the prefix of a partitioning point could be
parallelized is therefore exponential in the number ofipaning
points it contains and hence leads to a combinatorial eiqiosf
the search space of all possible parallel plans. We emplogety
heuristic to deal with this problem: with respect to the piaihg
point in question, we view the work associated with the prafix
sequential (not parallelized). Using this assumptionegitwo par-
titioning points, the partitioning point of which the prefi@quires
less traversal of the data tree is likely to result in a mofieieht
query plan.

The amount of traversal of a prefix can be quantified using the
cost models decribed in Section 4. In the case where the psefix
are relatively simple XPaths without descendent axes, plsim
heuristic based on the length of the prefixes can be used. &emp
ing two candidate partitioning points of the same type (egthb
DP or both QP) becomes very straightforward if the prefixes ar
simple XPaths: the partitioning point with a shorter preésults
in a better query plan. Note that since we assumed that ntigdara
processing is done for the prefix, the overall processing fonthe
entire XPath is limited by the processing for the prefix: naant
of parallelism at the partitioning point can reduce the tneguired
to process the prefix.

EXAMPLE 6. Consider the XPath '/a/b/c/d[e and f and g]’ and
two data partitioning points at 'c’ and 'd’. The partitiongpoint

The post recursion processing starts on line 21. The current € IS likely to resultin a better plan, because it probabakes less

node’s contribution to the selectivity is multiplied withet selectiv-
ity from the recursive call. The current node’s contribotto the
sequential traversal cost is computed and incorporatedtietcost
from the recursive call. The procedure then evaluates vehétis
feasible to parallelize the processing from the currentenasing
either data partitioning or query partitioning. Finallgetcardinal-
ity associated with the current node is updated with theipatel
selectivity and stored.

The logic of ANNOTATEQUERYTREEPREDIs outlined in Algo-
rithm 3 and we highlight the important details next. The paare
takes as input the XPath query tree, a pointer to a predizptes
sion node and the data statistics, and returns the setgcsigguen-
tial cost estimate, query partitioning cost estimate analver of
twigs of the input predicate expression. If the predicajgession
is a simple XPath expressioANNOTATEQUERYTREEis called to
obtain the selectivity and estimated cost. If the predieapression
is a (binary) boolean expressiofm\NOTATEQUERYTREEPREDis
called recursively on the left and right operands of the &aolex-
pression. In the subsequent post recursion processiregtisél,
sequential cost estimate and query partitioning cost eséirare
updated and returned.

5.2 Choosing Candidate Partitioning Points

After the first pass of the optimizer has identified the Bevf
candidate partitioning points, the second pass iteratestbis set
of partitioning points to pick a subset of most ‘optimal’ paoning
points. Recall that the first pass identifies candidate tparing
points based on local information. Hence, in the second, pess
take into account information that is more ‘global’ in natuf~or
example, a candidate data partitioning point (eg. ‘c’ im/ak/e)
identified in the first pass does not take into account the abst
processing the query XPath up to the partitioning point (afp).
We call the query XPath up to the candidate partitioning ppihe
prefixpre fiz(p) of p.

The prefix of a partitioning point represents work that neieds
be done prior to the partitioning point in question and irl §dn-
erality, the prefix can also contain other partitioning p®inThe

time to process the prefix '/a/b’ sequentially than it doepracess
the prefix '/a/b/c’.

A similar argument can be made when comparing a data parti-
tioning point and a query partitioning point: the less wdr& prefix
requires the more parallelism is exposed. Given two paniitig
points of which the prefixes are the same, the parallel cast (e
mated according to Eqn. 11 and Eqn. 12) of processing thehXPat
fragment starting from the partitioning will be used to tligish
the partitioning points. The parallel cost of a query pintiing
point is limited by the number of branches and hence the amoun
of inherent parallelism. Data partitioning, on the othendhds less
limited, because the inherent limit on parallelism is thedoeality
of the partitioning point which for most real data sets andriags
is much larger than the number of processors. Hence, whessthe
timated parallel costs of a data and of a query partitionimigtare
equal (or very close), the former is prefered.

Using the heuristics described previously, the optimipersshe
set of candidate partitioning points found in the first pass picks
the topk number of candidate partitioning points. The parame-
ter k can be chosen based on the number of available processors
(‘cores’). At the time of writing of this paper, the numberazfres
in most multi-core processors have yet to reach the ordeunf h
dreds. Hence, in most cases, picking just one partitionivigtp
is sufficient to produce an efficient parallel query plan. Wiige
number of cores have reached the order of hundreds and heyond
larger number of partitioning points can be picked. The ltast
parallel query plan will contain nested partitioning psinand the
processor assignment problem (mapping processors/@pesti-
tions) will become a significant problem. Discussion of theces-
sor assignment problem is beyond the scope of this paper and w
hope to address it as part of our future work.

5.3 Constructing the Parallel Query Plans

Once the topk candidate partitioning points have been chosen
by the optimizer, the next step is to construct a paralletetien
plan for the input query based on these points. This is dorenby
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Figure5: Query and data partitioning plans.

algorithm that accepts as input a query té@gand the set of parti-

tioning pointsP, and builds the parallel execution plan iteratively.

At each iteration the execution plan is built by considertimg par-
tially constructed plan of the previous iteration and bylgiog the
following operations (we omit the pseudo-code of the athaoni
due to lack of space): It picks the next partitioning pdimt P and
locates the position(s) @fin the partially constructed plan from the
last iteration (in the first iteration, this partial plan roides with
the query tre&)). Then, ift is a data partitioning node, a nespe-
cial DP node is inserted into the tree in place & denote that data
partitioning occurs at this point. Then, the algorithm d¢desthe
subtree in the plan formerly rooted @énd creates as many dupli-
cates of this sub-tree as the number of processors we agniasgsi
to this partitioning point. All these sub-trees become diieih of
the new QP node. Furthermore, to each instance of hadeadd a
new subtree corresponding to the predicate that definestties

of the XML document over which the query is to be executed (see

Section on Partitioning Strategies).

In the case of query partitioning, we know that by partitiani
the query at point, we essentially rewrité) into a set of queries
whose expressions (and thus trees) differ only after stefhese
differing trees of the rewritten queries become the childrea new

specialQP node and the new query tree rooted at QP replaces the

partial plan from the previous iteration.

This concludes one iteration of the algorithm and the nexi-pa
tioning point is considered. Notice that an iteratiomight create
multiple copies of the partitioning point at iteratios 1. Then, the
above procedure must be applied to each one of these copies.

As an example of the above procedure, consider Figure 5. In

the middle of the figure, we show the query tree correspontting
the query/a/b/c[d ande/ f]. Assuming that step is a candidate
partitioning point, then to the left of the figure we show tHarmp
in the case that is a query partitioning point, while to the right of
the figure we show the plan in the case of data partitioningicso
that in the latter plan, each of the subtrees of DP has aniadialit
predicate specifying the section of the XML document oveicivh
the query is to be executed. What if an additional data jpamtitg
point exists for steg? Then, for the right branch of the left plan
nodee is replaced by DP and two new subtreesd@f are created
as children of DP. For the right plan, we need to do a similange
in both subtrees of the (existing) topmost DP node.

6. EXPERIMENTS

We have performed extensive experiments on several types ofparallelized only via the data partitioning approach.

our multi-core XPath processing system including our owr im
plementation of an XPath processor, the optimizer, and tre p
allel query operators. The XPath processor leverages Xetand
XALAN DOM APIs. The optimizer is implemented in PERL and
leverages the XML::XPath package to parse an XPath into an ab
stract syntax tree. The output of the optimizer is a (set pf) o
timal partitioning point(s). We then generate the querynglay
hooking up a set of basic query operators implemented in C++.
These operators rely on our XPath processor and includeueseq
tial XPath operator, a parallel data partitioning XPathrapar, a
parallel query partitioning XPath operator, a parallel tiglguery
and data partitioning operator, and sequential operadoraérging
node lists either via intersection or union. The query opesaare
parametrized by the number of threads.

XMark-large XMark-huge| FpML
Size (MB) 116 1172 833
Number of Nodes 514 514 466
Number of Docs na na| 43,968
Depth 12 12 11

Table 1. Characteristics of the synthetic XMark dataset and
thereal FpML dataset

Datasets and Queries. We experimented with DBLP, Mondial,
Treebank, Swissprot, XMark [25], and an FpML dataset frorinan
vestment bank. Due to space constraints, we present repadge
results from the XMark and FpML dataset. The FpML dataset is
a collection of 43,968 real anonymized FpML [1] documenesrfr
an unnamed investment bank. Each document follows a ptapyie
extension of the FpML industry standard schema. We cortstuc
a super roof prm docs in order link the entire collection into a
single XML document. In addition to the real FpML data, weoals
used XPath expressions extracted from a real query worlgoad
vided by the investment bank. Table 2 lists the represestxtPath
queries over the two XML datasets. Two of the XMark queries
were drawn from the XPathMark [10] benchmark. The query XM1
was run against the XMark-huge document. The remaining XMar
queries were run on the XMark-large document. The expetisnen
were performed on a dual quad-core 2.66 GHz Intel Xeon system
running Linux.

M ethodology. For each dataset and each query in the testing set
for that dataset, we use our optimizer to identify the caaigighar-
titioning points and strategies. Each of these partitigmioint and
strategy corresponds to a prebuilt parametrized query iplar
prototype. These query plans are executed on the dataseef q
tion by setting the parameters with the appropriate XPa#ryqu
fragments, the partitioning point and the number of procesto
use. In general, we run the query plans over different number
of processors and record the wall-clock execution time. Kéat
check if the query plan (i.e., partitioning point and stggfechosen
by the optimizer is the among the fastest running query plan.

6.1 Evaluation Results

The query XM1 (Table 2) consists of a series of 6 child steps.
As the query does not contain any predicates, this query ean b

Fig6

XPath queries over many XML datasets. In this section, we de- presents relative performance of five possible data partity

scribe our experiments and present a representative siahseto
space constraints) of our experiment results. The perfocmaf
both our optimizer and the parallel query plans are verylamoin
the other datasets.

Prototype Implementation. We implemented a prototype of

query plans,dpl to dp5 for the query XM1. These plans dif-
fer in the way the original query is partitioned into sequedrand
parallel queries. The query pladpl, uses the earliest partition-
ing point, the child steg cl osed_auct i ons, to partition the
original query, while the query plamp5, chooses the later child



Document | Key XPath Query
XMark.xml [ XM1 | /site/cl osed_auctions/cl osed_aucti on/ annot ati on/description/text/keyword
XM2 [ I'sitelpeopl e/ person[profilelgender and profilelage]/nanme
XM3 [ Isitelregions/asialiten]fmai I box/ mailT/date and description/parlist/Tistitenltext
and payment]/ nane
XM4 | T'sitelopen_auctions/open_auction[annot ation/author and
annot ati on/ description and bi dder/date and privacy]
FPML.xml | FM1 | /fpm docs/ Message/ FpM_/ t r ade/ cr edi t Def aul t Swap/ gener al Ter ns
| ef f ecti veDat e/ unadj ust edDat e
FM2 | 7fpnl docs/ Message/ FpM_[ party/ partyNane and trade/credit Def aul t Swap/ gener al Ter ns
| effectiveDat e/ unadj ust edDat e] / trade/ t radeHeader/t radeDat e

Table 2: XPath Queriesused for Experimental Evaluation

Evaluation of different data-partitioning execution plans
Query executing on the XMark data

W Serial Execution Time |
B Parallel Execution Time

Time

Time in seconds

4
Number of Processors

Figure 6: Impact of query splitting point on performance of
data partitioned query plan. Thegraph compares performance
of 5 different data partitioning query plansfor thequery XM 1.
We use the convention of annotating the plan chosen by the
optimizer using (*).

step,/ t ext, to partition the query. Our optimizer identified two
plans,dp2, anddp3, that use the child steps¢cl osed_auct i on
and/ annot at i on, respectively, to partition the original query.
Based on the recommendation, our system’s heuristic (BebtR2
finally chose the query plamp2, as the ideal plan for executing
the query XM1. Note that the among the five evaluated plans,

only dp2 consistently performs better than the sequential execu-

tion, which requires 3.31 seconds (Figure 6). As Figure il
trates, performance of query XM1 under the pigo2 is dominated
by the parallel execution time which improves as the numbier o
processors is increased. The best query performance isvelise
when the query is executed usidg2 on 6 processors (1.65 sec-
onds). For the plandp?2 to dp5, the overall performance is dom-
inated by the sequential execution costs. Hence, althchapar-
allel execution costs improve as the number of processoirs is
creased, the overall performance degrades. It is imporambte
that aggressive parallelization as implemented in the gfenper-
forms poorly since each participating processor ends upgdibie
amount of work similar to the purely sequential executiantlere
is only one/ cl osed_auct i ons node and it gets replicated on
all participating processors). In such setting, the amaofirtvail-
able processing power is inconsequential as demonstratea-
ure 6. The important lesson from this experiment is that &t b
execution plans result in from finding the proper mix of sedis
and parallel execution.

Figure 7 presents performance of executing the query XMiusi
different parallel execution plans. XM2 is a predicatedrgueith
a conjunction of two path predicates. The optimizer firsiees
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Figure7: Comparing performance of data-, query- and hybrid
partitioning plansfor the query XmM2.

whether the query should be parallelized or not. For XM2 oibié-
mizer determined that the query would benefit from paraiition.
It further evaluated the two different parallelizatioreségies: data-
and query partitioning over different partitioning poiimshe orig-
inal query. The optimizer recommended to first use the data pa
titioning strategy at the partitioning pointper son, followed by
the query partitioning strategy by partitioning the quergdicates
at the partitioning point, per son, over 2 processors. In the query
partitioning execution, the original query is rewrittemarnwo sub-
queries, each executing a distinct path predicate ot e son
node. These two sub-queries are then executed on two ditfere
processors and their local results are intersected to cantbe fi-
nal result. We first evaluated these two options and obsethad
the query partitioning plan performs (1.02 seconds) as katiex
sequential execution (1 second). Still, as the optimizexsehthe
query partitioning as the second option, we decided to uséyh
brid approach to provide the query partitioning plan moreapa
lelism. The hybrid partitioning scheme first uses the questip
tioning scheme to partition the original query and thenciol the
data partitioning strategy to execute individual sub-gggeon two
processor groups of 3 (HYB1) and 4 processors (HYB2) each. As
Figure 7 illustrates neither HYB1 and HYB2 plans can matah th
performance of the data partitioning plan selected by otinoper.
Figures 8 and 9 present the performance of different query ex
ecution plans for the queries XM3 and XM4, respectively. fhar
query XM3, the optimizer selects the data partitioning &t plar-
titioning point/ i t emto be the optimal execution plan, followed
by a query partitioning plan at the same partitioning poinphrti-
tioning the predicates over 3 processors. Similar to theyoxisi1,
the query execution plan performs (0.15 seconds) as bagagth
quential plan (0.16 seconds). We also tried applying theitlyb
strategy to the query execution plan, where each sub-quasyew
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Figure9: Comparing performance of data-, query- and hybrid
partitioning plansfor the query XmM4.

ecuted over 2 processors. However, the hybrid approach atas n
able to provide significant improvement over the query etienu
plan (0.11 seconds) and the best performance was obsenteeé by
data partitioning plan chosen by the optimizer (0.066 sdspn

For the query XM4, we observe similar behavior. Our op-
timizer recommended the data partitioning plan at the fiamti
ing point, / open_auction, as the top plan. It also sug-
gested two query partitioning plans at the same partitpnin
point: the first plan creates two predicated sub-queriest &is
a conjunction of two predicatesannot at i on/ aut hor and
annot at i on/ descri pti on, and the second as a conjunction
of remaining predicatedi dder / dat e andpri vacy, the sec-
ond plan creates four predicated sub-queries, each withaae
predicate. We ran the first query partitioned plan on 2 prsmes
and other on 4 processors. However, both performed worgé (1.
seconds and 1.38 seconds) than the data partitioned p&q€c-
onds using 6 processors). Application of hybrid partitranstrat-
egy didn't help in improving the performance. The best perfo
mance was provided by the data partitioning strategy usipgpé
cessors.

Figure 10 presents the comparison of three different dat# pa
tioning queries for the query FM1 on the FPML dataset. Ouropt

Evaluation of different data-partitioning execution plans
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Figure 10: Impact of query splitting point on the performance
of a data partitioned query plan. The graph compares perfor-
mance of 3different data partitioningquery plansfor thequery
FM1
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mizer suggested only one possible partitioning pdihessage,

to generate the serial and parallel sub-querigsl). To evaluate
the efficacy of the suggested plan, we compared it with twiedif
ent data partitioning plandp2 anddp3, with partitioning points at

/ FpML and/ t r ade, respectively. As illustrated in the Figure 10,
the plan suggested by the optimizer provided the best pedoce
as it had the smallest serial component.

Finally, Figure 11 presents comparison of multiple queangl
for the Query FM2. The optimizer suggested two possiblegplan
data partitioning at the partition poirfEpM_, and query partition-
ing over 2 processors by creating two sub-queries for twiemint
predicates. Similar to previous cases with predicatediesiethe
query partitioning plan (6.24 seconds) performed as batiease-
quential execution (6.26 seconds), and the hybrid pantitipwas
also ineffective. The best performance (1.94 seconds) w@&s p
duced by the data partitioning plan recommended by our dapgim

Our experiments have conclusively demonstrated that ot op
mizer precisely predicated the XPath execution costs andigo
tently recommended the optimal plan. In all cases, the gpary
titioning plan performed the worst. For predicated queriggery



partitioning requires the participating processors tedrse the en-
tire tree. If the work involved in executing the predicatesot
dominant, then individual processors perform the same atnuafu
work as the sequential plan, and further their traversaiepag
overlap. Hence, their execution times match the sequerttiaiter-
part (e.g., Figures 7, 8, and 11). Therefore, the querytjmanitng
strategy that partitions the predicate work is suitablertly ¢hose
queries whose overall work is dominated by the predicatelexe
tion.

7. CONCLUSION
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Symposium2005.

[11] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. &me
StatiX: Making XML count. INSIGMOD 2002 pages
181-191, 2002.

[12] M. Herlihy and N. ShavitThe Art of Multiprocessor
Programming Morgan Kaufmann, 2008.

[13] S. Hidaka, H. Kato, and M. Yoshikawa. A relative cost rabd
for XQuery. INSAG pages 1332—-1333, New York, NY,
USA, 2007. ACM.

Motivated by the recent trends in hardware and the emergence[14] M. F. Khan, R. A. Paul, I. Ahmad, and A. Ghafoor. Interesiv

of multi-core processors in commodity systems, this paper p
sented the first systematic investigation towards paizithgj XPath
queries. We considered alternative strategies of XPathlphza-
tion and presented a series of cost functions to estimaterthe
cessing costs of different phases in the parallalizatiocgss that
use these strategies. These cost functions take into acbotin
the data statistics and query specifics, and form the basisirof
parallel optimizer. For our optimizer, we used a number afrtse
tics that consider a subset of the exponentially large bespace
of possible parallelization plans. Our heuristics ideetifthe most
promising plans in this subset (with the help of the cost fiams),
which were then used to generate parallel execution plaeshale
implemented a prototype end-to-end parallel XPath pracgsys-
tem that incorporates all the aforementioned functioiealit We
presented a set of experiments using realistic XPath wadddhat
demonstrated the efficacy of our techniques in identifyiptiroal
parallel execution plans. We believe that this work is ondyaat to
the exploration of XPath parallelization and many futurgegrch
topics exist, including, support for a wider fragment of XPrand
the problem of choosing the optimal processor assignment.
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