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ABSTRACT
With wide availability of commodity multi-core systems, itis im-
perative to understand what, if any, changes are needed to exist-
ing software systems to harness the newly available computational
power. In this context, this work explores acceleration of XML
processing systems. Specifically, we investigate parallelization of
individual XPath queries over shared-address space multi-core pro-
cessors. Unlike past approaches that have considered a distributed
setting or ad hoc parallel solutions, ours is the first methodical end-
to-end proposal. Our solution first identifies if a particular XPath
query should be parallelized and then determines the optimal way
of parallelizing that query. This decision is based on a cost-base
approach that relies both on the query specifics and data statistics.
At each stage of the parallelization process, we evaluate three alter-
native approaches, namely, data-, query-, and hybrid-partitioning.
For a given XPath query, our parallel cost model uses selectivity
and cardinality estimates to compute costs for these different alter-
natives. The costs are then fed to parallel query optimizer that gen-
erates an optimal parallel execution plan. We have implemented
a prototype end-to-end Parallel XPath processing system that in-
tegrates the XPath parser, cost estimator, query optimizer, and a
parallel runtime library . We use this system to evaluate efficacy of
our proposal by an extensive set of experiments using well-known
XML documents. These results conclusively validate our parallel
cost model and optimization framework, and demonstrate that it
is possible to accelerate XPath processing using commoditymulti-
core systems.

1. INTRODUCTION
For a number of years, the evolution of hardware systems fol-

lowed a ratherpredictabletrend in terms of processing capabilities:
the latest generation of processors was significantly faster than the
previous, with the rate of speed increase following closelyMoore’s
law. However, higher processor speeds did not always translate to
corresponding gains in system performance (with memory speeds
and instruction sets often becoming the new performance bottle-
necks). This led hardware manufactures to consider alternative ar-
chitectures in which multiple processingcoresare used to execute

 
 
 
 
 
 
 
 
 
 

instructionsin parallel. So, whereas the trend before was to in-
crease processor speeds between hardware generations, in the last
few years a new trend has emerged where the difference between
hardware generations is in the number of cores. Nowadays, it is not
uncommon to find eight cores, even in commodity hardware.

Of course, to take advantage of these multiple cores, the paral-
lelization of existing software systems comes at a cost. The sys-
tems often cannot be used as such and might need to be changed.
Indeed, there has been a lot of interest in systems research, includ-
ing database systems research [21], on how to harness this pro-
cessing power. In this context, we investigate here the problem of
how to parallelize the evaluation of XPath [9] queries over XML
documents in a shared-address space multi-core system. To em-
phasize the importance of this problem we note that XML is the de
facto data representation format used nowadays, and XPath queries
are commonly used as such (or as part of XQuery expressions) to
query XML data. Parallel query evaluation in this setting is as im-
portant, and not unlike, the early works on parallel evaluation of
SQL queries over relational data [15]. In spite of sharing motiva-
tion however, the commonalities between the relational/SQL and
XML/XPath settings are few and techniques from the former set-
ting do not carry to the latter. In what follows, we review some of
the main challenges in the parallelization of XPath queries.

Consider the XML document in Figure 1(a) (conforming to
XMark [25]) whose document tree is shown in Figure 1(b). Assume
that we want to evaluate the XPath query/site/regions/* to re-
trieve the names of all regions from our document (where* denotes
the wildcard and can match any element). Should we parallelize
the evaluation of the query or not? Clearly, this decision depends
both on the query itself and on the characteristics of the document.
In XMark, there is usually only a limited number of region nodes,
each corresponding to a continent. Therefore, our query will access
only a small number of nodes. Given that any form of parallelism
is expected to also incur some cost in the evaluation, it seems that
in this particular setting any benefits from parallelism are either
insignificant or are alleviated by the cost of parallelism. There-
fore, a serial execution seems preferable. However, what if a region
node exists for each, say, county in the United States? Then, with
approximately 3,000 possible region nodes, for the same query it
seems reasonable to try to parallelize the evaluation of the query by
considering, in parallel, all the regions, say, by state. In general,
given a document and a query, ourfirst challenge here will be to
decide whether or not to parallelize the evaluation of the query.

For the simple example query, once the decision is made to
parallelize, it is rather straightforward to decidehow the query is
parallelized: each core evaluates the initial query over a subset of
the regions (i.e., document), which is an example of what we call a
data partitioning[5] parallelization strategy (more on this later). In
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Figure 1: An Example XML Document: xmark.xml. The traversed edges of the tree by the XPath query are highlighted.

reality however, there will be multiple ways to parallelizea query,
each of which might use a different strategy. To see this, consider
for example the query in Figure 1(c). Assuming that there is alarge
number ofopen_auction nodes in the document, we might de-
cide to parallelize on the thirdstepof the query (hereafter referred
to as apartitioning point). Data partitioning here dictates that we
evaluate the first three steps of the query sequentially and then each
core evaluates the predicate over a subset of theopen_auction
nodes retrieved by the serial evaluation. However, another
parallelization strategy is also possible here. Using thequery parti-
tioning [5] parallelization strategy, we rewrite the initial queryinto
three new queries, with each of the three predicates of the initial
query appearing in only one of the resulting queries. For example,
/site/open_auctions/open_auction[annotation/author]
is one of the three queries. Then, each rewritten query is evalu-
ated by a different core and the final result is computed by the
intersection of results in all the cores.

Given the two alternative strategies, how can we choose which
one to use to parallelize our query? Even if it is clear that one
of the two strategies is the most promising, how can we be cer-
tain that parallelizing our initial query at a different step, say, in
annotation might not give better response times. In general, for
an XPath query with a total ofn steps (including steps within pred-
icates), each step could be a candidate partitioning point for paral-
lelization. A parallel query plan might contain a subset of the parti-
tioning points. Hence the number of possible parallel queryplan is
O(2n). For a given subset of partitioning points, the parallelization
strategy at each point, and the order of the partitioning points may
further result in differentparallelization plans. Coming up with a
way to systematically search and find good parallelization plans in
this huge search space is thesecondchallenge we address in this
paper. Unlike the work by [5] which builds such plans in anad hoc
manner, our objective here is to provide a solution that usesa cost-
based approach to distinguish between alternative plans. Coming
up with an appropriate cost-model for the parallelization of XPath
queries is ourthird challenge.

The contributions of this paper are summarized as follows:
• We introduce and address the problem of optimizing XPath

queries on shared memory, multi-core processors. To the best of
our knowledge this is thefirst work that offers a systematic way to
address the challenges in this domain.
• We adapt and extend current sequential XPath cost estimation
models to model the cost of parallel XPath processing plans.
• We propose an optimization algorithm that uses the cost model
together with several heuristics to find and select parallelization
points in an XPath query. Once the parallelization points are se-
lected, parallel query plans are generated and executed.
• We implement our optimizer in a prototype end-to-end XPath
processing system. We provide experimental results on thissystem
that validate the effectiveness of our optimizer on realistic XML
workloads.

The rest of the paper is organized as follows: Section 2 discusses
related work in parallel query processing of relational andXML
data. Section 3 introduces the three strategies for parallel execution
of XPath queries: data, query, and hybrid partitioning. Section 4
describes the models used to estimate costs of different parallel ex-
ecution strategies. Section 5 presents the cost-based parallel query
optimizer. Section 6 presents experimental evaluation of the op-
timizer using queries from realistic XML workloads. Finally, we
conclude in Section 7.

2. RELATED WORK
Orthogonal to our work, and thus not the focus of this paper,

the problems of XML cardinality and selectivity estimationhave
been extensively studied [2, 7, 23, 24, 16, 11, 29, 28, 17, 3, 27].
Our work adapts and uses many of the estimation models (e.g.,the
Markov model) proposed in the literature.

Cost-based query optimization in XML databases, although not
as well covered in the literature as selectivity estimation, has been
employed successfully in commercial databases like IBM DB2
pureXML [3, 4]. Balmin et al. [3, 4] outlines some of the cost
models and optimization heuristics used in DB2 pureXML. Hidaka
et al. [13] outlines a cost model for XQuery. Zhang et al. alsopro-
posed a statistical learning-based approach [30] for modelling the
cost of XPath queries. These cost-based query optimizationap-



proaches deal solely with sequential execution plans. Our work ad-
dresses cost-based optimization issues associated with paralleliza-
tion. We adapt some of the existing cost models for sequential
portions of our parallel execution plans, but the cost models that
we developed for evaluating parallelization decisions have not been
addressed in previous literature.

Parallelization of SQL queries has been extensively studied in
the context of both distributed and centralized repositories [14, 15,
18]. Most commercial database systems support parallel query
processing in either shared-nothing or shared-everythingarchitec-
tures. Parallelization has been extremely effective in practice, for
both OLTP, OLAP/data warehousing, and web applications. Paral-
lelization of SQL queries differs from the XPath parallelization as
follows: (1) The SQL workload supports in-place updates, while
XPath processing is read-only; (2) The relational data has areg-
ular 2-dimensional structure that is suitable for partitioning either
along rows or columns. The rooted hierarchical structure ofXML
is not inherently suited for balanced data partitioning; (3) Using
hash-partitioning, it is easier to physically distribute relational data
across multiple storage nodes while maintaining data affinity. For
XML documents, it is very difficult to effectively physically cluster
related items; and (4) Unlike relational data, XML can be accessed
and stored in many different ways, e.g., in-memory, streaming, re-
lational or native storage. XPath parallelization algorithms need to
be tuned to match the XML storage and access characteristics.

Past studies have evaluated XML processing either in distributed
or concurrent scenarios. Most existing XML processing engines
are thread-safe and allow multiple threads to issue concurrent
XPath queries againts an XML document. Distributed XML pro-
cessing is discussed in [6, 8]. The work in [6] considers initially
Boolean XML queries expressed in a language containing forward
axes, labels, text and the Boolean operators and, or and not.The
algorithms are inspired by partial evaluation. In essence,the whole
query and all its sub-queries are evaluated in each distributed frag-
ment. During query evaluation, data unknown at some fragment
is replaced by Boolean variables. Therefore, the computation at
a fragment may result in a Boolean expression in terms of these
variables, hence the relationship to partial evaluation. When all
fragments complete computing, the final Boolean result may be re-
solved. The main advantage of the scheme is that computationat
various fragments proceeds in parallel and incurs a computational
overall cost similar to that of a centralized mechanism. Thework
in [8] extends the ideas from Boolean to node-returning queries.
The idea is to normalize queries, and to treat separately thequali-
fiers in a query and the selection (main skeleton) part of the query.
The various qualifiers are treated using the techniques of [6]. The
evaluation of the selection path also uses partial evaluation ideas
to "transmit" information between fragments. The overall scheme
of [6, 8] is elegant and theoretically efficient. However, one of its
limitations is that these fragments need be constructed statically.
Issues of load balancing and performing the partition optimally or
dynamically have not been addressed.

The work of [26] treats distributed query evaluation on
semistructured data and is applicable to XML query processing as
well. It treats three overlapping querying frameworks. Thefirst
is essentially regular expressions. The second is based on an al-
gebra,C, and is aimed at restructuring. An algebraic approach
based on query decomposition is provided for solvingC queries.
Here a query is rewritten into subqueries implied by the distribu-
tion. These queries are evaluated at the distributed fragments to
produce partial results which are later assembled into a final result.
The third isselect-where queries, declarative queries combining
patterns, regular expressions and some restructuring. Here, pro-

cessing is done in two stages where the first is evaluating a related
query that is expressible inC, and hence parallelizable, which pro-
duces partial results that are then used to form the final result at the
client. The focus is on communication steps.

One may approach the problem of parallelizing XML query pro-
cessing within the general framework of efficiently programming
and coordinating multiprocessor computations (see [12] for a com-
prehensive treatment). This is the approach taken in [20, 22]. Exe-
cution of various XML processing tasks (not including querypro-
cessing) appears in [20] in the context of multicore systems. The
idea is to have a crew of processes each taking tasks out of itsown
work queue. Once tasks are exhausted, a process maysteal tasks
off queues of other processes. Tasks are ordered so that process-
ing is done at the top whereas stealing is done at the bottom. This
creates less contention. A scheme is presented for constructing the
final result. The paper presents the idea ofregion-based task par-
titioning to increase task granularity. Parallel XML DOM parsing
is presented in [19, 22]. The first paper uses a dynamic schemefor
load-balancing among cores. The idea in the second paper is to stat-
ically load-balance the work among the cores. This latter work is
targeted at large shallow files containing arrays and does not scale
to many cores (beyond six).

3. PRELIMINARIES

3.1 XPath queries
We briefly review the fragment of XPath considered in this paper.

We consider the classQ of XPath queries of the form:

Q ::= ǫ | t | ∗ | Q/Q | Q[p],
p ::= Q | Q/text() = ‘c’ | Q/label()= l | Q/pos()op i |

Q ∧ Q | Q ∨Q

whereǫ is the empty path (self), t is a tag,∗ is a wildcard (matches
any tag), and ‘/’ is the child-axis; [p] is referred to as apredicate,
in whichQ is an expression,c andl are string constants,op is any
one of≤,≥, <,>, =, i is an integer, and∧,∨ are the Boolean con-
junction and disjunction, respectively. Notice that in thepaper we
are currently considering only queries with downward modalities,
since these are the most commonly used in practice. Parallelizing
such queries is already challenging, as the following sections illus-
trate. For these queries, we do support complex nested predicates,
which include boolean combinations of sub-predicates, andtests on
label names, contents and positions.

In the next sections, we often distinguish the processing ofa
queryQ from that of its predicates at the various query steps.

3.2 Partitioning Strategies
As mentioned in the introduction, ad hoc parallelization ofin-

dividual XPath queries was first explored in [5]. The authorsdis-
cussed various factors affecting the XPath parallelization and pre-
sented three strategies for parallelizing individual XPath queries:
1) Data partitioning; (2) Query partitioning; and (3) Hybrid parti-
tioning. In what follows, we review these strategies in moredetail.

The three parallelization strategies are defined over the abstract
XML data model. As a result, they apply to any storage imple-
mentation of the XML data model. In this work, we assume that
the pre-parsed XML document is stored using an in-memory, non-
relational representation and it can be concurrently accessed by
multiple application threads in a shared-address space environment.
The three parallelization strategies differ in the way the shared
XML data is logically partitioned across multiple processors and
how the input query is executed on the partitioned data. All three
strategies require some form of query re-writing.
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Figure 2: Data and Query Partitioning Strategies

In the data partitioning approach, the input XPath query is par-
titioned into serial and parallel queries. The serial part of the in-
put query is executed by a single processor over the entire doc-
ument. The resulting node set is then equally distributed across
multiple processors. Each participating processor then uses the lo-
cally assigned node set as the set of context nodes and executes the
parallel sub-query. This approach achieves parallelism byconcur-
rently executing thesameXPath query ondistinct sections of the
XML document. The scalability in the data partitioning scheme
is determined by the sequential sub-query; an expensive sequen-
tial execution can degrade the performance of the entire query.
Therefore, in the data partitioning approach, it is important to par-
tition the query so that the serial portion performs the least amount
of work. Figure 2(a) illustrate the execution of the XPath query
presented in Figure 1 using the data partitioning approach.The
original query is split into two sub-queries: a serial sub-query,
/site/open_auctions/open_auction and the predicated sub-
query,./[anno.. and ..]. The serial query is executed by a
processor and the resulting node set ofopen_auction nodes is
distributed over the participating processors. Each processor then
executes the predicated sub-query on its assigned nodes. The result
of the original query can then be computed by merging local results
from participating processors.

In the query partitioning approach, the input query is rewritten
into a set of queries that can ideally navigate different sections of
the XML tree. The number of sub-queries matches the number of
participating processors. In many cases, the modified queryis an
invocation of the original query using different parameters. Each
processor executes its assigned query on the entire XML docu-
ment. The final result of the query can be then computed using
either the union or merge of the per-processor node sets. Unlike
the data partitioning approach, this approach achieves parallelism
via exploiting potentially non-overlapping navigationalpatterns of
the queries. In this approach, the overall scalability is determined
by the range of the concurrent queries. If their traversals do not
overlap significantly, the query performance will scale as the num-
ber of processors is increased. Figure 2(b) illustrate the execution
of the XPath query presented in Figure 1 using the query partition-
ing approach. In this scenario, the original query is re-written into
two distinct predicated queries, each executing a part of the original
predicate. Each new query is executed by a separate processor over
the entire XML document. The final result is computed by inter-

secting two local result sets. Alternatively, the query partitioning
approach rewrite a query using range partitioning. For example,
consider the query,/a/b, where the nodea has 20b children.
The query partitioning strategy can rewrite this query for 2proces-
sors by partitioning the nodeb’s node set by 2, i.e., processor 0
will execute the query,/a/b[position()<11], and processor
1 will execute the query,/a/b[position()>10]. Since the
execution pattern of such plan is very similar to the data partition-
ing plan, we do not evaluate this query partitioning strategy any
further.

/site/open_auctions/open_auction
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/site/open_auctions/open_auction[
bidder/data and privacy]

/site/open_auctions/open_auction[
anno../author and anno../descr..]
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Processor 0 Processor 1 Processor 2 Processor 3

Query Partitioning Query Partitioning

Data PartitioningVirtual Processor 0 Virtual Processor 1

Sequential

Figure 3: Hybrid Partitioning Strategy

The data and query partitioning approach can be integrated into a
hybrid partitioning approach. Figure 3 illustrates two possible im-
plementation of the XPath query using the hybrid partitioning ap-
proach. In the first implementation (Figure 3(a)), the inputquery is
first re-written using the query partitioning approach for aset ofvir-
tual processors for the entire XML document. Each virtual proces-
sor is a set of physical processors and it executes its assigned query
using the data partitioning approach. Specifically, if the virtual pro-
cessor consists of two physical processors, one of the processors
will first execute the serial portion of the assigned query and then
the two processors will concurrently execute the parallel portion
of the query using their allocated context nodes. Alternatively, the
input query can be first re-written using the data partitioning strat-
egy over a set of virtual processors and the parallel sub-query can
be then executed using query partitioning strategy over thephysi-
cal processors within a virtual processor (Figure 3(b)). The hybrid
partitioning strategy is a generalized form of the query anddata
partitioning strategy and can be used recursively.

Experimental results presented in [5] have demonstrated that the
three parallelization strategies are indeed very effective in practice.
For a majority of XPath queries under evaluation, the performance
scaled linearly as the number of threads was increased. However,
there were a few cases where the performancedegradedwhen the
original query was parallelized. Further, the performanceof queries
parallelized using the data partitioning strategy depended on the
way the original query was split into serial and parallel queries. In
[5], the query splitting was performed in anad hocmanner, without
using any rule- or cost-based heuristics.
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4. COST MODEL
Our optimizer uses a cost-based model together with heuristics

in order to find an efficient parallel query plan. Recall that the
search space of all possible query plans (parallel and sequential)
is super-exponential. A cost model is used to quickly evaluate a
candidate plan (or relevant portions of a plan) to determineif it is
likely to be an efficient plan. However, running the cost model on
every possible plan in the search space is infeasible. Hence, we use
heuristics in combination with the cost model to prune the search
space.

The following factors affect parallelization decision:
• cardinality of a step: if there are too few node instances matching
a particular step, performing parallelization via data partitioning at
that step is not feasible.
• number of branches in the predicates of a step: If there are no
predicates or very few branches in the predicate, performing paral-
lelization via query partitioning at that step is not feasible.
• amount of work done via sequential and via parallel processing:
For overall speedup, the sequential work should be minimized and
the maximum amount of work parallelized.

Our cost model quantifies the processing cost of three basic ways
of processing an XPath query: sequential, data partitioning, and
query partitioning. The cost functions for data partitioning and
query partitioning both rely on the cost function for sequential pro-
cessing. Key components of these functions are the notions of car-
dinality andselectivity. While the two terms are sometimes used
interchangeably in the literature, in our work there is a clear dis-
tinction between the two. There is a substantial body of workon
cardinality and selectivity estimation. None of these problems is
the main focus of our work. Instead, we rely and extend (where
appropriate) existing definitions.

4.1 Statistics
XML statistics collection is a well-studied topic, and herewe

summarize the statistics needed by our cost model and optimizer.
For details on the algorithms for collecting and storing these statis-
tics we refer to [2, 16, 17, 3]. We collect three types of statistics:

Single tag count f(ti) counts the number of node instances in the
XML data tree that matches the tagti,

Fanout count f(ti|ti−1) counts the average number of child node
instances matchingti for each parent node matchingti−1,

Children count f(∗|ti−1) counts the average number of child
node instances (regardless of tag) for each parent node
matchingti−1.

Although we use a first order Markov model for our statistics,our
optimizer is general and higher order Markov models or othermod-
els can be used as well. Under this simplifying assumption, to com-

pute the above three statistics, it is sufficient to collect single tag
and tag-tag pair counts, as described in [2, 16].

4.2 Cardinality
We first use the collected statistics to estimate the cardinality of

each step in an XPath expression. The cardinality of a step inan
XPath expression is the number of nodes in the XML data tree that
satisfy the conditions of that step.

EXAMPLE 1. Consider the XML data tree in Fig. 4. The cardi-
nality of/a, /a/b and/a/b/c are 1, 3, and 8 respectively.

Consider an XPath expressionQ = /t0/t1/ . . . /ti/ . . . /tk

(with no predicates for now), where eachti is either a tag or the
wildcard∗. Let Qi denote the sub-expression ofQ up to stepti.
Then, the cardinality ofQi is estimated by the recurrence relation,

card(Qi) =



1 if i = 0
f(ti|ti−1)card(Qi−1) otherwise

(1)

Cardinality, as define here, is similar to the definition in [3].

EXAMPLE 2. Consider the XML data tree in Fig. 4. The cardi-
nality of/a/b/c can be estimated as,

card(/a/b/c) = f(c|b)card(/a/b)

= f(c|b)f(b|a)card(/a)

=
8

3
·
3

1
· 1 = 8 (2)

Similarly, it is not hard to see that the cardinality of/a/b/∗ is 10.

4.3 Selectivity
In order to estimate the cardinality of more complex XPath ex-

pressions that contain predicates, the notion of selectivity is needed.
Selectivity is a fraction associated with a predicate that quantifies
the filtering power of the predicate.

EXAMPLE 3. Consider the XML data tree in Fig. 4. The selec-
tivity of predicate[e/f ] in /a/b[e/f ] is 2

3
.

Consider the XPath expression
Q = /t0/t1/ . . . /ti[ti,0/ti,1/ . . . /ti,j/ . . . /ti,m]/ . . . /tk, and
let Qi denote the sub-expression ofQ up to stepti. Also, let pi

denote the predicateti,0/ti,1/ . . . /ti,j/ . . . /ti,m of ti andpi,j the
sub-predicate ofpi up to stepti,j . Then, the selectivity ofpi,j , de-
noted bysel(pi,j), can be computed using the recurrence relation,

sel(pi,j) =



min(f(ti,0|ti), 1.0) if j = 0
min(f(ti,j |ti,j−1), 1.0)sel(pi,j−1) otherwise

(3)

EXAMPLE 4. Consider the XML data tree in Fig. 4. The selec-
tivity of predicatep = [e/f ] in /a/b[e/f ] can be estimated as,

sel(e/f) = min(f(f |e), 1.0)sel(e)

= min(f(f |e), 1.0) min(f(e|b), 1.0)

= min(
3

2
, 1.0) min(

2

3
, 1.0) =

2

3
(4)

When a predicate is a boolean combination of sub-predicates, the
selectivity of the whole expression is computed from the selectivity
of the component sub-predicates using the following rules,

sel(p AND p′) = min(sel(p), sel(p′)) (5)

sel(p ORp′) = max(sel(p), sel(p′)) (6)

wherep andp′ are the predicate sub-expressions.



Given the selectivity of predicates, we can now refine the cardi-
nality estimation (of Eqn. 1) to account for the presence of pred-
icates. This can be done by multiplying the cardinality of a step
with the selectivity of the associated predicate.

card(Qi[pi]) =



1 if i = 0
f(ti|ti−1)card(Qi−1[pi−1])sel(pi) otherwise

(7)
Of course, not all steps in a query have predicates. For example,
in the query/a/b[e/f ] only the second step has a predicate. In
order to be able to use the above formula uniformly for all steps
of any query, we introduce the notion of theemptypredicate[ǫ]
(note that the empty predicate is supported by the query grammar
introduced in the previous section). We define the selectivity of the
empty predicate to be equal to 1 and therefore any query in our
grammar can be rewritten to an equivalent query where each step
has a predicate. For example, query/a/b[e/f ] can be rewritten to
query/a[ǫ]/b[e[ǫ]/f [ǫ]]. Then, Eqn. 7 can be used to compute the
cardinality of each step. Hereafter, whenever we compute cardinal-
ity, we will always use this formula on queries whose steps always
includes (empty) predicates.

4.4 Sequential Cost
Consider the XPath expression Q =

/t0[p0]/ . . . /ti−1[pi−1]/ti[pi]/ . . . /tk[pk], where eachpi is
either a predicate of the query or an introduced empty predicate.
Suppose the prefixQi−1[pi−1] has been processed (all the steps
and predicates up and including stepti−1) resulting in a node set
Ni−1. For each node in the node setNi−1, the average cost of
traversing the remaining suffix (starting with stepti) of the XPath
expression on a single processor model can be estimated by,

cost(ti) =

8

>

>

>

<

>

>

>

:

f(ti|ti−1) if i = k andpi = ǫ
f(ti|ti−1) [cost(pi)

+ f(∗|ti)Cstep] if i = k andpi 6= ǫ
f(ti|ti−1) [cost(ti+1)

+ cost(pi) + f(∗|ti)Cstep] otherwise
(8)

wherecost(pi) is the cost of processing the predicatepi, andCstep

is the overhead associated with processing a step. The intuition for
the recursion is as follows. Starting from a single node matching
ti−1 (henceforth the parent node), there are on averagef(ti|ti−1)
child nodes that matchti. For each node that matchesti (hence-
forth current node), the average cost can be computed as the sum of
cost(ti+1) (computed recursively), the costcost(pi) of processing
the predicatepi associated with the current node, and an overhead
associated with processing child steps from the current node. In
order to process both the predicate and theti+1 step, all the chil-
dren of the current node need to be scanned once. The cost of this
scan is captured by the average number of children of the current
node multiplied byCstep, the overhead associated with process-
ing a child step. In terms ofcost(pi), in general, a predicatepi

is a boolean combination of XPath expressions. Hence,cost(pi)
can be estimated recursively computing the cost of the constituent
XPath expressions and summing the costs together.

EXAMPLE 5. The cost for the XPath expression /a/b[c and e/f]

can be estimated by essentially estimating the cost of the query root.

cost(a) = f(a|root) [cost(b) + f(∗|a)Cstep]

= 1 [cost(b) + 4Cstep]

= {f(b|a) [cost(c and e/f) + f(∗|b)Cstep]} + 4Cstep

= 3

»

cost(c and e/f) +
10

3
Cstep

–

+ 4Cstep

= 3 [cost(c) + cost(e)] + 14Cstep

= 3 {f(c|b) + f(e|b) [cost(f) + f(∗|e)Cstep]} + 14Cstep

= 3



8

3
+

2

3

»

f(f |e) +
3

2
Cstep

–ff

+ 14Cstep

= 8 + 2

»

3

2
+

3

2
Cstep

–

+ 14Cstep

= 11 + 17Cstep

Note that the cost computed by Eqn. 8 is for each instance of
the node set matching the previous step. To obtain the total cost of
traversing the suffix starting atti, the average costcost(ti) needs to
be multiplied by the cardinalitycard(Qi−1[pi−1]) of the nodeset
from the previous step.

4.5 Data Partitioning Cost
Once more, consider the XPath expressionQ =

/t0[p0]/t1[p1]/ . . . /ti[pi]/ . . . /tk[pk]. The cost of evaluat-
ing the XPath fragment starting atti using data partitioning atti

overn processors can be estimated as

DPcost(ti, n) =
1

n
· card(Qi−1[pi−1]) · cost(ti)

+card(Qi[pi]]) · tempResultOverhead

+n · Cpar (9)

Note thatDPcost(ti, n) does not take into account the cost of
traversing from the beginning of the XPath expression toti.

The first pass of our optimizer does not consider the number of
processors when deciding whether a particular step should be a can-
didate for parallelization via data partitioning. Moreover, the data
partitioning cost function (Eqn. 9) is non-monotonic. Hence, the
candidacy decision is made based on the optimal data partitioning
cost over any number of processors,

DPcostopt(ti) = min
n

DPcost(ti, n) (10)

nopt = arg min
n

DPcost(ti, n) (11)

4.6 Query Partitioning Cost
Consider the XPath expression/t0/ . . . /ti[pi]/ . . . /tk. The

predicatepi is a boolean combination of predicate XPath expres-
sions of the formpi,0 op pi,1 op . . . op pi,n−1, where eachop can
be a conjunction or a disjunction. The cost of evaluating the
boolean combination of predicates associated withti using query
partitioning of then predicates overn processors can be estimated
as

predQPcost(pi) = card(Qi−1[pi−1]) ·

»

max
0<j<n

cost(pi,j)

–

+booleanOverhead(pi)

+n · Cpar (12)

In fact the boolean combination is parenthesized into a binary
tree and the overhead of merging the results after the parallelized
predicate XPath expressions have completed is dependent onthis



Algorithm 1 OPTIMIZER(xpath,S)
Input: XPath Expressionxpath, Data StatisticsS
Output: multi-threaded query plan
1: Q← XPathParser(xpath)
2: P ← ∅
3: ANNOTATEQUERYTREE(Q, FirstStep(Q), S,P)
4: /* Choose Partitioning Points */
5: SortP by depth and parallel cost
6: Popt ← Pick topk points according to heuristics (Sec. 5.2)
7: Plan ← Construct parallel plan usingPopt

binary tree. The overhead is computed using the following recur-
sive formula,

booleanOverhead(p)

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

0 if p is atomic
ANDoverhead [sel(lhs(p))
+sel(rhs(p))]
+booleanOverhead(lhs(p))
+booleanOverhead(rhs(p))

if Op(p) is AND
ORoverhead [sel(lhs(p))
+sel(rhs(p))]
+booleanOverhead(lhs(p))
+booleanOverhead(rhs(p))

if Op(p) is OR
(13)

Note again that the query partitioning cost at stepti is computed
as the average cost for each instance node matchingti. Hence, the
total query partitioning cost atti needs to be computed by multi-
plying with the cardinality ofti.

5. COST-BASED PARALLELIZATION AL-
GORITHM

Our high level multicore query plan optimizer is outlined inAl-
gorithm 1. The input XPath expression is first parsed into a query
tree using a standard XPath parser. The optimizer then makestwo
passes over the query tree. In the first pass (line 3), the optimizer
uses data statistics to estimate the cardinality and costs of each step
in the XPath expression and identifies a setP of candidate points
for parallelization based on local conditions. In the second pass
(line 4-7), the optimizer evaluates each candidate parallelization
points using heuristics that take into account global conditions, and
picks the most promising parallelization point(s). Once the paral-
lelization points have been chosen, a multi-threaded queryexecu-
tion plan can be constructed (line 7). We describe the two passes in
greater detail next.

5.1 Finding Candidate Partitioning Points
The first pass in our optimizer identifies candidate partitioning

points in the query tree using a cost model. Each node in the
query tree is traversed and evaluated using two mutually recur-
sive proceduresANNOTATEQUERYTREE and ANNOTATEQUERY-
TREEPRED. Conceptually, the procedureANNOTATEQUERYTREE

iterates over each linear step of an XPath expression, whileAN-
NOTATEQUERYTREEPRED iterates over the boolean expressions
contained in predicates.

Algorithm 2 outlines the logic ofANNOTATEQUERYTREE. The
ANNOTATEQUERYTREE procedure takes as input the query tree
for the XPath expression, a pointer to the current node in thequery
tree and data statistics, and returns the selectivity and the cost of
the XPath fragment starting from the current node. The selectivity
is used mainly in the case that the XPath fragment starting from the
current node is part of a predicate. The cost is an estimate ofthe

Algorithm 2 ANNOTATEQUERYTREE(Q)
Input: Abstract Query TreeQ, Current Nodeti, Data StatisticsS, Current set of
candidatesP
Output: Selectivity atti, Cost estimate atti, adds candidates toP
1: minpredsel ←∞
2: (sumpredcost, sumntwigs, QPcost)← (0, 0, 0)
3: if ti is the end of list symbolthen
4: return (1,0)
5: if ti is root then
6: sel ← 1
7: card← 1
8: else if ti is a stepthen
9: sel ← min(f(ti|ti−1), 1.0)
10: card← card(ti−1) · f(ti|ti−1)
11: for all p ∈ Predicates(ti) do
12: (predsel, predcost, predQPcost, ntwigs) ←

ANNOTATEQUERYTREEPRED(Q, p, S,P)
13: sumntwigs← sumntwigs + ntwigs

14: QPcost← max(QPcost, predQPcost)
15: minpredsel ← min(minpredsel, predsel)
16: sumpredcost← sumpredcost + predcost

17: if sumpredcost > 0 then
18: cardWithPred← card ·minpredsel

19: QPcost← QPcost + sumntwigs ∗ Cpar

20: (rsel, rcost)← ANNOTATEQUERYTREE(Q, ti+1, S,P)
21: sel ← sel ·min(rsel, minpredsel)
22: cost← f(ti|ti−1) · [sumpredcost + rcost + Cstep · f(∗|ti)]

/* Logic for DP candidacy */
23: if card ≥ minCardForDP then
24: DPcost← Eqn. 10
25: if DPcost < cost then
26: P ← P ∪ ti {/* add ti as a DP candidate */}

/* Logic for QP candidacy */
27: if sumntwigs> 0 then
28: QPcost← card · [QPcost + rcost + Cstep · f(∗|ti)]

29: if QPcost< cost then
30: P ← P ∪ ti {/* add ti as QP candidate */}
31: card(ti)← cardWithPred

32: return (sel, cost)

amount of work required to traverse the XPath fragment starting
from the current node using a single thread or processor. Concep-
tually, the algorithm consists of four main blocks: the basecase
(line 3), the pre-recursion processing (line 5), the recursive call
(line 20), and the post-recursion processing (line 21). Thebase
case of the recursion occurs when all the steps in the XPath expres-
sion has been processed and the current node is pointing at the end
of list, i.e., beyond the last step (line 3).

In the pre-recursion processing block (line 5), there are two
cases: the current node may be a root or a step. If the current node
is a root, the contribution to the overall selectivity is always 1.0
and the contribution to the cost is0. If the current node is a step,
the contribution to the selectivity is dependent on the fan-out into
the current node, and the contribution to the cost is proportional to
the fan-out into the current node multiplied by the cardinality of
the previous node. Moreover, one or more predicates may be asso-
ciated with a step. The block from line 10 to line 17 handles the
predicates associated with a step. Each predicate is processed by
invoking the ANNOTATEQUERYTREEPRED procedure. TheAN-
NOTATEQUERYTREEPREDprocedure returns the selectivity of the
predicate, the sequential cost of processing the predicate, the cost
of processing the predicate if parallelization via query partitioning
is used, and the number of twigs or branches in the predicate ex-
pression. Multiple predicates associated with a step are treated as if
they are AND’ed together. Hence, the combined query partitioning
cost is the maximum of the query partitioning cost of each predi-
cate, the sequential cost of processing all the predicates is simply
the sum of the individual predicate costs (line 16), and the resul-
tant selectivity is estimated using the minimum. Once the resultant
selectivity has been computed, the cardinality of the current step
needs to be adjusted using the selectivity of the predicates(line 18).



Algorithm 3 ANNOTATEQUERYTREEPRED(Q,pi, S,P)
Input: Abstract Query TreeQ, Current Predicate Expression Nodepi, Data Statistics
S, Current candidatesP
Output: Selectivitysel, Sequential costcost, QP costpredQPcost, QP branches
ntwigs, adds candidates toP
1: if pi is a simple xpath expressionthen
2: (sel, cost)← ANNOTATEQUERYTREE(Q, Expr(pi), S,P)
3: return(sel, cost, cost, 1)
4: else if pi is a boolean expressionthen
5: (lhssel, lhscost, lhsQPcost, lhsntwigs) ←

ANNOTATEQUERYTREEPRED(Q, LeftExpr(pi), S,P)
6: (rhssel, rhscost, rhsQPcost, rhsntwigs) ←

ANNOTATEQUERYTREEPRED(Q, RightExpr(pi), S,P)
7: if boolean operator is ANDthen
8: sel ← min(lhssel, rhssel)
9: predQPcost ← max(lhsQPcost, rhsQPcost) + (lhssel +

rhssel) · ANDoverhead
10: else if boolean operator is ORthen
11: sel ← max(lhssel, rhssel)
12: predQPcost ← max(lhsQPcost, rhsQPcost) + (lhssel +

rhssel) · ORoverhead

13: return(sel, lhscost+rhscost, predQPcost, lhsntwigs+rhsntwigs)

Line 19 adds the parallelization overhead (a tunable parameter) to
the combined query partitioning cost.

In line 20, ANNOTATEQUERYTREE is called recursively on the
next step in the XPath query tree. The recursive call returnsthe se-
lectivity and estimated sequential cost of the XPath fragment start-
ing from the next step.

The post recursion processing starts on line 21. The current
node’s contribution to the selectivity is multiplied with the selectiv-
ity from the recursive call. The current node’s contribution to the
sequential traversal cost is computed and incorporated with the cost
from the recursive call. The procedure then evaluates whether it is
feasible to parallelize the processing from the current node using
either data partitioning or query partitioning. Finally, the cardinal-
ity associated with the current node is updated with the predicate
selectivity and stored.

The logic ofANNOTATEQUERYTREEPRED is outlined in Algo-
rithm 3 and we highlight the important details next. The procedure
takes as input the XPath query tree, a pointer to a predicate expres-
sion node and the data statistics, and returns the selectivity, sequen-
tial cost estimate, query partitioning cost estimate and number of
twigs of the input predicate expression. If the predicate expression
is a simple XPath expression,ANNOTATEQUERYTREE is called to
obtain the selectivity and estimated cost. If the predicateexpression
is a (binary) boolean expression,ANNOTATEQUERYTREEPRED is
called recursively on the left and right operands of the boolean ex-
pression. In the subsequent post recursion processing, selectivity,
sequential cost estimate and query partitioning cost estimate are
updated and returned.

5.2 Choosing Candidate Partitioning Points
After the first pass of the optimizer has identified the setP of

candidate partitioning points, the second pass iterates over this set
of partitioning points to pick a subset of most ‘optimal’ partitioning
points. Recall that the first pass identifies candidate partitioning
points based on local information. Hence, in the second pass, we
take into account information that is more ‘global’ in nature. For
example, a candidate data partitioning point (eg. ‘c’ in /a/b/c/d/e)
identified in the first pass does not take into account the costof
processing the query XPath up to the partitioning point (eg./a/b).
We call the query XPath up to the candidate partitioning point p the
prefixprefix(p) of p.

The prefix of a partitioning point represents work that needsto
be done prior to the partitioning point in question and in full gen-
erality, the prefix can also contain other partitioning points. The

number of ways that the prefix of a partitioning point could be
parallelized is therefore exponential in the number of partitioning
points it contains and hence leads to a combinatorial explosion of
the search space of all possible parallel plans. We employ a greedy
heuristic to deal with this problem: with respect to the partitioing
point in question, we view the work associated with the prefixas
sequential (not parallelized). Using this assumption, given two par-
titioning points, the partitioning point of which the prefixrequires
less traversal of the data tree is likely to result in a more efficient
query plan.

The amount of traversal of a prefix can be quantified using the
cost models decribed in Section 4. In the case where the prefixes
are relatively simple XPaths without descendent axes, a simpler
heuristic based on the length of the prefixes can be used. Compar-
ing two candidate partitioning points of the same type (eg. both
DP or both QP) becomes very straightforward if the prefixes are
simple XPaths: the partitioning point with a shorter prefix results
in a better query plan. Note that since we assumed that no parallel
processing is done for the prefix, the overall processing time for the
entire XPath is limited by the processing for the prefix: no amount
of parallelism at the partitioning point can reduce the timerequired
to process the prefix.

EXAMPLE 6. Consider the XPath ’/a/b/c/d[e and f and g]’ and
two data partitioning points at ’c’ and ’d’. The partitioning point
’c’ is likely to result in a better plan, because it probably takes less
time to process the prefix ’/a/b’ sequentially than it does toprocess
the prefix ’/a/b/c’.

A similar argument can be made when comparing a data parti-
tioning point and a query partitioning point: the less work the prefix
requires the more parallelism is exposed. Given two partitioning
points of which the prefixes are the same, the parallel cost (esti-
mated according to Eqn. 11 and Eqn. 12) of processing the XPath
fragment starting from the partitioning will be used to distinguish
the partitioning points. The parallel cost of a query partitioning
point is limited by the number of branches and hence the amount
of inherent parallelism. Data partitioning, on the other hand, is less
limited, because the inherent limit on parallelism is the cardinality
of the partitioning point which for most real data sets and queries
is much larger than the number of processors. Hence, when thees-
timated parallel costs of a data and of a query partitioning point are
equal (or very close), the former is prefered.

Using the heuristics described previously, the optimizer sorts the
set of candidate partitioning points found in the first pass and picks
the topk number of candidate partitioning points. The parame-
ter k can be chosen based on the number of available processors
(’cores’). At the time of writing of this paper, the number ofcores
in most multi-core processors have yet to reach the order of hun-
dreds. Hence, in most cases, picking just one partitioning point
is sufficient to produce an efficient parallel query plan. When the
number of cores have reached the order of hundreds and beyond, a
larger number of partitioning points can be picked. The resultant
parallel query plan will contain nested partitioning points, and the
processor assignment problem (mapping processors/cores to parti-
tions) will become a significant problem. Discussion of the proces-
sor assignment problem is beyond the scope of this paper and we
hope to address it as part of our future work.

5.3 Constructing the Parallel Query Plans
Once the topk candidate partitioning points have been chosen

by the optimizer, the next step is to construct a parallel execution
plan for the input query based on these points. This is done byan
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Figure 5: Query and data partitioning plans.

algorithm that accepts as input a query treeQ and the set of parti-
tioning pointsP , and builds the parallel execution plan iteratively.
At each iteration the execution plan is built by consideringthe par-
tially constructed plan of the previous iteration and by applying the
following operations (we omit the pseudo-code of the algorithm,
due to lack of space): It picks the next partitioning pointt ∈ P and
locates the position(s) oft in the partially constructed plan from the
last iteration (in the first iteration, this partial plan coincides with
the query treeQ). Then, ift is a data partitioning node, a newspe-
cial DP node is inserted into the tree in place oft to denote that data
partitioning occurs at this point. Then, the algorithm consider the
subtree in the plan formerly rooted att and creates as many dupli-
cates of this sub-tree as the number of processors we are assigning
to this partitioning point. All these sub-trees become children of
the new QP node. Furthermore, to each instance of nodet we add a
new subtree corresponding to the predicate that defines the section
of the XML document over which the query is to be executed (see
Section on Partitioning Strategies).

In the case of query partitioning, we know that by partitioning
the query at pointt, we essentially rewriteQ into a set of queries
whose expressions (and thus trees) differ only after stept. These
differing trees of the rewritten queries become the children of a new
specialQP node and the new query tree rooted at QP replaces the
partial plan from the previous iteration.

This concludes one iteration of the algorithm and the next parti-
tioning point is considered. Notice that an iterationi might create
multiple copies of the partitioning point at iterationi+1. Then, the
above procedure must be applied to each one of these copies.

As an example of the above procedure, consider Figure 5. In
the middle of the figure, we show the query tree correspondingto
the query/a/b/c[d ande/f ]. Assuming that stepc is a candidate
partitioning point, then to the left of the figure we show the plan
in the case thatc is a query partitioning point, while to the right of
the figure we show the plan in the case of data partitioning. Notice
that in the latter plan, each of the subtrees of DP has an additional
predicate specifying the section of the XML document over which
the query is to be executed. What if an additional data partitioning
point exists for stepe? Then, for the right branch of the left plan
nodee is replaced by DP and two new subtrees fore/f are created
as children of DP. For the right plan, we need to do a similar change
in both subtrees of the (existing) topmost DP node.

6. EXPERIMENTS
We have performed extensive experiments on several types of

XPath queries over many XML datasets. In this section, we de-
scribe our experiments and present a representative subset(due to
space constraints) of our experiment results. The performance of
both our optimizer and the parallel query plans are very similar on
the other datasets.

Prototype Implementation. We implemented a prototype of

our multi-core XPath processing system including our own im-
plementation of an XPath processor, the optimizer, and the par-
allel query operators. The XPath processor leverages Xerces-C and
XALAN DOM APIs. The optimizer is implemented in PERL and
leverages the XML::XPath package to parse an XPath into an ab-
stract syntax tree. The output of the optimizer is a (set of) op-
timal partitioning point(s). We then generate the query plans by
hooking up a set of basic query operators implemented in C++.
These operators rely on our XPath processor and include a sequen-
tial XPath operator, a parallel data partitioning XPath operator, a
parallel query partitioning XPath operator, a parallel hybrid query
and data partitioning operator, and sequential operators for merging
node lists either via intersection or union. The query operators are
parametrized by the number of threads.

XMark-large XMark-huge FpML
Size (MB) 116 1172 833
Number of Nodes 514 514 466
Number of Docs na na 43,968
Depth 12 12 11

Table 1: Characteristics of the synthetic XMark dataset and
the real FpML dataset

Datasets and Queries. We experimented with DBLP, Mondial,
Treebank, Swissprot, XMark [25], and an FpML dataset from anin-
vestment bank. Due to space constraints, we present representative
results from the XMark and FpML dataset. The FpML dataset is
a collection of 43,968 real anonymized FpML [1] documents from
an unnamed investment bank. Each document follows a proprietary
extension of the FpML industry standard schema. We constructed
a super rootfpmldocs in order link the entire collection into a
single XML document. In addition to the real FpML data, we also
used XPath expressions extracted from a real query workloadpro-
vided by the investment bank. Table 2 lists the representative XPath
queries over the two XML datasets. Two of the XMark queries
were drawn from the XPathMark [10] benchmark. The query XM1
was run against the XMark-huge document. The remaining XMark
queries were run on the XMark-large document. The experiments
were performed on a dual quad-core 2.66 GHz Intel Xeon system
running Linux.

Methodology. For each dataset and each query in the testing set
for that dataset, we use our optimizer to identify the candidate par-
titioning points and strategies. Each of these partitioning point and
strategy corresponds to a prebuilt parametrized query planin our
prototype. These query plans are executed on the dataset in ques-
tion by setting the parameters with the appropriate XPath query
fragments, the partitioning point and the number of processors to
use. In general, we run the query plans over different number
of processors and record the wall-clock execution time. We then
check if the query plan (i.e., partitioning point and strategy) chosen
by the optimizer is the among the fastest running query plan.

6.1 Evaluation Results
The query XM1 (Table 2) consists of a series of 6 child steps.

As the query does not contain any predicates, this query can be
parallelized only via the data partitioning approach. Figure 6
presents relative performance of five possible data partitioning
query plans,dp1 to dp5 for the query XM1. These plans dif-
fer in the way the original query is partitioned into sequential and
parallel queries. The query plan,dp1, uses the earliest partition-
ing point, the child step/closed_auctions, to partition the
original query, while the query plan,dp5, chooses the later child



Document Key XPath Query
XMark.xml XM1 /site/closed_auctions/closed_auction/annotation/description/text/keyword

XM2 /site/people/person[profile/gender and profile/age]/name
XM3 /site/regions/asia/item[mailbox/mail/date and description/parlist/listitem/text

and payment]/name
XM4 /site/open_auctions/open_auction[annotation/author and

annotation/description and bidder/date and privacy]
FPML.xml FM1 /fpmldocs/Message/FpML/trade/creditDefaultSwap/generalTerms

/effectiveDate/unadjustedDate
FM2 /fpmldocs/Message/FpML[party/partyName and trade/creditDefaultSwap/generalTerms

/effectiveDate/unadjustedDate]/trade/tradeHeader/tradeDate

Table 2: XPath Queries used for Experimental Evaluation
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Figure 6: Impact of query splitting point on performance of
data partitioned query plan. The graph compares performance
of 5 different data partitioning query plans for the query XM1.
We use the convention of annotating the plan chosen by the
optimizer using (*).

step,/text, to partition the query. Our optimizer identified two
plans,dp2, anddp3, that use the child steps,/closed_auction
and/annotation, respectively, to partition the original query.
Based on the recommendation, our system’s heuristic (Section 5.2
finally chose the query plan,dp2, as the ideal plan for executing
the query XM1. Note that the among the five evaluated plans,
only dp2 consistently performs better than the sequential execu-
tion, which requires 3.31 seconds (Figure 6). As Figure 6 illus-
trates, performance of query XM1 under the plandp2 is dominated
by the parallel execution time which improves as the number of
processors is increased. The best query performance is observed
when the query is executed usingdp2 on 6 processors (1.65 sec-
onds). For the plansdp2 to dp5, the overall performance is dom-
inated by the sequential execution costs. Hence, although the par-
allel execution costs improve as the number of processors isin-
creased, the overall performance degrades. It is importantto note
that aggressive parallelization as implemented in the plandp1 per-
forms poorly since each participating processor ends up doing the
amount of work similar to the purely sequential execution (as there
is only one/closed_auctions node and it gets replicated on
all participating processors). In such setting, the amountof avail-
able processing power is inconsequential as demonstrated in Fig-
ure 6. The important lesson from this experiment is that the best
execution plans result in from finding the proper mix of sequential
and parallel execution.

Figure 7 presents performance of executing the query XM2 using
different parallel execution plans. XM2 is a predicated query with
a conjunction of two path predicates. The optimizer first evaluates
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Figure 7: Comparing performance of data-, query- and hybrid
partitioning plans for the query XM2.

whether the query should be parallelized or not. For XM2, theopti-
mizer determined that the query would benefit from parallelization.
It further evaluated the two different parallelization strategies: data-
and query partitioning over different partitioning pointsin the orig-
inal query. The optimizer recommended to first use the data par-
titioning strategy at the partitioning point,/person, followed by
the query partitioning strategy by partitioning the query predicates
at the partitioning point,/person, over 2 processors. In the query
partitioning execution, the original query is rewritten into two sub-
queries, each executing a distinct path predicate on the/person
node. These two sub-queries are then executed on two different
processors and their local results are intersected to compute the fi-
nal result. We first evaluated these two options and observedthat
the query partitioning plan performs (1.02 seconds) as bad as the
sequential execution (1 second). Still, as the optimizer chose the
query partitioning as the second option, we decided to use the hy-
brid approach to provide the query partitioning plan more paral-
lelism. The hybrid partitioning scheme first uses the query parti-
tioning scheme to partition the original query and then follows the
data partitioning strategy to execute individual sub-queries on two
processor groups of 3 (HYB1) and 4 processors (HYB2) each. As
Figure 7 illustrates neither HYB1 and HYB2 plans can match the
performance of the data partitioning plan selected by our optimizer.

Figures 8 and 9 present the performance of different query ex-
ecution plans for the queries XM3 and XM4, respectively. Forthe
query XM3, the optimizer selects the data partitioning at the par-
titioning point/item to be the optimal execution plan, followed
by a query partitioning plan at the same partitioning point by parti-
tioning the predicates over 3 processors. Similar to the query XM1,
the query execution plan performs (0.15 seconds) as bad as the se-
quential plan (0.16 seconds). We also tried applying the hybrid
strategy to the query execution plan, where each sub-query was ex-
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Figure 8: Comparing performance of data-, query- and hybrid
partitioning plans for the query XM3.
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Figure 9: Comparing performance of data-, query- and hybrid
partitioning plans for the query XM4.

ecuted over 2 processors. However, the hybrid approach was not
able to provide significant improvement over the query execution
plan (0.11 seconds) and the best performance was observed bythe
data partitioning plan chosen by the optimizer (0.066 seconds).

For the query XM4, we observe similar behavior. Our op-
timizer recommended the data partitioning plan at the partition-
ing point, /open_auction, as the top plan. It also sug-
gested two query partitioning plans at the same partitioning
point: the first plan creates two predicated sub-queries, first as
a conjunction of two predicates,annotation/author and
annotation/description, and the second as a conjunction
of remaining predicates,bidder/date andprivacy, the sec-
ond plan creates four predicated sub-queries, each with a separate
predicate. We ran the first query partitioned plan on 2 processors
and other on 4 processors. However, both performed worse (1.75
seconds and 1.38 seconds) than the data partitioned plan (0.85 sec-
onds using 6 processors). Application of hybrid partitioning strat-
egy didn’t help in improving the performance. The best perfor-
mance was provided by the data partitioning strategy using 6pro-
cessors.

Figure 10 presents the comparison of three different data parti-
tioning queries for the query FM1 on the FPML dataset. Our opti-
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Figure 10: Impact of query splitting point on the performance
of a data partitioned query plan. The graph compares perfor-
mance of 3 different data partitioning query plans for the query
FM1.
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Figure 11: Comparing performance of data-, query- and hy-
brid partitioning plans for the query FM2.

mizer suggested only one possible partitioning point,/Message,
to generate the serial and parallel sub-queries (dp1). To evaluate
the efficacy of the suggested plan, we compared it with two differ-
ent data partitioning plans,dp2 anddp3, with partitioning points at
/FpML and/trade, respectively. As illustrated in the Figure 10,
the plan suggested by the optimizer provided the best performance
as it had the smallest serial component.

Finally, Figure 11 presents comparison of multiple query plans
for the Query FM2. The optimizer suggested two possible plans:
data partitioning at the partition point,FpML, and query partition-
ing over 2 processors by creating two sub-queries for two different
predicates. Similar to previous cases with predicated queries, the
query partitioning plan (6.24 seconds) performed as bad as the se-
quential execution (6.26 seconds), and the hybrid partitioning was
also ineffective. The best performance (1.94 seconds) was pro-
duced by the data partitioning plan recommended by our optimizer.

Our experiments have conclusively demonstrated that our opti-
mizer precisely predicated the XPath execution costs and consis-
tently recommended the optimal plan. In all cases, the querypar-
titioning plan performed the worst. For predicated queries, query



partitioning requires the participating processors to traverse the en-
tire tree. If the work involved in executing the predicates is not
dominant, then individual processors perform the same amount of
work as the sequential plan, and further their traversal patterns
overlap. Hence, their execution times match the sequentialcounter-
part (e.g., Figures 7, 8, and 11). Therefore, the query partitioning
strategy that partitions the predicate work is suitable to only those
queries whose overall work is dominated by the predicate execu-
tion.

7. CONCLUSION
Motivated by the recent trends in hardware and the emergence

of multi-core processors in commodity systems, this paper pre-
sented the first systematic investigation towards parallelizing XPath
queries. We considered alternative strategies of XPath paralleliza-
tion and presented a series of cost functions to estimate thepro-
cessing costs of different phases in the parallalization process that
use these strategies. These cost functions take into account both
the data statistics and query specifics, and form the basis ofour
parallel optimizer. For our optimizer, we used a number of heuris-
tics that consider a subset of the exponentially large search space
of possible parallelization plans. Our heuristics identified the most
promising plans in this subset (with the help of the cost functions),
which were then used to generate parallel execution plans. We have
implemented a prototype end-to-end parallel XPath processing sys-
tem that incorporates all the aforementioned functionalities. We
presented a set of experiments using realistic XPath workloads that
demonstrated the efficacy of our techniques in identifying optimal
parallel execution plans. We believe that this work is only astart to
the exploration of XPath parallelization and many future research
topics exist, including, support for a wider fragment of XPath and
the problem of choosing the optimal processor assignment.
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