
RC24934 (W1001-056) January 15, 2010
Computer Science

IBM Research Report

Everett: Providing Branch-Isolation for a Data
Evolution Service

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Everett: Providing Branch-Isolation for a Data Evolution Service

Avraham Leff
IBM T.J. Watson Research Center

POB 704
Yorktown Heights, NY, USA

avraham@us.ibm.com

James T. Rayfield
IBM T.J. Watson Research Center

POB 704
Yorktown Heights, NY, USA

jtray@us.ibm.com

Abstract

One benefit of Software-as-a-Service (SaaS) is the
ability to rapidly deploy iterative improvements with-
out requiring users to upgrade the application on their
machine. However, the need to rapidly “develop and
test” different versions of an application implies that
developers need branch isolation to protect the system
from local changes to both data and meta-data in the
same way that they traditionally use branch-isolation
to protect the system from source-code changes.

Providing branch-isolation for source-code changes
has well-known solutions, but these solutions do not ex-
tend well to providing isolation for changes to data and
meta-data. everett provides developers the ability
to safely – and concurrently – change database values
with new business logic or evolve data schema in vari-
ous ways while sharing the same database. This paper
discusses how everett provides transparent branch-
isolation for a data-evolution service, the algorithmic
and data-structure trade-offs that we examined, and
evaluates the success of our approach.

1. Introduction

1.1. Motivation

SaaS development is well-suited for the so-called
“agile” development style because successive sets of
feature improvements can be deployed with no effort
from the existing user base. It becomes possible to
get rapid feedback about the usefulness of a given fea-
ture, allowing an enterprise to decide whether to fur-
ther refine or remove the feature. Typically, new ap-
plication features require new business logic that may
affect existing data values as well as evolving the origi-
nal data-schema. For example, consider an enterprise-
directory service that stores employee names and email

addresses. Enhancing the service by adding an hr ap-
praisal feature requires an “org-chart” in order to im-
plement the approval chains. Adding the new business
logic and user interface requires that employee records
be augmented with a “my manager” field. Similarly,
changing the “hire date” to a Y2K-compliant format,
or allowing employees to have multiple phone numbers,
requires evolving the data-schema together with the
application. Developers of one feature need their data
and meta-data to be protected from developers of other
features.

Version control systems such as cvs [13] and svn [7]
have traditionally protected source-code through
branch isolation, enabling developers to “branch” to
create new features and then “join” when the feature
is complete. However, there are no general-purpose so-
lutions for similar branch-isolation for changes to ap-
plication data and meta-data. Changing an existing
data-schema is a non-trivial operation, even if the data-
evolution is purely additive (e.g., a new “my manager”
field). It becomes very dangerous, if not impossible, for
two versions of an application to use the same database
when the new semantics differ from the existing data-
schema semantics (e.g., changing measure units or en-
tity cardinality). Even when branches use the same
data-schema, the differing business logic may associate
different semantics with a given data-value. As a re-
sult, code developed in one branch may easily destroy
data created in another branch. For this reason, en-
terprises typically set up separate test databases for
separate feature-sets; physical separation is considered
to be necessary to protect each branch’s data. How-
ever, setting up separate databases introduces consid-
erable “friction” into the rapid prototyping process be-
cause developers have to create, manage, and populate
their private database with the appropriate subset from
the production database. Still worse, if the enterprise
decides to incorporate a new feature-set, the evolved
data-schema must be manually merged with the exist-

1

ing data-schema.

1.2. Everett: Branch-Isolation for Data

everett applies the concept of branch-isolation
used by version-control systems such as cvs and svn
to the data portion of an application. Version-control
systems allow developers to safely “branch” code and
modify it in isolation of one another while storing their
code in the same physical repository. Developers can
later merge different versions of the code to create
an application that includes features developed inde-
pendently in the different versions. By analogy, ev-
erett is a data evolution service that allows devel-
opers to concurrently evolve data-schema in different
ways, and to store different data values, while using
the same physical database. (The name of our project
alludes to its support for concurrent existence of mul-
tiple branched histories [14].) Most importantly, these
features are transparent to a given data api so that
developers do not have to first learn a new api in order
to use everett. everett then allows different ver-
sions of the evolved data-schema to be merged into a
common schema.

everett provides two functions: branch isolation
and data-schema evolution. The challenge in develop-
ing everett was the development of algorithms and
data-structures such that the data-service provides rea-
sonable time and space performance while providing
developers with their private “data sandbox”. We have
initially focused on branch-isolation as we plan to pro-
vide data-schema evolution using branch-isolation to
protect application meta-data. This paper therefore
focuses on branch-isolation, although we present our
approach to data-schema evolution in Section 2.

Before proceeding with a discussion of how everett
provides branch isolation for data, we explain how ev-
erett relates to other work in the data-versioning
space (Section 1.3). We discuss the branch-isolation al-
gorithms and data-structures in Section 3. In Section 4
we evaluate our results and summarize everett’s sta-
tus.

1.3. Related Work

Much work was done in the 1980-2000 time frame in
the area of temporal databases [5]. Although tempo-
ral databases typically maintain a record of past (su-
perseded) record values, they do not need to maintain
multiple concurrent branches, and thus do not need to
solve many of the problems addressed by everett.

For example, a rich temporal database will maintain
data along two time axes: valid time and transaction

time. This allows clients to query about past values
of data. However, all queries from all clients will be
applied to that same set of temporal data. Different
clients will not see different results for the same (tem-
poral) query, and changes made by a client will imme-
diately visible to other clients. Also, schema changes
made by a client will immediately be visible to other
clients. In contrast, everett maintains isolation of
data values and schema between clients in different
branches. If a client executing in its own branch makes
a data or schema change, the change will not be visible
to clients in other branches until a join has taken place.
Conversely, unlike temporal databases, everett does
not allow queries about non-current values of data: all
queries are based on the most recent changes made in
the branch being queried.

Rails Migrations [8] provide a systematic way of or-
ganizing changes made to the database schema by mul-
tiple developers, and for developers to merge schema
updates to get to a common state. However, it is some-
what ad-hoc; for example, the migrations are not neces-
sarily executed in the same order for each developer, no
checking is done for conflicts between developers, and
some tasks must be done outside the migrations frame-
work (e.g., modifying a previously-created migration).
This approach is more suited for a situational devel-
opment group [9]. Most importantly, Rails Migrations
do not provide a mechanism for sharing database data.
Each user must create and maintain their own copy of
the database. With everett, the existing database
transparently provides developers with a private copy
of the existing data, with no effort required from the
developers.

Other projects have focused on methodologies for
describing schema changes and for converting data be-
tween different schema. The Clio [4] system allows
the expression of declarative schema mappings between
XML and/or relational schema. The PRISM Work-
bench [2] provides a language for describing schema
changes, query conversion, and data migration. How-
ever, neither supports maintenance of multiple concur-
rent schema by multiple users in the same database
system.

2. Application Life-Cycle

This paper focuses on the branch-isolation function
that everett provides to a data-evolution service.
This section therefore describes the “big picture” of
how everett can be used throughout an application’s
development and test life-cycle.

Version control systems have made developers famil-
iar with the “branch and merge” application life-cycle.

Application development proceeds on a “trunk” while
experimental features are developed along “branches”
that may optionally be merged back to the trunk. The
code in the trunk and individual branches are isolated
from one another, giving the freedom to experiment
with new features since a developer knows that her
changes will not affect anyone else.

everett gives developers exactly the same freedom
with respect to the data-schema and data-values por-
tion of an application. A data branch is identified by
branchid, and typically has a 1:1 correspondence to a
code branch. The state of a data branch is the state of
the parent branch at the branch point, together with
the set of changes made within the branch. Besides
changing data values, developers may add, remove, or
change properties of the branch’s data-schema. For
example, they may add a “my manager” property, re-
place a “phone” property with a “set of phones” prop-
erty, and change the units of a “year” property from
two characters to four. Because a branchid distin-
guishes one branch from another, everett can make
new properties immediately available to a given branch,
while ensuring that code from other branches simply
don’t see the new data-values or properties. Similarly,
everett will raise an exception when code in the cur-
rent branch accesses properties that have been removed
from the current data-schema. Finally, everett sup-
ports modification of existing property types by allow-
ing developers to specify “transfer functions” that con-
vert between data values encoded in the parent branch
and data values encoded in the current branch. (Trans-
fer functions are similar to the “updater subroutines”
used by Multics [10].) The use of transfer functions
allows values in the parent branch to be transparently
migrated for use by code in the new branch without
manually copying and modifying the old data.

Code in the branch accesses the branch data which,
at the branch point, is identical to the set of data values
that are visible to the parent branch (e.g., the trunk).
Importantly, branched applications initially behave ex-
actly the way they did before the branch since the code
and data are identical to the pre-branch state. As data
are added, removed, or modified, branch queries will
begin to return different result-sets since changes made
in other branches are isolated from one another.

When a decision is made to merge a branch back
into the parent branch, the branch code is first merged
into the parent branch using standard version control
techniques. everett merges data-schema in the fol-
lowing way:

• Added properties are now made visible to parent-
branch code.

• Removed properties are hidden from parent-
branch code (they are not physically removed from
the database, because code in other branches may
still be using them). Declaring such removed prop-
erties as completely obsolete can be seen as an ad-
ministration function which is invoked when exist-
ing branches are no longer active. This is needed
only to save database space, since old properties
can remain hidden forever without affecting cor-
rectness.

• By using transfer functions, properties modified in
the branch-schema are converted over a period of
time to the new format. During the transition,
individual property values may be converted on
demand as needed by running code. “Reverse”
transfer functions may be used, as needed, to con-
vert property values back to the old format needed
by code in pre-existing branches.

Note that – in contrast to meta-data – everett
discards data values from the child-branch during
the merge. In general, enterprises will not want
to use test data-values to replace production data-
values. The semantics of situations where branch
data-values should overwrite the parent data-values are
application-specific, and are not easily specified to the
lower-level everett data-service. Previous work on
on merging of database branch values may be found
in [1].

3. Algorithms & Data Structures

3.1. The Problem

As mentioned above, this paper focuses on ev-
erett’s branch isolation function which we formally
define as follows. Assume that developers can specify
that a given set of code be associated with a develop-
ment branch Bi. All data and meta-data that are read
or written when this code executes are also associated
with the same development branch. Also, when devel-
oping in Bi, developers can create a child branch Bj

and thus create a branch tree rooted in B0. The time at
which Bj is created is a branch point : parent branch Bi

development beyond the branch point is independent
of Bj development.

With respect to branch data, the isolation semantics
for the branch tree are:

1. Bj code can read parent-branch data that were
created or modified up to the branch point.

2. Data created, modified, or deleted by Bj code are
not visible to parent branches.

3. Bi data values that are modified or deleted by Bj

supersede – for code associated with Bj and all of
its child branches – the Bi values.

4. Data created or deleted by Bi code after a branch
point are not visible to Bj .

5. Data values that are modified by Bi code after a
branch point are not visible to Bj . Bj will continue
to see the values that existed at the time of the
branch-point (unless superseded by modifications
made by Bj itself).

These rules define everett’s branch-isolation “crud”
semantics. Providing branch-isolation is thus a pre-
requisite to providing data-schema evolution since the
latter requires that branch meta-data have branch-
isolation semantics.

3.2. The Solution

Copying the entire database for each branch trivially
provides branch-isolation, but is very space-inefficient
since most data in a parent branch will be read – but
not modified – by child branches. For similar rea-
sons, this solution is also time-inefficient since an en-
tire database has to be created on a per-branch ba-
sis. everett therefore uses a “log-structured” [3]
(at the record level) approach in which cud (but not
query) operations performed by a given branch cause
new records to be written to the database. This ap-
proach conserves both time and space since new records
are not created until a branch actually modifies a
datum. Providing the branch-isolation semantics for
query, however, is more complicated.

In a non-branch environment, database indices en-
able efficient queries because the database updates
them with the most recent values of the data. How-
ever, indexing a multi-branch database is not straight-
forward:

• Records created by a branch that is not a parent
branch of a second branch may not be returned to
a query issued by the second branch.

• Even if a child branch creates more recent records
than a parent, they may not be returned to a query
issued by a parent branch.

• Even if a parent branch creates more recent
records than a child, they may not be returned
to the child branch if they were created after the
branch point.

In other words, the algorithms used for efficient query
of single-branch databases cannot be easily adopted by

everett. Importantly, augmenting data records with
branchid information does not help solve the problem
since a child branch’s data-set is potentially comprised
of data from its parent branches. In fact, we expect
(because of typical read/write ratios) that most of a
child branch’s data are associated with a branch that
differs from the branch issuing the query. Also, data
associated with a parent branch may not be relevant
to a branch query if that data were created after the
branch point or were modified by the child branch.

To see this more concretely, consider Figure 1 which
shows three items created in B0, followed by a branch
point in which B0 creates B1. After the branch point,
B0 modifies the value of item2 from B to D; B1 modifies
the value of item1 (from A to E) and deletes item3. The
branch-state of B1 is:

• item1, value E, record associated with B1.

• item2, value B, record associated with B0 – even
though it now has a value of D in B0!

• item3, value “deleted”, record associated with B1.

Because “query by branchid” won’t provide the
right semantics, everett instead introduces the con-
cept of a segment id (or sid). A sid uniquely identi-
fies a segment of a branch that has not (yet) branched
further. Thus, in Figure 1 there are three sid values:
sid1 for the B0 records before the branch point; sid1

for the B0 records after the branch point; and sid2

for the B1 records (which has not yet branched). We
can now reformulate the semantics of branch-isolation
query as “query against the most recent sid in the cur-
rent branch”. However, we cannot simply “query by
sid” because most records are not updated in the cur-
rent branch.

Therefore, in addition to augmenting every record
with an appropriate sid, everett uses two data-
structures. The first, a Branch-SegmentId Map, asso-
ciates every branchid value with the most recent sid
value of that branch. In Figure 1, B0 is mapped to sid1

and B1 is mapped to sid2. The second, a SegmentId-
Parent Map, associates each sid value with the value
of this segment’s parent sid. In Figure 1, all sid values
map to the same parent sid, sid0.

everett implements queries with the following al-
gorithm:

1. Apply the query across all branches.

This returns all records that might be part of the
result set. For example, if B1 executes a “select
all” query, this step would return all records in
the everett database.

create “A”

create “B”

create “C”

set “D”

set “E”

delete

item 1

item 2

item 3

Segment 0

Segment 1

Segment 2

Create “Branch1”

Branch 0

Branch 1

item 1

item 2

item 3

item 1

item 2

item 3

Figure 1. Versioning Data Using everett: Branching and Branch Segments

2. Partition the result set based on common data id.

In our example, there will be three groups corre-
sponding to item1, item2, and item3.

3. For each unique data id, fetch all sids for the id.
That is, for all data items which satisfy the query
in some branch at some time, fetch all the different
versions.

4. For each unique data id, determine the most re-
cent record (if any) that is “visible” to the client’s
branch, and add the record to the result-set if it
matches the query.

Visibility is determined by first extracting (from
the SegmentId-Parent Map) a path of branch-
segments that starts with the most recent segment
of this branch and terminates at the branch-root.
A record is visible to a given branch iff it contains
a sid that is on the branch-segment path. The
most recent record, then, is the first record ev-
erett finds when traversing the branch-segment
path.

In our example, the result-set will contain item1

with value E and item2 with value B.

5. Return the filtered result set to the user.

Note that the everett query algorithm includes
two nuances. First, everett must not return a record
from a given partition if that record has been super-
seded by a deleted record. In our example, even
though item3 appears in the partition, it will not be
included in the result-set because the segment-path
traversal for B1 will encounter a deleted record. Sec-
ond, queries typically are not just “select all”, and also
specify some predicate (“select by last name”). ev-
erett must ensure that a record is added to the result-
set only if the most visible record with that data id ac-
tually matches that predicate. For example, consider
a “query by department(T65)” where B0 associates a
given employee with department T65, but that em-
ployee’s department was modified in B1 to B72. That
employee will appear in the partition, but must not
appear in the result-set because it’s most visible value
(with department B72) no longer matches the predi-
cate.

The following cud implementation is used to sup-
port the everett query algorithm:

• All records are augmented with sid and deleted

fields. (everett removes these everett-specific
fields when returning records to the client.)

• create and update: Add a new record contain-
ing values specified by the client; set the sid field
to the one specified by the SegmentId-Parent Map,
and set deleted to false.

• delete: Add a new record with values identical
to the current version of the record; set the sid
field to the one specified by the SegmentId-Parent
Map, and set deleted to true.

3.3. Alternatives

We did consider alternative implementations to the
query algorithm discussed above. Given the fact that
code-branching systems motivated our everett data-
branching project, we first considered whether we could
use the algorithms of systems such as cvs and svn.
Upon closer inspection we found that – at the imple-
mentation level – code-branching and data-branching
require different approaches. Version control systems
focus on version history of a record (file) to allow recon-
struction of a given version or to show differences be-
tween versions. In contrast, databases focus on queries
across records: i.e., find all records that match a given
predicate. As a result, version control systems are inef-
ficient from a time and space perspective for database
versioning. In order to use a version-control system for
everett, we would have to reconstruct the entire state
of a given version, and then execute the query against
the reconstructed state. In the actual implementation
of everett, we do not reconstruct the entire version.
Instead, we query the database directly using standard
predicate criteria. Databases are already optimized for
these kind of query operations, using indices and query
planners. Then, we refine the result-set to apply the
branch-isolation semantics.

Rather than first applying the query to all branches
and then applying the visibility rules, one might plau-
sibly successively apply the query only to the segments
that lie in the segment-path from the current branch to
the branch-root. The merge of these successive queries
(including the refinements used by everett to de-
tect update and delete record “maskings”) comprise
the client’s result-set. We chose not to use this algo-
rithm because its performance depends on the number
of parent segments that exist in the database. Recall
that two sid values are created every time a branch
is created: one that will be subsequently used by the
parent-branch, and one that will be used by the child
branch. The trunk will typically have a considerable
number of sid values, each of which has to be queried in

Listing 1. Client BranchContext Interface
/∗∗ Set the branch a s s o c i a t e d with the c l i e n t
∗ to the s p e c i f i e d branch , which must
∗ a l ready e x i s t .
∗/
pub l i c void setBranch (St r ing branchID) ;

/∗∗ Create a new branch o f f the cur rent branch ,
∗ but does not change the cur rent branch .
∗/
pub l i c void createBranch (St r ing branchID) ;

Listing 2. Server BranchContext Interface
/∗∗ Return TRUE i f the branch e x i s t s ,
∗ FALSE otherwi s e .
∗/

pub l i c boolean branchExists (S t r ing branchID) ;

/∗∗ Returns the name o f the branch c u r r e n t l y
∗ a s s o c i a t e d with the c l i e n t .
∗ I f the c l i e n t has not invoked
∗ ” setBranch () ” , the system
∗ r e tu rn s the Trunk branch id by d e f a u l t .
∗/

pub l i c S t r ing getBranch () ;

this algorithm. Depending on how many branches are
actually created in a given environment, the everett
approach of applying multiple queries against the en-
tire database will perform better than many queries
against subsets of the database.

4. Status & Evaluation

everett is currently available as a Java library for
in-process use and as a web-service. Both versions are
packaged as a data-service [6] that users configure at
runtime to execute code and access data in a specific
branch.

Developers invoke the BranchContext api (List-
ing 1) to either start a new branch (as a child of the
current branch) or to associate current development
with a given branch.

The server-side everett implementation associates
distinct BranchContext instances with clients on a per-
thread basis. As part of the implementation, the server
uses the additional BranchContext methods shown in
Listing 2.

Once configured, the versioning provided by ev-

erett is transparent to users since the api is iden-
tical to the non-versioned api. everett accesses the
BranchContext associated with the client to determine
the client’s branchid. As discussed above, everett
maps branchid values to sid values, and thus imple-
ments the branch-isolation semantics.

We evaluated the isolation capabilities of everett
by comparing its performance relative to the non-
versioned form of the data-service [6]. Specifically, we
implemented the TPC-B benchmark [12], configuring
it to use the everett data-service with the code exe-
cuting in branch B0. (Although TPC-B has been su-
perseded by other TPC benchmarks, we use it here
because it is small enough to implement quickly and
“is designed to be a stress test on the core portion of a
database system”.) We found that the benchmark us-
ing the non-versioned data-service performed 3.8 times
better than everett. The most likely source of the
performance problem is the need to fetch all sids for
data items which match the query predicate. This
causes the number of database queries per everett
query to rise linearly with the number data items which
match the everett query predicate, even if those data
items are not visible in the branch of interest. Also, the
number of sids fetched for each data item will typically
grow over time, so that queries will take longer as the
database contains more history.

At this point in the everett project, we have
demonstrated that the basic concept is feasible, and
that our algorithms and data structures for maintain-
ing branch isolation are correct. Although the per-
formance is adequate for prototyping work, it is not
adequate for production applications. Indexing is typ-
ically used to improve query performance in database
systems. However, relational database indices typically
only support range queries, and we do not see a way to
implement everett using only range queries. Emerg-
ing NoSQL [11] databases provide even less query func-
tionality. We have begun work on new indexing al-
gorithms which will provide a significant performance
benefit for everett.

References

[1] B. T. Bennett, B. Hahm, A. Leff, T. A. Mikalsen,
K. Rasmus, J. T. Rayfield, and I. Rouvellou. A Dis-
tributed Object Oriented Framework to Offer Transac-
tional Support for Long Running Business Processes.
In ACM Middleware, pages 331–348, 2000.

[2] C. A. Curino, H. J. Moon, and C. Zaniolo. Grace-
ful database schema evolution: the prism workbench.
Proc. VLDB Endow., 1(1):761–772, 2008.

[3] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, San Fran-
cisco, CA, USA, 1993.

[4] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio grows up: from research prototype to in-
dustrial tool. In SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Manage-
ment of data, pages 805–810, New York, NY, USA,
2005. ACM.

[5] R. T. Jensen, C. S. Snodgrass. Temporal data man-
agement. IEEE Transactions on Knowledge and Data
Engineering, 11(1):36–44, 1999.

[6] A. Leff and J. T. Rayfield. EDS: Data service mid-
dleware for situational applications. http://domino.

watson.ibm.com/library/cyberdig.nsf/Home,
RC24770, 2009.

[7] C. M. Pilato, B. Collins-Sussman, and B. W. Fitz-
patrick. Version Control with Subversion. O’Reilly
Media, 2nd edition, September 2008.

[8] Rails migrations. http://guides.rubyonrails.org/

migrations.html, 2008.
[9] C. Shirky. Situated software. http://www.shirky.

com/writings/situated_software.html, 2004.
[10] P. Stachour and D. Collier-Brown. You don’t know

jack about software maintenance. Commun. ACM,
52(11):54–58, 2009.

[11] M. Stonebraker and J. Hong. Saying good-bye to
dbmss, designing effective interfaces. Commun. ACM,
52(9):12–13, 2009.

[12] TPC-B. http://www.tpc.org/tpcb/default.asp,
1990.

[13] J. Vesperman. Essential CVS. O’Reilly Media, 2nd
edition, November 2006.

[14] Wikipedia. Hugh Everett III. http:

//en.wikipedia.org/w/index.php?title=Hugh_

Everett_III&oldid=333333490, 2009.

