
RC24935 (W1001-071) January 25, 2010
Computer Science

IBM Research Report

Constructing Minimal Overlay to Support Policy-Based
Access Control Groups

Bong Jun Ko, Starsky H. Y. Wong, Kang-Won Lee
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, USA

Chi-Kin Chau
Computer Laboratory

University of Cambridge
Cambridge, UK

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Constructing Minimal Overlay to Support
Policy-Based Access Control Groups

Bong Jun Ko, Starsky H. Y. Wong, Kang-Won Lee
IBM T. J. Watson Research Center

Hawthorne, NY, USA
Email: {bongjun_ko,hwong,kangwon}@us.ibm.com

Chi-Kin Chau
Computer Laboratory, University of Cambridge

Cambridge, UK
Email: Chi-Kin.Chau@cl.cam.ac.uk

Abstract—Overlay networks have been studied extensively in
recent years as a flexible means to improving the reliability,
resiliency, and performance of many networking applications.
In this paper we present a novel use of overlay networks and
distributed mechanisms to construct them for handling infor-
mation assurance issues in networking systems. The problem is
explored in the context of constructing an overlay that satisfies a
given access control policies in decentralized information sharing
systems. We formulate a new graph-theoretic optimization prob-
lem of constructing a minimum policy-compatible graph, which
we show is NP-complete. We provide efficient centralized and
fully-distributed heuristics, and prove the convergence property
of the distributed proces. Our simulation study with synthetic
and empirical data set shows that our methods result in the
performance (in terms of total number of links) very close to
the optimal case (within 3%) for small input, and that they can
reduce the number by up to 30% compared to a method based
on minimum spanning tree algorithm for larger data set.

I. I NTRODUCTION

Overlay networks have been studied extensively in recent
years for their practical importance in many applications.
Various types of overlay networks and mechanisms to con-
struct them have been proposed to achieve various objectives:
reliable and failure-resistant communications among nodes [5],
[12], performance optimizations for bandwidth [13] or data
transfer delay [4], [11], efficient P2P search [10], [14], reliable
content delivery [1], and multicast/group communication [6],
etc. However, one of the important considerations for building
an overlay has been missing in the literature, namelypolicies.

In the networking community, cyber security and informa-
tion assurance issues (i.e., making sure that information access
is granted to the users that have credential) are becoming
increasingly more critical. Policies are quite often employed
as a tool to address these issues, and also useful addressing
inter-operability issues in information federation (e.g.., com-
patibility in data format, protocol, and even data availability
in time). Broadly speaking, policies are the rules that specify

Research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under AgreementNumber
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

high level intent of a person or an organization, and are often
described in the form of constraints [2]. In this paper, we
consider policies that define constraints as to which nodes
can accesswhich types of sensitive data. Such policies will
be useful in distributing and controlling sensitive information,
such as classified and secret information in the military and
intelligence community, sensitive business information (e.g.,
HR data such as salary information), and private information
of an organization (e.g., tentative budget numbers) or of an
individual (e.g., health record of a patient).

Of particular interest to this research is controlling the
information access in distributed publisher-subscriber (pub-
sub) networking environments,where the information in the
network is accessed and shared by multiple networking nodes
in a distributed manner. In such systems, since a large number
of information flows (from the publishers to subscribers) can
be established dynamically, controlling the information access
by conventional methods (e.g., access control list based on
node ID) does not scale to the system size. Instead, the policies
can be effectively used to limit the information access privilege
based on higher-level criteria like the attributes of the nodes.
For example, in a sensor network formed by a large number
of various types of sensor nodes and data collecting nodes
from multiple organizations, policies can be used to limit the
access based on the nodes’ organizational affiliations, security
clearance levels, sensitivity level of the data, etc.

We note that the access control policies in such information
sharing systems in particular specify multiple node groups
such that all nodes in each group are given access privileges
to some common pieces of information that can be shared by
the group members. We call such node groups specified by
the policies as “access-control groups”. Note also that each
node can belong to many access-control groups since multiple
policies are specified based on different criteria (e.g., based
on different attributes of nodes).

Enforcing the access control can then be achieved by
having each access-control group perform a secure group
communication for distributing the information permittedfor
the group members. While there are many mechanisms to
enable secure group communications proposed in the literature
(see, for example, a survey article [9] on key management
issues in group communication), they mostly concern how to
securely distribute the secret keys to the group members. This

2

research is focused on an orthogonal issue:what are the pairs
of nodes between which a secure connection is established to
satisfy the policy constraints?

We explore the problem of enforcing the access control
policies in the context of building an overlay network, in
which the links represent the pairs of nodes with secure
pairwise connections and are used by the access-control groups
for their secure group communications. Note that such an
overlay is required to satisfy the policy constraints: nodes
in each group should be able to form a connected network
between themselves using only the links in the overlay. While
more overlay links would mean that the overlay network
is to satisfy the policy constraints. it also results in higher
overhead associated with establishing secure connections(e.g.,
key distribution and management). It is therfore of practical
importance to build a minimum overlay network that satisfies
given set of access control policies.

The challenge in building such a minimum overlay is that
the systems considered here are of potentially very large, in
terms of not only the number of nodes, but also that of access-
control groups resulted from the policies; since each attribute
of a node and information source can be used to specify
policies and there can be numerous attributes per object (e.g.,
gender, race, occupation, etc. for a patient object), therecould
be potentially a huge number of groups.1

A. Motivating example

For a motivating example, consider a scenario in Fig. 1(a),
where nodes from two organizations, A and B, are deployed
in a sensor network so that each node takes the role(s) of
collecting data from one or more types of sensors, namely,
audio, video, and vibration. In the figure, the nodes are
depicted as©, △, 2, or the their combinations to show their
respective roles as a data collection node (sensors are not
shown in the figure for brevity as they are not relevant to
the discussion). Suppose the following access control policies
are specified to permit a noden’s access to the data from a
sensors based on the organizations and the roles of the nodes:

• If organization(n) == organization(s), then permitn’s
access to data froms.

• If roles(n) includes dataType(s), permitn’s access to data
from s..

First of all, from the above policies, five node groups are
readily identifiable according to their roles and organization
attributes (see Fig. 1(b)). Specifically, according to the first
policy, two node groups{A1, A2, B3} and{B1, B2, B3} can
be formed for those having access privileges to data from
sensors in organization A and B respectively. Similarly, from
the second policy, three groups can be identified based on their
respective roles as the collecting nodes for audio, video, and
vibration data, respectively (In Section II-A, we will discuss

1In the current IT systems that use policies, the number of policies could
be in the range of O(10) - O(1000). If we assume the similar scalefor the
emerging distributed pub-sub applications, the number of groups that may
need to be maintained could be also large because a single policy may result
in multiple groups.

A2

A3

B1

B2

B3

A1

(a)

A2

A3

B1

B2

B3

A1

(b)

: Collecting audio data

: Collect video data

: Collect vibration data

A2

A3

B1

B2

B3

A1

A2

A3

B1

B2

B3

A1

(c) (d)

Roles:

Fig. 1. Example sensor data sharing scenario. (a) Three nodes(A1, A2, A3)
from organization A, and three (B1, B2, B3) from organization B are
deployed. Nodes’ shaped indicate their roles as a data collecting node. (b)
Groupings of nodes according to the example policy constraints. Nodes within
each group have access privilege to the sensor data of the type specified in
corresponding policy. (c) All pairs of nodes in each node group are connected
each other. (d) A minimum overlay configuration that satisfies the policy
constraints.

in details how these node groups can be derived from given
set of policies).

One way of building secure connections is to connect
pairs of nodes as long as they are permitted to share some
information, and the resulting graph is shown in Fig. 1(c).
This would clearly satisfy the policy constraints, but can lead
to an inefficient solution in terms of the number of secure
connections to be made. One can in fact reduce the number
of links further and still satisfy the policy constraints asthe
one shown in Fig. 1(d). Note that the graph in Fig. 1(d) is
minimal in the sense that removing any link from it results in
a graph that violates the policy constraints: for instance,if the
link between nodesA1 andB1 was removed, the node group
{A1, A2, B1} is not connected on its own, hence causingB1

to be unable to share the video data (△) data with the other
two nodes, which violates the second policy above (In fact it
is an optimal one in the sense that it has as small number of
links as graph satisfying the policy constraints).

B. Our contribution

Our objective is to build a minimum overlay network that
is compatiblewith given set of access control policies. The
followings summarize our contribution toward this goal:

• We first formulate the overlay construction problem
as a graph-theoretic optimization for minimum num-
ber of links, for which we formally define thepolicy-
compatibilityof a graph and prove the NP-completeness.
The input to our problem instance is a collection of node
groups, and as such we also discuss this pre-processing

3

step of deriving these groups from given policies (Section
II).

• We develop both the centralized and distributed heuristic
algorithms for constructing policy-compatible graph. The
centralized algorithm in Section III is presented as a
baseline mechanism for our fully-distributed one (Sec-
tionsec:distributed) that is suitable in large-scale envi-
ronments. Several properties of our algorithms such as
correctness, convergence, etc., are also provided.

• We extend our algorithms to support a secondary opti-
mization goal of minimizing the total link cost as well.
A mechanism based on a single, tunable parameter that
can control the behavior of the algorithms to gracefully
transition between the two objectives (Section V) is
provided.

• Via simulation study on synthetic and empirical data set,
we show that the proposed algorithm can achieve results
that are very close (within 3%) to optimal for a small
input, and can reduce the number of links by up to 30%
compared to the solution based on Minimum-Spanning-
Tree algorithm for larger input data sets (Section VI).

II. PROBLEM STATEMENT

In this section, we formally state our overlay construction
problem. The input to our problem instance is a collection
of node subsets, each of which defines a group of nodes that
can share a certain set of information contents according to
access control policy. The output is a graph that satisfy the
connectivity constraints in all node groups (and hence satisfy
the access control policies). We begin by describing how node
subsets can be derived from a given set of access control
policies.

A. Access control policies and node groups

An access control policy (orpolicy in short hereafter)
specifies which nodes are permitted to access what contents
in the network. Here, we use the term “content” to mean a
piece of information in any form (e.g., file, URL, feed, etc.)
accessed by a set of user nodes.

We assume the policies are specified in the following
canonical format:

“Permit noden’s access to a contentc if f(n) = true
AND g(c) = true”,

where f and g are boolean functions that determine the
conditions for noden and contentc, respectively, under which
n should be given the permission to accessc. For instance,
the example policies in Section I-A can be easily transformed
into this form by enumerating all values of the attributes. We
assume the access is denied by default if none of the statements
allows it.

This form of policy statements (i.e., “permit-only-when-
specified”) is widely employed in many access control mecha-
nisms such as file systems, firewall, network access control in
routers and servers, etc.. Also, decoupling the conditionsfor
access permission into the node parts and content parts (i.e., f
andg, resp.) is appropriate in the pub-sub type of networking

environments due to the inherent separation of information
sources and consumers under such networking paradigm.

Suppose now we are givenK policy statements, each of
which specifies the condition of permitting noden’s access
to contentc by two boolean functionsfk(n) and gk(c) (k =
1, · · · ,K).

Then, given a set of nodesN , let us denote byNk a subset
of nodes that satisfy the node-conditionfk of k-th policy,
Nk = {n ∈ N : fk(n) = true } (k = 1, · · · ,K). It is then
straightforward to see all nodes inNk commonly have access
permission to any contentc that satisfies the conditiongk(c) of
k-th policy. In other words,Nk (k = 1, · · · ,K) is a group of
nodes among which contents satisfyinggk(c) can be shared.

We notice that it is possible to further reduce the number of
node groups by, for instance, identifying identical conditions
across policies and merging those policies, or after analyzing
the policies to check their consistency and coverage [3].
Optimizing the number of groups in this pre-processing steps,
however, is beyond the scope of this paper.

B. Problem definition

Suppose we have a group of nodesN = {1, 2, · · · , |N |},
and a collection ofK subsets (or “node groups”) of N ,
Ω = {N1, ..., NK ⊆ N} derived from a set of access control
policies as described in Section II-A. We assume that, for each
group Nk, all nodes inNk are “trusted” by one another, so
that the node exercises properly the access control polciesand
will not pass the information shared inNk to other nodes not
in Nk. We also assume the same policies are applied to all
nodes.

Our goal is to construct an “efficient” overlay network of
the nodesN such that the overlay is “compatible” with the
information access control policies imposed byΩ, where the
compatibility of an overlay network w.r.tΩ can be defined in
a graph-theoretic terms as follows.

Definition 1: (Policy-compatible Graph) Given a set of
nodesN , and a collection of subsets,Ω = {N1, ..., NK ⊆ N}.
An undirected graphG = (N,E) is calledcompatiblew.r.t. Ω,
if for each Nk ∈ Ω, the induced subgraphGk = (Nk, Ek ⊆
E), whereEk = {(u, v)|u ∈ Gk, v ∈ Gk, (u, v) ∈ E}, is a
connected graph.

In a policy-compatible graph, each subgraph of node groups
is a connected one on its own. This means that each group of
nodesNk can securely share the contents specified byk-th
policy on a connected networkGk of secure links, where the
connectivity ofGk ensures that any other nodes outside group
Nk need not be part of the information distribution withinNk.
In other words, a policy-compatible graphrealizesthe given
access control policies.

Note that there always exists some compatible graph w.r.t.
any Ω, with the complete graph being one such graph. As it
is typically expensive to set up and maintain secure links in
the overlay networks, however, it is of practical importance
to build a graph compatible w.r.t. givenΩ with as small a
number of edges as possible (thus “efficiency” of the overlay

4

network). This is formally defined as an optimization problem
on graph in the following definition.

Definition 2: (Policy-compatible Overlay (PoCO) Opti-
mization Problem) Given a set of nodesN , and a collection
of subsets,Ω = {N1, ..., NK ⊆ N}, find a compatible
G = (N,E) w.r.t. Ω such that|E| is the smallest among
all compatible graphs.

As the PoCO problem is NP-complete as formally shown in
the following sub-section, the optimization problem is unlikely
to be solvable in polynomial time, and we seek for efficient
heuristic mechanisms in subsequent sections.

C. Complexity of PoCO problem

We prove the NP-completeness of the Policy-compatible
Overlay (PoCO) optimization problem. The decision version
of the problem is as follows.

Definition 3: (Policy-compatible Overlay (PoCO) Decision
Problem) Given a set of nodesN , and a collection of subsets,
Ω = {N1, ..., NK ⊆ N}. A graph G = (N,E) is called
compatiblew.r.t. Ω, if for eachNk ∈ Ω, the induced subgraph
Gk = (Nk, Ek ⊆ E) is a connected graph. Decide if there
exists a compatibleG = (N,E), such that|E| ≤ ∆.

Theorem 1:Policy-compatible overlay decision problem
PoCO(N,Ω,∆) is NP-complete.

Proof: It is easy to show that PoCO is in NP. We examine
each induced subgraphGk of G to see if it is connected or not.
Checking the connectivity in a graph is polynomial in time.

To show PoCO is NP-hard, we rely on a polynomial time
reduction from 3SAT problem.

Definition 4: (3SAT Problem) Consider a 3-CNF formula
F consistingm clauses andh variables, i.e.F = c1 ∧ c2 ∧
· · · ∧ cm, where eachci = yj1 ∨ yj2 ∨ yj3 andyj1 , yj2 , yj3 ∈
{x1, x̄1, ..., xh, x̄h}. F is said to be satisfiable, if there exists
a truth assignment toF , such that every clause has at least
one true literal. 3SAT is well-known to be NP-complete.

Given a 3-CNF formulaF , we assume each clause does
not contain a literal and its complement (as this is trivially
satisfiable). We construct a corresponding PoCO(N,Ω,∆),
such thatF is satisfiable, if and only if(N,Ω,∆) is satisfiable.

First, setN = ∅. For eachxj , x̄j , we add three nodes
aj , bj , cj ∈ N , and create two subsets inΩ: Nxj

= {aj , bj , cj}

andN
aj ,bj
xj = {aj , bj}.

Then, for eachci = yj1 ∨ yj2 ∨ yj3 , we add three nodes
oi, pi, qi ∈ N , and create eight subsets inΩ:

Nci
, N

pi,xj1
ci , N

pixj3
ci , N

qi,xj2
ci , N

qixj3
ci , N

oixj1
ci , N

oixj2
ci , N

oixj3
ci

We next describe the construction of these subsets:

1) First, we setNci
= ∅ and addoi, pi, qi ∈ Nci

.
2) Next, if yj1

i = xj1 , then

i) Add aj1 , cj1 ∈ Nci
,

ii) CreateN
pi,xj1
ci = {aj1 , pi}, N

oi,xj1
ci = {cj1 , oi}.

elseif yj1
i = x̄j1 , then

i) Add bj1 , cj1 ∈ Nci
,

ii) CreateN
pi,xj1
ci = {bj1 , pi}, N

oi,xj1
ci = {cj1 , oi}.

3) Repeat foryj2 , but we useqi instead ofpi.
4) Repeat foryj3 , but we use bothqi andpi.

It is easy to see that the construction of(N,Ω) is polynomial
in time. See Fig. 2 for an illustration of the construction of
PoCO(N,Ω,∆) for a givenF .

There are some remarks. If a subsetNk ∈ Ω has two nodes
only (i.e. Nk = {a, b}), then (a, b) ∈ E for any compatible
G = (N,E). Thus,N aj ,bj

xj , N
pi,xj1
ci , N

pixj3
ci , N

qi,xj2
ci , N

qixj3
ci ,

N
oixj1
ci , N

oixj2
ci , N

oixj3
ci are two-node subsets, which must be

included as edges in any compatibleG.

Finally, we set∆ = 2h + 7m.

(If Part): We show that ifF is satisfiable, then(N,Ω,∆)
is satisfiable by constructing compatibleG = (N,E). First,
we setE = ∅, and we include the two-node subsetsN

aj ,bj
xj ,

N
pi,xj1
ci , N

pixj3
ci , N

qi,xj2
ci , N

qixj3
ci , N

oixj1
ci , N

oixj2
ci , N

oixj3
ci as

edges inE, for all variablej and clausei. Thus, the induced
subgraphs of these subsets are connected.

Then, for each variablexj , either one ofxj or x̄j is true. If
xj is true, then we add(aj , cj) ∈ E. Otherwise, ifx̄j is true,
then we add(bj , cj) ∈ E. Thus, the induced subgraph ofNxj

is connected.

Next, for each clauseci, one literal must be true. Hence,
the corresponding(xj , cj), where xj ∈ {aj , bj}, has been
already included inE. Thus, the induced subgraph ofNci

is connected.

Therefore, G = (V,E) is compatible. Moreover,
|E| = 2h + 7m = ∆, and(N,Ω,∆) is satisfiable.

(Only-if Part): We show that if (N,Ω,∆) is satisfiable,
then F is satisfiable. SupposeG = (V,E) is compatible
and |E| = ∆ = 2h + 7m. Since the induced subgraphs of
two-node subsetsN aj ,bj

xj , N
pi,xj1
ci , N

pixj3
ci , N

qi,xj2
ci , N

qixj3
ci ,

N
oixj1
ci , N

oixj2
ci , N

oixj3
ci must be connected inG and their

edges are distinct, they take uph+7m edges fromE. Hence,
there remainh edges.

Next, we know that the induced subgraphs ofh number of
Nxj

subsets are also connected inG using distinct edges. That
totally take up all remainingh edges. Hence, eachNxj

takes
up exactly one remaining edge. Therefore, we setxj as true,
if (aj , cj) ∈ E. Otherwise, set̄xj as true, if(bj , cj) ∈ E. This
is a consistent assignment for each variable.

Finally, we also know that the induced subgraphs of allNci

are connected inG. This implies that at least one(xj , cj) in
Nxj

, wherexj ∈ {aj , bj}, is also present inNci
. Otherwise,

other edge inNci
will require to take up an extra edge inE.

Hence, every clause is satisfiable.

Therefore, we show that PoCO is NP-hard, because 3SAT
problem is NP-complete.

5

1
a

1
b

1
c

3

1

,x

c
N 1

p

11
,xx

1
x
N

2
a

2
b

2
c

22
,xx

3
a

3
b

3
c

33
,xx

3
c

1
o

1
c

2
c

2
b

1
a

3
b

1
q

1
p

1

1

,x

c
N 1

p 2

1

,x

c
N 1

q

3

1

,x

c
N 1

q

3

1

,x

c
N 1

o

2
,x

c
N 1

o
1
,x

c
N 1

o

1
c
N

11
ba ,

1
x
N

2
x
N

22
ba ,

2
x
N

3
x
N

33
ba ,

3
x
N

3

2

,x

c
N 2

p

3
c

2
o

1
c

2
c

2
a

1
b

3
a

2
q

2
p

2

2

,x

c
N 2

p 2

2

,x

c
N 2

q

3

2

,x

c
N 2

q

3

2

,x

c
N 2

o

2
,x

N 2
o

1
,x

N 2
o

2
c
N

3

3

,x

c
N 3

p

3
c

3
o

1
c

2
c

2
a

1
a

3
a

3
q

3
p

2

3

,x

c
N 3

p 2

3

,x

c
N 3

q

3

3

,x

c
N 3

q

3

3

,x

c
N 3

o

2
,x

N 3
o

1
,x

N 3
o

3
c
N

2
b

1
a

321
xxx ∨∨

321
xxx ∨∨

321
xxx ∨∨

2

1
c
N 11

1
c
N 1

2
a

1
b 2

2

,x

c
N 2

o
1

2

,x

c
N 2

o
2

a
1

a 2

3

,x

c
N 3

o
1

3

,x

c
N 3

o

Fig. 2. An illustration of construction of PoCO(N, Ω, ∆) for a givenF = (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∨ (x1 ∨ x2 ∨ x3). The truth assignment is
x1 = 0, x2 = 0, x3 = 1, which is depicted as the selected black edges in the figures.

III. C ENTRALIZED OVERLAY CONSTRUCTION

ALGORITHMS

We begin by defining a few terms and notations that will be
used in the description of the algorithms throughout this and
subsequent sections.

Suppose we are given a set of nodesN and a collection of its
subsetsΩ = {N1, · · · , NK}. We denote byΩv ⊂ Ω the groups
that a nodev ∈ N belongs to, i.e.,Ωv = {Nk ∈ Ω|v ∈ Nk}.
Similarly, Ωu,v denotes the groups that nodesu and v both
belong to, i.e.,Ωu,v = Ωu ∩ Ωv.

We say a pair of nodesu and v both in some groupNk

are group-connected inNk (Nk-group-connectedin short)
in a graphG = (N,E) if there exists a connected path
between them in the subgraphGk = (Nk, Ek). We denote
by CEk

(Nk) ⊂ Nk ×Nk the set ofNk-group connected node
pairs inGk = (Nk, Ek).

Given a subgraphGk = (Nk, Ek), the following function
returns the number ofnewgroup-connected pairs inNk when
an edge(u, v) is added toEk:

NEW-CONNS(u, v,Nk, Ek) = |CEk∪{(u,v)}(Nk)−CEk
(Nk)|.

The value returned by NEW-CONNS function is used in
our algorithms hereafter as the “utility” of an edge for a graph
Gk, i.e., as a measure of how many new node pairs will be
connected due to the addition of an edge to a graph. Note that
it is easy to see NEW-CONNS returns in a polynomial time
since there exist efficient algorithms to verify the connectivity
of all node pairs in a graph (e.g., breadth-first-search, depth-
first-search, etc.).

A. Centralized algorithm

Our first algorithm, GREEDY-CONN (see Algorithm III-A),
is based on a greedy decision such that, at each step, an edge is

inserted whose addition maximizes the number of new group-
connected node pairs in the graph constructed thus far. LetEU

be the set of all pairs of nodes inN , i.e., EU = {(u, v)|u ∈
N, v ∈ N,u 6= v}.

Algorithm 1 GREEDY-CONN: Input (N,Ω), Output G =
(N,E)

1: E ← ∅
2: F ← EU

3: while F 6= ∅ do
4: for each(u, v) ∈ F do
5: m(u,v) ←

∑K

k=1NEW-CONNS(u, v, Nk, Ek)
6: end for
7: if max m(u,v) = 0 then
8: break
9: end if

10: (u∗, v∗)← arg max{m(u,v) : (u, v) ∈ F}
11: F ← F − {(u∗, v∗)}
12: E ← E ∪ {(u∗, v∗)}
13: end while
14: return G = (N, E)

At each step of the WHILE loop (line 3- 13), the GREEDY-
CONN selects an edge whose insertion to the graph can get
the most pair of nodes group-connected (lines 5, 10), and adds
it one by one to the graph (lines 11, 12), until no edge can
add any new group-connected node pair (line 7). When there
is a tie, one of the edges will be selected arbitrarily.

It is easy to see GREEDY-CONN completes in a polynomial
time w.r.t. |N | and |Ω| because the NEW-CONNS routine
returns in a polynomial time which is repeated for each ofK
groups (line 5), and, at each step of the while loop, one edge
is taken from all potential edge sets of size|N |(|N | − 1)/2
(line 11) and added to the graphG (line 12).

6

1

3

2 4

GC(N1)=v

GC(N2)=v

N1 N2

(a)

1

3

2 4

GC(N1)={(1,3)}

GC(N2)={(1,3)}

N1 N2

(b)

1

3

2 4

GC(N1)={(1,3), (1,2), (2,3)}

GC(N2)={(1,3)}

N1 N2

(c)

1

3

2 4

GC(N1)={(1,3), (1,2), (2,3)}

GC(N2)={(1,3), (1,4), (3,4)}

N1 N2

(d)

Fig. 3. Example edge assignment by GREEDY-CONN algorithm for two
groupsN1 = {1, 2, 3} andN2 = {1, 3, 4}. The new node pairs that become
group-connected in each group is indicated in bold letters.

Fig. 3 illustrates an example of the execution of GREEDY-
CONN algorithm for two node groupsN1 = {1, 2, 3} and
N2 = {1, 3, 4}, where, at each stage of the execution, the
set of group-connected node pairs for each group is shown in
GC(Nk). In the first step, the edge(1, 3) is added since it will
make two group-connections (one in each group), as shown in
Figure 3(b)–all others make only one group-connection. Then
one of the edges(1, 2), (2, 3), (1, 4), and(3, 4) can be added at
the second step as any of them would make two pairs of nodes
group-connected. In this example, edge(1, 2) is added with
the tie broken arbitrarily (Fig. 3(c)). Note that the addition of
(1, 2) makes nodes 2 and 3 connected in addition to the node
pair 1 and 2. This makes the addition of edge (2,3) unnecessary
thereafter. Finally, edge (3,4) is added from groupN2 (Figure
3(d)), resulting in a graph compatible with the grouping. Note
that, the greedy algorithm achieves the optimal assignmentin
this particular example.

The following lemman shows the correctness of the
GREEDY-CONN.

Lemma 1:Graph G = (N,E) returned by GREEDY-
CONN(N,Ω) is compatible w.r.t.Ω.

Proof: The proof is by contradiction. Suppose there is a
subgraphGk = (Nk, Ek) that is induced by a setNk ∈ Ω and
is not connected when the algorithm returns. By definition,Gk

has at least one pair of nodes,u andv, between which there is
no connected path inGk. The edge(u, v) is notEk (hence not
in E either) because it would make a connected path between
u andv. Therefore, upon the completion of the algorithm,F
is not empty and contains(u, v), for which m(u,v) ≥ 1. This
means none of the two terminating conditions of the algorithm
(lines 4 and 7) is satisfied, contradicting to the assumptionthat
the algorithm has returned.

B. Further reducing the number of links

The greedy algorithm tries to avoid adding unnecessary
edges to the graph by adding only the edges whose utility
is positive. However, the choice of edges is only based on the
graph topology built in the previous steps, not on the edges
that will be added in the later stage. Thus, the final output
graph may containredundantedges, which can be removed
from the graph without rendering it incompatible.

For a given graphG = (N,E), we say an edge(u, v) ∈
E is redundantin G if, for each Nk ∈ Ωu,v, there exists a
connected path betweenu and v other than the edge(u, v)
itself in the induced subgraph(Nk, Ek). Note that an edge
(u, v)’s redundancy in a given graphG can be easily verified
by comparing the number of connected node pairs in(Nk, Ek)
and that in(Nk, Ek − {(u, v)}) for all k.

The following lemma shows a redundant edge can be safely
removed without affecting the group-connectivity of the nodes.

Lemma 2:Suppose there is a redundant edge (u, v) in a
graph G = (N,E). If a pair of nodesu′ and v′ are Nk-
group-connected inG for any groupNk, u′ and v′ are also
Nk-group-connected inG− = (N,E − {(u, v)}.

Proof: Consider a redundant edge (u, v) in G = (N,E).
Let Gk = (Nk, Ek) be the subgraph induced by any arbitrary
Nk in G = (N,E). Suppose an arbitrary pair of nodesu′ and
v′ areNk-group-connected for someNk, and let a sequence of
nodes(u′ = u0, u1, · · · , ul = v′) denote a path in betweenu′

and v′ that go through nodesu1, · · · , ul−1 (ui ∈ Nk). If the
path does not include a subsequence(u, v), then the removal
of edge(u, v) does not affect this path, henceu′ andv′ are still
connected in(Nk, Ek − {(u, v)}. If the path does include the
subsequence(u, v), because there is a path betweenu and v
in Nk other than the edge(u, v) by definition of the redundant
edges, after the removal of(u, v), the pairu′ andv′ must be
connected by another path which is represented by replacing
the subsequence(u, v) in (u′ = u0, u1, · · · , ul = v′) with the
node sequence representing the alternate path betweenu and
v.

Therefore, since removing a redundant edge does not hurt
the group-connectivity of a graph, once we have a graphG
compatible withΩ, we can check the edges inG one by one (in
any order) to see if there are redundant edges to remove from
G as a final step after the completion of GREEDY-CONN.

IV. D ISTRIBUTED OVERLAY CONSTRUCTION ALGORITHM

A. Distributed algorithm

In the distributed algorithm, each node continually makes
a local decision as to whether to add or delete edges that are
incident to itself based on the local connectivity information of
the access control groups that it belongs to until the algorithm
converge.

Given a subgraphGk = (Nk, Ek) for someNk ∈ Ωu, let us
denote byNu(Gk) the set of neighbor nodes ofu in Gk, i.e.,
Nu(Gk) = {v | (u, v) ∈ Ek}. Similarly, Eu(Gk) represents
the set of local edges incident tou in Gk. Also Eu denotes

7

all edges incident tou in the entire graphG = (N,E), where
E =

⋃K

k=1 Ek.
For the correctness of the algorithm execution, we assume

for now the following two conditions hold before the dis-
tributed algorithm is invoked by any node (we describe in
Section IV-C how a distributed protocol of message exchange
among nodes can ensure these conditions):

• (C1) Before executing the algorithm,u has the correct,
up-to-date topology information ofGk = (Nk, Ek) for
all Nk ∈ Ωu.

• (C2) Whenu adds or deletes an edge(u, v) for some
v ∈ Nk after executing the algorithm, no other node in
Nk adds or deletes an edge at the same time.

Now, in our distributed construction of policy-compatible
overlay, each node invokes DISTRIBUTED-GREEDY algo-
rithm (see Algorithm 2) whenever it obtains a new group
topology Gk = (Nk, Ek), including the initial stage with
empty topology information.

Given Gk = (Nk, Ek) for all Nk ∈ Ωu, DISTRIBUTED-
GREEDY outputs an updated set of a nodeu’s local edges̃Eu

to be included in the graph.

Algorithm 2 DISTRIBUTED-GREEDY: Input
(u,Nu, Nk, Ek) ∀ Nk ∈ Ωu, Output Ẽu

1: Ẽu ← Eu

2: Vu ←
⋃

Nk∈Ωu
Nk

3: Fu ← Vu −Nu

4: for all v ∈ Fu do
5: mv ←

∑
Nk∈Ωu

NEW-CONNS(u, v, Nk, Ek)
6: end for
7: if maxv > 0 then
8: v∗ ← arg maxv∈Fu mv

9: Ẽu ← Ẽu ∪ {(u, v∗)}
10: for all Nk ∈ Ωu do
11: Ek ← Ek ∪ {(u, v∗)}
12: end for
13: end if
14: Au[·]← Random ordering of edges iñEu

15: for i← 1 to |Ẽu| do
16: (u, v)← A[i]
17: if (u, v) is redundant in anyGk = (Nk, Ek) for Nk ∈ Ωu

then
18: Ẽu ← Ẽu − {(u, v)}
19: end if
20: end for
21: return Ẽu

Like the centralized GREEDY-CONN algorithm,
DISTRIBUTED-GREEDY chooses an edge such that it
can maximize the number of new group-connected node pairs
added to the current graph (lines 4-13). However, there are
a few differences between DISTRIBUTED-GREEDY and its
centralized counterpart:

• Each node only adds its own edges (the algorithm returns
new set of edges for nodeu only: line 21), by selecting
one from those that are in at least one of its groups but
not yet in its own edges̃Eu.

• Each node only considers the topology and the utility
of its edges within the groups it belongs to (the input
includes only the groups the node belongs to).

• At each invocation of the algorithm, the node also re-
moves redundant edges among its own existing edges
(lines 14-20).

Note that, after each execution of the algorithm, at most one
edge is added, but multiple redundant edges can be removed,
and sometimes no edge is added or deleted (when there is
no edge with positive utility or redundant edge). Through the
repeated execution of DISTRIBUTED-GREEDY algorithm by
all nodes, the collective edge addition and deletion results in
a policy-compatible graph as a whole. We formally show the
convergence of this process in Section IV-B.

Note also that, while each node adds and deletes only its
own edges, its decision is based on the utility and redundancy
of the edges not only for the node itself but for other pairs
of nodes in the groups that the node belongs to. This is
possible because each node keeps getting updated with the
graph topology of its groups through the distributed protocol
described in the Section IV-C.

1

3

2 4

(1,3)® (1,2)® (3,4)

N1 N2

(a)

1

3

2 4

N1 N2

(b)

2:(2,1)® 4:(4,1)®

4:(4,3)® 3:(3,1)

Fig. 4. Distributed greedy assignment can assign more edges than its
centralized counterpart. (a) The same assignment by the centralized algorithm
as in Figure 3 (b) The edges added by a run of distributed assignments by
nodes in the order of 2, 4, 4, and 3. The number before each edge in the
sequence indicates the node that adds that edge.

The distributed algorithm is more scalable than its central-
ized counterpart as it reduces the overhead for each node
and it utilizes only local information. This however comes
at a cost: Due to each node’s myopic view of local network
topology, the number of links collectively added by all nodes
can be greater than the result computed by the centralized
algorithm. Figure 4 illustrates such an example, where the
edges are added by each individual nodes in a particular
order of nodes 2, 4, 4 (again), and 3. This inefficiency results
from the fully distributed execution of the algorithm by each
individual node, which only controls its own edges and can not
force other nodes to choose edges to add or delete in their set.
However, our simulation study in Section VI shows that the
performance of DISTRIBUTED-GREEDY is generally within
a small margin of what the centralized counterpart achieves.

B. Convergence of distributed algorithm

In this section, we show that the distributed process of
adding and deleting edges by each node converges to a global

8

graph compatible w.r.t.Ω under the two conditions C1 and C2
in Section IV-A.

For a given graphG = (V,E) and node groupingΩ =
{N1, · · · , NK}, let us denoteQΩ(G) be the total number of
group-connected node pairs underG in all Nk ∈ Ω, i.e.,

QΩ(G) =
K∑

k=1

∑

u,v∈Nk

1(u andv areNk-group-connected).

Every time a node changes its edge, the global graphG =
(N,E) changes: when an edge(u, v) is added or deleted by
eitheru or v, E will change toE ∪ {(u, v)} or E −{(u, v)},
respectively. Since only one node can add or delete its edgesat
a time (due to the condition C2), without loss of generality,we
denote the evolving sequence of graphs by (G0, G1, G2, · · ·).2

Theorem 2:Starting from an arbitrary graphG0, the evolv-
ing sequence of the graphs (G0, G1, G2, · · ·) generated by the
distributed process DISTRIBUTED-GREEDY converges to a
stable graphG̃ = (N, Ẽ) which is compatible w.r.t.Ω in a
final number of steps.

Proof: We first prove the convergence of the process.
For any i = 0, 1, · · · , the transition fromGi to Gi+1 occurs
when some edge(u, v) is either added or deleted. Since
an edge (u, v) is added only when it can create some new
group-connected node pair in someNk ∈ Ωu,v (line 7),
QΩ(Gi) < QΩ(Gi+1) if the transition is caused by an edge
addition. If the transition occurs due to an edge deletion,
QΩ(Gi) = QΩ(Gi+1) because only redundant edges can be
deleted, and, by Lemma 2, the number of connected pairs does
not decrease for any group due to the removal of redundant
edges (QΩ(Gi) does not increase either).

Now sinceQΩ(Gi) is bounded from above by some con-
stant ∆ =

∑K

k=1
|Nk|(|Nk|−1)

2 , the number of times that
QΩ(Gi) increases (hence the number of edge additions) is also
bounded by∆. Also, for each interval between two consecu-
tive edge additions, there can be only up to|N |(|N |+1)

2 edge
deletions. Therefore, the distributed process should terminate
within a number of steps less than∆|N |(|N |+1)

2 .
Next we show the converged graph is a compatible graph

by contradiction. Suppose the distributed process resultsin a
graphG = (V,E) not compatible w.r.t.Ω. Then there must be
some pair of nodes(u, v) in some groupNk that are not group-
connected inGk = (Nk, Ek). For each such pairs, however,
this condition must be recognized by all nodes inNk as all
nodes inNk have the correct topology information ofGk =
(Nk, Ek). If no other node inNk adds an edge to improve
the connectivity ofu and v in Gk, eitheru or v will add an
edge between them since adding such an edge will increase
the number of group-connected pairs inNk. This contradicts
to the assumption that the process has terminated.

The proof of Theorem 2 reveals the following property.

2Even if a node deletes multiple edges after a single executionof the
algorithm, one can break the multi-edge deletions into multiple, consecutive
single-edge deletions in arbitrary order.

Corollary 3: The distributed process of DISTRIBUTED-
GREEDY terminates in a polynomial number of steps w.r.t
|N | and |Ω|.

Proof: In the proof of Theorem 2, we have shown the total
number of times DISTRIBUTED-GREEDY is executed by all
nodes is bounded by

∑K

k=1
|Nk|(|Nk|−1)

2 × |N |(|N |+1)
2 which is

in O(|Ω||N |4). Also since each execution of DISTRIBUTED-
GREEDY is also polynomial in|N | and|Ω|, the whole process
finishes in a polynomial time steps.

C. Obtaining group topology

Nodes use a distributed protocol to ensure the two condi-
tions C1 and C2 presented in Section IV-A. Our mechanism
is similar in spirit to the distributed protocol proposed in
[8], which is designed for distributed resource replication.
Here we provide only a high-level sketch of the protocol,
with particular emphasis on how it is used in our context
of distributed overlay construction. We assume existence of
some separate control-plane communication methods for the
following protocol, i.e., nodes can exchange messages with
each other without the existence of the secure overlay link
being built by the distributed process.

Before a node changes its edges in a group, it ini-
tiates a three-way handshake of messages with all other
nodes in the same group to get consent of other nodes in
the group for the change. The handshake is composed of
three stages:REQUEST-ACCEPT/REJECT-UPDATE/ABORT:
(i) First, when nodeu decides to change an edge(u, v), u
sends REQUEST messages to other nodes in the groupu and
v belong to, indicatingu’s intention to change its edge. Other
nodes respond to this message either by accepting the change
or rejecting it. (ii) Any nodew that receives the request from
u REJECTs it if the responding node has itself initiated a
handshake process for its own edge’s change, to prevent a
simultaneous edge change byu in the same group. Otherwise,
w ACCEPTsu’s request, after which it refrains from initiating
its own change process until it receives the further outcome
(UPDATE or ABORT) of the change process fromu. (iii)
Finally, if nodeu receives ACCEPT messages from all nodes
in the group, it changes the edge(u, v), and sends UPDATE
messages to group nodes. If it receives at least one REJECT,
it does not change the edge, and sends ABORT messages.

The handshake process serves two purposes: (i) A node
u changes its edge in groupNk only when all other nodes
in Nk have accepted the change. Since, if all of them have
accepted the changes, they are prevented from changing their
own edges until the requesting node completes its change, the
edge change byu must be the only one at the time of its
change. This ensures condition C2. (ii) If a nodev ∈ Nk

receives anUPDATEmessage from some other nodeu ∈ Nk,
the edge change contained in the message is used to update
v’s view of the topology ofNk. Since every node will send
the UPDATEmessage withinNk for every edge change, and
since a nodev would not attempt to change its edge inNk if
some other node inNk is in the changing process, the group

9

topologyGk = (Nk, Ek) is always accurate by the time any
nodev in Nk changes its edge. This ensures condition C1.

V. TAKING THE LINK COST INTO ACCOUNT

While PoCO optimization is our primary objective in this
paper, we acknowledge that it is also important to consider the
“cost” of adding a link. For example, the link can be assigned
a cost proportional to the distance in the underlying substrate
network, indicating how far apart the two nodes of an overlay
link in the underlying substrate network. Another example is
to have a link cost inversely proportional to the mutual trust-
level between two nodes (i.e., what security level needs to be
maintained for a given node with certain trust-level?). In such
cases, it is advantageous to minimize the overall link cost as
well as the total number of links.

To account for such link cost, we assume a cost function
c : N × N → R

+ is available to map each pair of nodesu
andv in N to a positive real number.3 Then we can formulate
another optimization problem of constructing the graphG =
(V,E) compatible w.r.t.Ω, such that the total costc(E) =∑

(u,v)∈E c(u, v) is minimized.
Achieving both objectives of reducing|E| and C(E) to-

gether is, however, basically a multi-objective optimization
problem, for which a solution that achieves better performance
for one objective will suffer for other objectives. In our
context, these two objectives indeed often conflict, especially
when the link costs are widely varied: minimizing only|E|
can result in a graph whoseC(E) is far worse from what
would have been resulted from an effort of minimizingC(E)
only.

Our approach is to design a solution that can address both
objectives in asystematicmanner, such that the outcome of
the solution can be easily adjusted and optimized toward
either objective. This is done by Algorithm 3, a modification
of GREEDY-CONN, in which a single parameterα can be
used to systematically balance the algorithm’s tendency toward
either objectives.

More specifically, we say a non-negative integerm is in the
α-margin of another integern for m ≤ n if n

m
≥ α for real-

valued constantα ∈ [0, 1]. Then, given a link cost function
c : N × N → R

+ and a constantα, GREEDY-MARGIN-
CONN selects an edge at each step in the following manner.

Like in GREEDY-CONN algorithm. GREEDY-MARGIN-
CONN keeps adding edges until all node pairs in all groups
are group-connected. The main difference is that, instead of
selecting an edge that maximize the number of new group-
connected node pairs, GREEDY-MARGIN-CONN chooses
the one with the smallest cost among those whose utilities
(
∑K

k=1NEW-CONNS(u, v,G,Nk)) are within α-margin of
the maximum utility (lines 11-17).

By taking into account the edges with smaller utilities,
GREEDY-MARGIN-CONN can search and select an edge
of smaller cost in a larger candidate set. The parameterα

3There are existing methods available to obtain certain cost functions in
a distributed way; for instance, the routing information in the underlying
network can be used for the network distance measure.

Algorithm 3 GREEDY-MARGIN-CONN: Input (N,Ω, α, c),
OutputG = (N,E)

1: E ← ∅
2: F ← EU

3: while F 6= ∅ do
4: for each(u, v) ∈ F do
5: m(u,v) ←

∑K

k=1NEW-CONNS(Nk, Ek)
6: end for
7: mmax ← max m(u,v)

8: if mmax = 0 then
9: break

10: end if
11: H ← ∅
12: for each(u, v) ∈ F do
13: if m(u,v) > 0 andm(u,v) is in α-margin ofmmax then
14: H ← H ∪ {(u, v)}
15: end if
16: end for
17: (u∗, v∗)← arg min{c(u, v) : (u, v) ∈ H}
18: F ← F − {(u∗, v∗)}
19: E ← E ∪ {(u∗, v∗)}
20: end while
21: return G = (N, E)

determines the size of the search space–the smaller the value
of α, the larger the candidate set.α = 1 is a special case whose
candidate set is identical to GREEDY-CONN algorithm except
that ties are broken by the link cost. On the other hand, when
α = 0, only the link cost will be considered in constructing
the graph.

The distributed counterpart of GREEDY-MARGIN-CONN
is also possible and straightforward. In what would be called
DISTRIBUTED-GREEDY-MARGIN, the selection of an edge
to be added is made not only from the set of the edges with
the highest utility, but also from the edges that have the utility
within α-margin of the maximum utility, with the edge with
the smallest cost selected from the extended set.

VI. PERFORMANCEEVALUATION

In this section we present the performance of the algorithms
proposed in this paper by simulation. In our simulations, we
first study the performance in a random setting, follow by a
realistic social grouping extracted from a trace that contains
conference Program Committee (PC) member information.

A. Random groupings

In the random setting, we create random grouping of nodes
Ω, for which each nodeu is assigned to groupNk with some
probability p. We conduct simulations by varying|N | and
|Ω|, and alsop. Due to space limitation, we only present a
limited set of result, but report that we found essentially the
same trend holds for other cases. We first present the result of
|E|-performance for different algorithms, then we present the
result of convergence- andc(E)-performance. We obtain the
performance values by averaging the results of 10 runs.

1) |E|-performance: We first see the|E|-performance of
GREEDY-CONN algorithm against the optimal value. Figure
5 shows the ratio of|Egreedy|

|Eoptimal|
, where|Egreedy| and|Eoptimal|

10

3
4

5
6

7
8

3

4

5

6

7

8
1

1.05

1.1

1.15

1.2

No. of groupsNo. of nodes

E
 (

no
. o

f l
in

ks
 b

y
gr

ee
dy

/ n
o.

 o
f l

in
ks

 b
y

br
ut

e
fo

rc
e)

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

Fig. 5. Performance ratio of GREEDY-CONN versus optimal solution

are the numbers of edges assigned respectively by GREEDY-
CONN and an exhaustive search. Since the complexity of the
exhaustive search quickly explodes as|N | and |Ω| increases,
we are only able to show the results for small ranges of|Ω|
and|N | (i.e., both|N | and|Ω| are less than 8). In this case, we
find that GREEDY-CONN performs very well (i.e., GREEDY-
CONN only performs around 3% worse than optimal), but the
performance gap increases in general as|N | and |Ω| increase.

For a comparison with a baseline approach, we include the
results of an algorithm that, starts from complete graph for
G, removes redundant edges one by one in the decreasing
order of edge cost. We call this algorithm G-MST (Group-
Minimum Spanning Tree) due to its similarity to Reverse-
delete algorithm [7]. Reverse-delete algorithm solves optimal
minimum spanning tree problem for a single tree, except that
it removes only the redundant edge w.r.t. the groupingΩ.
Since G-MST is designed only toward the goal of minimizing
c(E) but not |E|, we setc(E) = 1 for all links in this |E|-
performance evaluation.

The performance of the distributed algorithms are quite
close with their centralized counterparts. This can be verified
more clearly in Figure 6 (|Ω|=20), where |E| resulted by
DISTRIBUTED-GREEDY is about 5% to 10% higher than
that from GREEDY-CONN. Figure 7 shows the impact of
varying group size withp varied to the |E| performance.
Interestingly, there is a trend of increasing|E| initially when
p increases in small values (0.2 to 0.4) but it decreases asp
further increases. This is because whenp is small, increasing
p means bigger sizes of individual groups, thus requiring more
links for each group. However asp keeps increasing and
approaching to 1.0, the number of overlapping nodes across
groups also increases, and links assigned to a group can be
shared and reused by other groups.

2) Convergence performance:In Figure 8, we plot the
total number of times that the links are added or deleted
by the collective process of DISTRIBUTED-GREEDY (i.e.
how many steps the algorithm takes to terminate). The curves
suggest that the total number of link changes increases sub
linearly with the number of the groups and nodes. This in
turn means the edge changes per node is kept within a constant
level (less than 2 times on average in the figure) regardless of

the size of input|N | and |Ω|, suggesting our algorithm will
be highly scalable in large-scale networks.

3) c(E)-performance: In section V, we discuss a way to
extend our algorithms to minimizec(E). To evaluate thec(E)-
performance of our extended algorithms, we assign the cost
of link between each pair of nodes uniformly in[1, |N |]. We
evaluate both the number of links|E| and the total link cost
c(E) assigned by the algorithms. Figures 9 and 10 compare
the |E| and c(E) performance of the distributed algorithms
respectively.

Figures 9 show the average|E|, selected by our distributed
algorithms with |Ω| = 10. Our first observation (and rather
obvious one) is that|E| increases as|N | increases. It is
because with fixedp, average group size|Nk| increases with
|N |, for which more links are needed for group-connectivity.

We also notice in these figures is that, as intended by
the design, the|E| performance of MARGIN-version of the
algorithms degrades gracefully as we decrease the marginal
parameterα from 1 to 0; With α = 1, the design of
(DISTRIBUTED-)GREEDY-MARGIN-CONN algorithms are
equivalent to simple greedy algorithms in terms of|E| perfor-
mance.

The benefit of increasedα in terms of c|E| performance
is clear in Figures 10, where the total link cost gradually
decreases as we decreaseα. At α = 0 for instance, GREEDY-
MARGIN-CONN algorithm essentially results in the same
performance by G-MST, whose goal is to solely optimize
c(E) performance. In summary, the results in figure 9 and
10 validate that our MARGIN-CONN algorithms effectively
achieve our goal of balancing the weights given to|E| and
c(E) performances easily by controlling a single parameter
α.

B. Realistic social groupings

In the last evaluation, we evaluate our proposed algorithms
in a realistic social group setting. We utilize the dataset from
[15], which study the characteristics of Program Committee
(PC) members more than 2900 conferences. From this dataset,
we select the set of most recent high-quality conferences
(i.e., conferences hold at 2006 and classified as reputable
conferences by [15]), which results 32 conferences and 482
PC members. We create a group for each conference and
assign the PC members to the corresponding groups to emulate
a secure data distribution for each conference. Links in this
scenario carry a same unit cost of1, thus minimizingc|E|
equals to minimize|E| in this case.

Figure 11 presents the result of average|E| with different al-
gorithms, and figure 12, 13 and 14 present the resulting graphs
from different algorithms. We observe that in this realistic
social grouping, the result is similar to those with random
setting. The performance difference between Greedy-CONN
and Distributed-Greedy is 5.89%. Comparing with G-MST,
Greedy-CONN and Distributed-Greedy reduce the number of
links used in the overlay by 29.8% and 25.7% respectively.
From this result, we believe that our proposed algorithms work
well for both homogeneous and heterogeneous settings.

11

10 20 30 40 50
0

20

40

60

80

100

120

No. of nodes

A
vg

. n
o.

 o
f l

in
ks

, |
E

|

Greedy−CONN
Distributed−Greedy
G−MST

Fig. 6. Avg. no. of links with 20 groups

0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80

90

100

p

A
vg

. n
o.

 o
f l

in
ks

, |
E

|

Greedy−CONN
Distributed−Greedy
GMST

Fig. 7. Avg. no. of links with 10 groups and 50
nodes with differentp

0 10 20 30 40 50 60
0

50

100

150

No. of groups

A
vg

. n
o.

 o
f l

in
ks

 a
dd

ed
+

de
le

te
d

|N| = 10
|N| = 20
|N| = 30
|N| = 40
|N| = 50

Fig. 8. Avg. no. of links added and deleted by
DISTRIBUTED-GREEDY

Distributed−Greedy
Greedy−Margin,a = 1.0

Greedy−Margin,a = 0.75
Greedy−Margin,a = 0.5

Greedy−Margin,a = 0.25
Greedy−Margin,a = 0.0

10

20

30

40

50

0

20

40

60

80

100

Distributed−Greedy

No. of nodes

A
v
g

.
n

o
.
o

f
lin

k
s

Fig. 9. Avg. |E| with 10 groups (Distributed-
Greedy)

Distributed−Greedy
Greedy−Margin,a = 1.0

Greedy−Margin,a = 0.75
Greedy−Margin,a = 0.5

Greedy−Margin,a = 0.25
Greedy−Margin,a = 0.0

10

20

30

40

50

0

500

1000

1500

2000

Distributed−Greedy

No. of nodes

A
v
g

.
c
o

s
t

Fig. 10. Avg.c(E) with 10 groups (Distributed-
Greedy)

Greedy−CONN Distributed−Greedy G−MST
0

100

200

300

400

500

600

700

N
o.

 o
f l

in
ks

, |
E

|

Fig. 11. Avg.|E| with conference PC groupings

VII. C ONCLUSION

In this paper, we studied the problem of how to construct an
efficient overlay backbone that can be used to distribute data
securely to multiple access groups, where the access groups
are defined by a given set of policies. We formulated this
problem as an optimization problem to construct a minimum
overlay, and prove that it is a NP-complete problem. To
address this problem, we designed a centralized algorithm
that performs empirically closed to the optimal solutions
(within 3%). We also extended the centralized algorithm to a
distributed algorithm and showed that the distributed algorithm
archives comparable performance to the centralized algorithm.
Simulation results suggested that our proposed schemes can
perform better than a simple algorithm up to 30%. Finally, with
a simple extension, we showed that our proposed algorithms
can also support the weighted version of the problem.

REFERENCES

[1] Akamai. http://www.akamai.com.
[2] D. Agrawal, S. Calo, K.-W. Lee, J. Lobo, and D. Verma. Policy

technologies for self-managing systems. 2008.
[3] D. Agrawal, J. Giles, K.-W. Lee, and J. Lobo. Policy ratification. In

Proceedings of IEEE Policy 2005, June 2005.
[4] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang,

S. Seshan, and X. Zhuang. Donnybrook: Enabling large-scale, high-
speed, peer-to-peer games. InIn Proceedings of ACM SIGCOMM, 2008.

[5] D. A. Hari, D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient overlay networks. pages 131–145, 2001.

[6] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for endsystem
multicast. Inin Proceedings of ACM Sigmetrics, 2000.

[7] J. Kleinberg and E. Tardos.Algorithm Design, 2006.
[8] B.-J. Ko and D. Rubenstein. Distributed self-stabilizing placement of

replicated resources in emerging networks.IEEE/ACM Transactions on
Networking, 13(3):476–487, 2005.

[9] S. Rafaeli and D. Hutchison. A survey of key management for secure
group communication.ACM Comput. Surv., 35(3):309–329, 2003.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internetapplications.
pages 149–160, 2001.

[11] D. A. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-to-peer scheme
for media streaming. InIn Proc. of IEEE Infocom, 2003.

[12] A. K. Vishal, V. Misra, and D. Rubenstein. Sos: Secure overlay services.
In In Proceedings of ACM SIGCOMM, pages 61–72, 2002.

[13] D.-N. Yang and W. Liao. On bandwidth-efficient overlay multicast.
IEEE Trans. Parallel Distrib. Syst., 18(11):1503–1515, 2007.

[14] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications,
22:41–53, 2004.

[15] Z. Zhuang, E. Elmacioglu, D. Lee, and C. L. Giles. Measuring
conference quality by mining program committee characteristics. In
JCDL ’07: Proceedings of the 7th ACM/IEEE-CS joint conference on
Digital libraries, pages 225–234, New York, NY, USA, 2007. ACM.

12

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1920

260

273

2122

23

24

25
26

73

74

262

27

28

2930

31

3233

53

112

113

154

265

96

97

307
114

161

162

99

98
115

116

163

164
308

268

117145

54

55

291

292
56

57

76

77

297

185
186

187
188

203

204

290

193194147195196

58

59

78205

152

60

61

79

80

151

298

299

300

34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

51

52

168

311

312

313

314

179

199200

426

427

231
232

309

310

319

320

321

322

323

324

325

326

327

62

63

81

82

64

65
83

84

102

103

125

104

105

66

67

85

86

6869

87

88

106
107

70

71

89
217

72

90

91

301

108

109

110
111

197
198

75

92

153

219

266

95

155
156

223
302

165

166

303

100
157

158
267

340341

342
343

118

101

304

234305

167

169
170

269
306

93
159

160

238

94

171

172

201
202

173

174

270

206
207

208
175

176

177
178

271

209
210

211
212

180

181182272

183
184

190

213
214

215
216

218

220

293

294

189
191

192

221

222

224

138

139

225
226

227
228

229
230

233
235

236

237
239

240

241
242

243
244

245
246

247
248

249250251252

253
254

315

316

255

119

135

136

143274

120121

137

122

336337

369
370

371

123

124

126

127

140

128

129

130

131

132

133 134

141142

144

146

148

149

150

295

296

278

275

288

317 318

279

334

335

328

329

330

331

286

280
281

289

287

366367

368

256

257

258

259

261

263

264

276

282
283

277

284

285

332 333

338
339

344
345

346
347

348
349

350
351
352
353

354
355
356
357

358359

360
361

362

363

364

365

372

382

383

388

373

374

389

375

376

390
377

378

391379

380

392

381

384

385

386

387

393

398

399

401

403

394

402
395

396

397

400

404

415

420
425

405

421

406

407

422
408

409

423410

411

424

412

413

414

416

417

418

419

Fig. 12. Result of G-MST,|E| = 604

0 12

28

193

1

32

85

114

2
6

18

25

33

3
13

23

4

17

21

5

7
15

22 26

8
10 19

11

927

166

252

184

29

14

16

54

89

113

256

31

64

296

228

24

20

30

34

48

52

35

39

43

46

50

36

49

51

37

38

47

136

321
322

325
350355

40
41

42

139
329

341

332
345

368
371

44

4553

95

103 116

162

250

254

55

90

104

253293

56

99

203
57

92

58

70

115

151
201

219

239

59

84

112

298

229

60

61

67

117

291
305

173

297

299

62

63

100

223

238

249258

91

97

169

190

199

213
263

261

243
270

159

163

217

251
271

171
245

300

65

109

168

211
304

352

196234269292

240

204232
236

356

366
367

370

66

68

98 107118

69

77

80

94

106

110

307

71

108

154

158
189

267

216

72

73

81

105

187303

74

75

87

102 170 215

76

301

78

86

79

93

205

242

82

83

302

206255

88

96

192

246

306

101

308

244

111

208
272

260
268

295

209

119134 137

120

131

121

125

140

122

141142274

313

333

342
357

369

364

336

123 124
133

126

127128

129

143

130

138

132

135

340
334

144

145

146

147

161

265

148

149

150

152 285287358

153

157

247

226

155

156

191

160 233

164

241

165

167

174

172

198

266

264

175

176

197
202

177178

183

179

354360427

180

181

237

182

185

186

188

200

259

194

195

218

227

207

221

225

279281
210

212

282
284

214

230

273

220

222

224

231

235

248

257

262

275

283

276

277

278

288

280

289

286

290

294

309
339

310

311
335

348

337

349
362

312

314
359

315

316

317

318
363

319

353

320

426

323

324

330

326

327
343

365

328

331

338

344
346

347

361

351

372

384

389

392

373

385 374

378

390

375

386

376

383

391

377

380

379

382

381

387

388

393

395

398

400

401

394

396

403

397

399

402

404

412

413

415
417

418

421

424

420

422

425

423

405

410

406

407

408

409

419

411

414

416

Fig. 13. Result of Greedy-CONN,|E| = 424

0
24 33

127

2

15

31

3

22

4

20

5

10
13

16

19

26

28
55

66

112

629

7
23

8
21

32

30

86

9
194

217
11

12

264

265

14

210

98

115

153

162

173

256

259

17

18

25

96

34

42

35

39

43

45

36

37

4752
38

368

50

40

49

41

48

51

44

46

53

82

93

54

111

56

92

57

62

117

63

215

223

254
266

58

69

87

109

100
296

178
303

59

205
218
220
255

263

272

60

75

89
90

163

196
204

232
269

61

65

301

104

302

322

71
74
110

219
271

299
231

306

238
300

305

64

84

94

118

113

337
340

106

67

68

180

70

102

114

125

307

116

138

72

97
295

234

73
101
239

262

76

108
308

77

293

78

79

80

81

91
107

209
257

83

85

261

88

246
298

95

292

304

99

105

187

103

243

168

253

252

199

214
267

200

221 260242233 247
250

119

132

136

142

348

358

120

121

131

133

140

122

123

124

126

129

137

143

139127

134

141

128

130

274

135

359

144

147

145

146230

148

149

150

151

152

236

179

333

366

154

190

206

155

188

211

156
237

157

258

158

273

159

160

248

161

164

165

166

167

355

365

169
184

170

171

222

172
244
249

174

208

225

175

270

176
235
177

181

182

183

185

186

189

226

191

192

193

207

228

195

197

198

227

201

202

203

212

213

216

240

288
224

361

229

241

245

251

268

275

283
284

276

279 281

277

287

289
278

282

280

285

286

290

291
294

297

309

312

345

363

310

311

313

321

327
341

353
362

314

329

367

315

331
335

339

360
370

371

316

338

427

317

369

426

318

319

347356

351

320

364

323

324

325

326

328

330

332

334

336

342

343

344

346

349

350

352

354

357

372

375

378

380

381

384

376

385
391

386

387

373

374

390

389

392

388

377

379

382

383

393

397

398

399

401

402

394

395

400

396

403

404

410

415

424

422

418

405

406

412

423

425

407

411

416

408

419

420

409

413

414

421
417

Fig. 14. Result of Distributed-Greedy,|E| = 449

