
RC24936 (W1001-073) January 25, 2010
Computer Science

IBM Research Report

Conditions for Scalability of Mesh-connected Massively
Parallel Processors

José E. Moreira
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Conditions for Scalability of

Mesh-connected Massively Parallel Processors

José E. Moreira
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
jmoreira@us.ibm.com

Abstract

Several metrics are used when comparing processing elements of different massively parallel pro-
cessors. The most common being computational performance (flops/second), memory capacity
(bytes) and communication performance (bytes/second). We show that for an important class
of problems, namely three-dimensional simulation in real space performed on mesh-connected
massively parallel processors, it is the relationship between the metrics, rather than their in-
dividual values, that determine scalability. We show that processing elements with different
metrics can result in the same scalability behavior at the machine level. In particular, we show
how one can trade memory capacity for communication performance and vice-verse. We estab-
lish a new metric, that we call the ”quality” of a processing element that allow us to compare
the scalability behavior of different systems.

1 Introduction

Mesh-connected (and variants like torus-connected) massively parallel processors are among the
most successful supercomputers. Examples include the older Cray T3D [4] and T3E [5] machines
as well was the more recent Cray XT (including the XT3, XT4 and XT5) [2] and Blue Gene
(including Blue Gene/L and Blue Gene/P) [3, 1] family of supercomputers.

When analyzing and comparing the performance of such machines, it is common to focus on metrics
that characterize the basic processing elements (also called nodes) of these machines. The typical
metrics include the computational performance (usually measured in floating-point operations per
second), the memory capacity (measured in bytes) and the communication performance (measured
in bytes/second) of the processing elements. It is also common to use certain figures of merit that
express the ratio between metrics.

One of the most commonly used figures of merit for parallel machines is the “bytes-to-flop” ra-
tio. That is computed as the ratio of communication bandwidth (B), typically measured in

1



bytes/second, to the floating-point computation rate (R), typically measured in flops (floating-point
operations)/second. Processing elements with higher B/R are considered superior to processing
elements with a lower B/R.

Let us consider a three-dimensional mesh-interconnected parallel machine, consisting of processing
elements with communication bandwidth B and floating-point rate R. Then, the byte-to-flop ratio
of the processing element is simply B/R. Now consider a submesh of dimensions q×q×q processing
elements. The communication bandwidth in and out of the submesh is q2B (proportional to the
surface of the submesh) while the floating-point rate is q3R (proportional to the volume of the
submesh). Therefore, the byte-to-flop ratio of the submesh is B/(qR). It is clear that the “byte-
to-flop” figure of merit is not constant throughout the machine.

In this paper we derive expressions for the performance of a mesh-connected massively parallel
processor for a limited but important class of computations. We consider computations that mimic
physical simulations in real space. (As opposed to, for example, reciprocal space computations like
FFT.)

We show the conditions for which machines built of completely different processing elements can
deliver the same performance behavior for the computation. We introduce a new metric, that we
call the quality of a processing element, that helps us compare processing elements of different
characteristics. In particular, we show that one can trade off the “size” of the processing element
(the calculation rate and memory capacity) for the communication performance of that processing
element.

The rest of this paper is organized as follows. Section 2 introduces the model for the computation
that we execute on a massively parallel machine. Section 3 introduces the model for the machine
itself and derives the expressions that characterize the behavior for the machine when performing
that computations. Section 4 discusses the implications of those expressions. Finally, Section 5
presents our conclusions.

2 Computation model

In this section we present a computation model that is representative of a limited by important class
of applications. That class consists of simulations with nearest-neighbor interactions performed on
a physical three-dimensional space. Examples of important applications that fall into that category
includes sPPM and Sweep3D [6].

Consider a computation performed over a three-dimensional grid of dimensions N × N × N . For
convenience, let us call N the size of the grid. Each grid point can be identified by its (x, y, z)
coordinates, 0 ≤ x < N , 0 ≤ y < N , 0 ≤ z < N . Associated with each grid point are k bytes of
data. That is, the total problem size in kN3 bytes. For each grid point, f floating-point operations
are performed in the computation. That is, the total amount of calculations is fN3 flops. The
operations are independent across grid points.

2



0 1 2 … N-1

0

1

2

…

N-1

0

1

2

…

N-1

Figure 1: Computation model. The computation is performed over a three-dimensional grid of
dimension N×N×N . For each grid point there are k bytes of data and f floating-point operations
are performed in the computation.

Let the calculations in each grid point require data from its neighbors along each axis. That is, the
calculations in grid point (x, y, z) requires data from grid points

(x− 1, y, z), (x− 2, y, z), . . . , (x− dx, y, z)
(x + 1, y, z), (x + 2, y, z), . . . , (x + dx, y, z)
(x, y − 1, z), (x, y − 2, z), . . . , (x, y − dy, z)
(x, y + 1, z), (x, y + 2, z), . . . , (x, y + dy, z)
(x, y, z − 1), (x, y, z − 2), . . . , (x, y, z − dz)
(x, y, z + 1), (x, y, z + 2), . . . , (x, y, z + dz)

where d = (dx, dy, dz) is called the depth vector of the computation. For simplicity, let dx = dy =
dz = d. In other words, performing the calculations for a particular grid point requires data from
grid points up to d steps away in each direction.

In this paper we consider the case in which the problem is non-periodic. For example, grid points
with x = 0 do not have any neighbors in the −x direction. In our derivations we will ignore
these boundary effects as they do not affect the conclusions. Our analysis is also valid for periodic
problems. (For example, the −x neighbor of grid point (0, y, z) is grid point (N −1, y, z).) In those
cases, our derivations are the same if the machine is also periodic (i.e., torus-connected as opposed
to mesh-connected).

3 Machine model

We perform the computation on a machine that is a three-dimensional mesh of processing elements
of dimension P ×P ×P . For convenience, let us call P the size of the mesh. A processing element

3



e can be identified by its coordinates:

e(x, y, z)


x = 0, 1, . . . , P − 1
y = 0, 1, . . . , P − 1
z = 0, 1, . . . , P − 1

Each processing element e(x, y, z) in the interior of the mesh is directly connected by bidirectional
links to six other processing elements – one each in the plus and minus directions of the x, y and
z axes. That is, processing element e(x, y, z) is directly connected to e(x − 1, y, z), e(x + 1, y, z),
e(x, y − 1, z), e(x, y + 1, z), e(x, y, z − 1), e(x, y, z + 1), ∀x, y, z : 0 ≤ x, y, z < P . Elements on the
surface, edges and corners of the mesh are connected to fewer other elements, but that does not
affect our analysis. Communication can be performed concurrently along all links.

We want to decompose and map the previous computation (presented in Section 2 on this machine.
We adopt a straightforward decomposition and mapping as follows. Let n = N/P be an integer.
That is, let P divide N evenly. Then partition each of the axes of the problem grid into chunks of n
points and number each chunk along an axes from 0 to P − 1. After this partitioning, the problem
space consists of P × P × P chunks c(x, y, z) of size n× n× n, ∀x, y, z : 0 ≤ x, y, z < P . We map
each chunk c(x, y, z) to processing element e(x, y, z). Just like N represents the global size of the
computation, n is the size of the local grid in each processing element.

The processing elements are homogeneous and characterized by the following set of parameters:

1. M(P ): The size of the local memory of the processing element.

2. L(P ): The latency to initiate a communication over a link connecting two processing elements.

3. B(P ): The communication bandwidth along a link connecting two processing elements.

4. R(P ): The floating-point rate achieved by the processing element for this problem.

We make those parameters dependent on the mesh size (P ) because we want to investigate how
they impact the scalability of the machine.

For the computation to be feasible, each chunk of the problem grid must fit inside a process-
ing element. Ignoring instruction memory and considering that all memory can be used for the
computation data, that requirement can be expressed as

M(P ) ≥ kn3 = k

(
N

P

)3

, (1)

which can also be expressed as

N ≤
(

1
k

) 1
3

P 3

√
M(P ). (2)

That is, the maximum problem size Nmax that can be computed grows with the cube root of the
processing element memory (for a given P ).

4



The execution of the computation in the machine requires both communication (to exchange data
between neighboring processing elements) and calculation of new values for each grid point. We will
first derive expressions for the time to perform each of these separately and then we will combine
them to obtain a total computation time.

The communication time, for the case in which all links can be active simultaneously and data only
comes from the directly connected processing elements (i.e., d ≤ n), can be expressed as

Tcomm(P ) = L(P ) +
dkn2

B(P )
= L(P ) +

dk

B(P ) · P 2
N2. (3)

Equation (3) includes the latency L(P ) to start communication in a mesh of size P plus the time
to transfer d planes of size n × n grid points, each with k bytes of data, over a link of bandwidth
B(P ).

The calculation time can be expressed as

Tcalc(P ) =
fn3

R(P )
=

f

R(P ) · P 3
N3. (4)

where R(P ) is the floating-point rate achieved by the processing element when operating over a
chunk of size n× n× n. We note that, in general, R(P ) is a function both of the calculation being
performed (algorithm) and the local problem size n. In most machines, the rate decreases with the
problem size, as data has to reside in progressively larger and slower levels of the memory hierarchy.
We will focus on those cases for which the data always resides in main memory (as opposed to being
small enough to fit entirely in cache) and therefore R(P ) is independent of the local problem size.

We can now compute the total computation time in a mesh of size P by combining the communi-
cation and calculation time. We first consider the case in which communication and calculation do
not overlap. The cause of the nonoverlap is not important. It can be either forced by the algorithm
or a characteristic of the machine. The total computation time for the nonoverlapping case can be
expressed as

Tnoov(P ) = Tcomm(P ) + Tcalc(P )

= L(P ) + dk
B(P )n

2 + f
R(P )n

3

= L(P ) + dk
B(P )·P 2 N2 + f

R(P )·P 3 N3.

(5)

In general, some overlap is possible between computation and communication. Let us consider the
case in which a complete overlap is possible. Then the total communication time is the maximum
between the calculation and communication times.

Tovlp(P ) = max(Tcomm(P ), Tcalc(P ))

=


L(P ) + dk

B(P )n
2 = L(P ) + dk

B(P )·P 2 N2, if Tcalc(P ) ≤ Tcomm(P )

f
R(P )n

3 = f
R(P )·P 3 N3, if Tcalc(P ) > Tcomm(P )

(6)

5



4 Implications

Let us consider two scalability scenarios: weak scaling and strong scaling. In weak scaling, we keep
the local problem size n constant and we grow the total problem size N as we grow P . Given
a particular processing element of characteristics L, B and R, the computation time for a mesh
of any size P will be the same, whether we fall in the overlapping or nonoverlapping case. The
computation time is still sensitive to the parameters of the processing element (we want lower L
and higher B and R), but any mesh scales perfectly and indefinitely under weak scaling for the
problem we are considering.

In strong scaling, the total problem size N is constant and the local problem size n decreases with
an increasing P . In this case, we compute the speedup S(P ) and efficiency E(P ) for a mesh of size
P and processing element parameters L, B and R.

T (1) =
f

R
N3 (7)

S(P ) =
T (1)
T (P )

=
f
RN3

L + dk
BP 2 N2 + f

RP 3 N3
(8)

E(P ) =
S(P )
P 3

=
f
RN3

P 3L + P dk
B N2 + f

RN3
(9)

The expressions are for the case of nonoverlapping calculation and communication. The efficiency
is < 1 for all P > 1 and furthermore the efficiency decreases with increasing P . These conclusions
also hold for the overlapping case, unless the communication can always be completely overlapped
under the calculation even as we make n smaller.

Now, let us consider a submesh of dimension q×q×q, where P = qQ. (Both q and Q are integers.)
The mesh of size P is equivalent to a smaller mesh of size Q in which the processing elements are
q × q × q submeshes of the processing elements in the larger mesh. That is, a mesh of size Q is
equivalent to a mesh of size P = qQ if the processing elements of the two meshes have the following
characteristics:

M(Q) = q3M(P ) (10)
L(Q) = L(P ) (11)
B(Q) = q2B(P ) (12)
R(Q) = q3R(P ) (13)

The requirements above follow from construction of the mesh of size Q, since a submesh of size
q × q × q of processing elements has a memory capacity q3 times larger than the memory of one
processing element, the same latency as one element, q2 times the communication bandwidth (there
are q2 links on each face of the submesh) and q3 times the floating-point rate.

We note that the same requirements can be obtained by using Equation (5) to express the compu-
tation time for a mesh of size Q and forcing it to be the same as the computation time for a mesh

6



of size P . (The same results would be obtained by using Equation (6).)

T (Q) = L(Q) +
dk

B(Q) ·Q2
N2 +

f

R(Q) ·Q3
N3 (14)

= L(Q) +
dk

B(Q) ·
(

P
q

)2 N2 +
f

R(Q) ·
(

P
q

)3 N3 (15)

= L(Q) +
dkq2

B(Q) · P 2
N2 +

fq3

R(Q) · P 3
N3 (16)

= L(P ) +
dk

B(P ) · P 2
N2 +

f

R(P ) · P 3
N3. (17)

We essentially want polynomials (16) and (17) to be equivalent for all N . Therefore, we need

L(Q) = L(P ) (18)
dkq2

B(Q) · P 2
=

dk

B(P ) · P 2
⇒ B(Q) = q2B(P ) (19)

fq3

R(Q) · P 3
=

f

R(P ) · P 3
⇒ R(Q) = q3R(P ) (20)

Which are the same requirements obtained previously by construction. The requirement of M(Q) =
q3M(P ) comes from having to fit the same data set into a smaller number of processing elements.

We note that
B(Q)
R(Q)

=
q2B(P )
q3R(P )

=
1
q

B(P )
R(P )

. (21)

That is, the byte-to-flop ratio for the bigger (more memory, higher floating-point rate) processing
element (or of a q × q × q submesh) is q times smaller than the ratio for the smaller processing
element. Yet, meshes of the same total performance (same execution time for a computation) built
from these two different processing elements perform identically for the computation model being
considered.

At this point, we introduce a different figure of merit for a processing element, that we call the
quality of the element:

Φ3(P ) =
B(P )
R(P )

3

√
M(P ) (22)

where the subscript 3 is used to indicate that this is applicable to the three-dimensional computation
and machine models being considered. We note that

Φ3(Q) =
B(Q)
R(Q)

3

√
M(Q) =

q2B(P )
q3R(P )

3

√
q3M(P ) =

B(P )
R(P )

3

√
M(P ) = Φ3(P ). (23)

That is, the Φ3 metric is the same for processing elements of meshes of equivalent performance.
Furthermore, the Φ3 metric for any q× q× q submesh of processing elements is the same as the Φ3

metric for the individual element.

These equivalences imply a flexibility in choosing the characteristics of the processing element for
a three-dimensional mesh. First, one has to choose a certain memory-to-flop (M/R) ratio, as this

7



will dictate how fast the calculations can be performed for a certain problem size. With that value
chosen, larger processing elements (those with larger M and R) can tolerate lower B/R ratios.
That is, the bandwidth in and out of the processing element does not have to scale linearly with
R (or M). Correspondingly, nodes with larger B/R ratios can tolerate smaller memory (M) and
computation rate (R).

In particular, Figure 2 shows some of the design space for the processing elements of a mesh. The
reference point has a byte-to-flop ratio of B/R and certain memory size M . If we use a processing
element with 1/2 or 1/4 of that ratio, then we correspondingly have to make this processing
element 8 or 64 times bigger (in memory and floating-point rate) in order to build meshes of the
same behavior.

Memory size vs byte-to-flop ratio

-6

-3

0

3

6

0.25 0.5 1 2 4

Relative byte-to-flop ratio (B/R)

R
e
la

ti
v
e
 m

e
m

o
ry

 s
iz

e
 (

M
)

64

8

1

1/8

1/64

Figure 2: The memory size of a processing element must change with its byte-to-flop ratio if we
want to keep the performance and scalability characteristics of the mesh constant. As we increase
the byte-to-flop ratio by a factor a , the memory size can decrease by a factor a3. The floating-point
operation rate is proportional to the memory size.

If we can build processing elements with a byte-to-flop ratio that is 2 or 4 times the reference,
then we can make those processing elements 8 or 64 times smaller (in memory and floating-point
rate) and still build meshes with the same performance behavior. Obviously more of the smaller
elements are needed to achieve the same performance.

8



5 Conclusions

We have shown how basic characteristics of a processing element (memory size, communication
latency and bandwidth, floating-point rate) determine the performance and scalability character-
istics of a massively parallel processor consisting of a three-dimensional mesh of those processing
elements.

We show that meshes of equivalent performance for the same problem can be built of different
processing elements, as long as the elements have the same memory-to-flop ratio and the same
quality metric. We show that processing elements with larger memory can tolerate lower byte-
to-flop ratios and, correspondingly, processing elements with higher byte-to-flop ratios can have
smaller memory.

We believe that these results are particularly important to designers of highly integrated systems.
One of the difficulties of integrating an entire processing element on a chip is that the memory is
typically too big to fit on a single chip. By increasing the communication bandwidth we can design
smaller processing elements (in memory and floating-point rate) until they fit on a single chip.
Maybe even multiple processing elements can fit on a single-chip. Of course, this would increase
the total number of processing elements in the machine (for the same global performance), but it
is one more design option to consider.

Finally, we should mention that the analysis performed here can be extended for other computation
and machine models. For example, one could compute a different metric called ΦFFT that would
give the condition for equivalence when computing a fast Fourier transform on different machines,
or ΦLINPACK when computing Linpack.

Acknowledgment We want to thank Prof. Geoffrey Fox for suggesting expanding the concept of
quality of a processing element to other types of computations, beyond the strict three-dimensional
models considered in this paper.

References

[1] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J. Rogers, P. Roth,
R. Sankaran, J. S. Vetter, P. Worley, and W. Yu. Early evaluation of ibm bluegene/p. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ,
USA, 2008. IEEE Press.

[2] Sadaf R. Alam, Jeffery A. Kuehn, Richard F. Barrett, Jeff M. Larkin, Mark R. Fahey, Ramanan
Sankaran, and Patrick H. Worley. Cray xt4: an early evaluation for petascale scientific simu-
lation. In SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages
1–12, New York, NY, USA, 2007. ACM.

9



[3] A. Gara et al. Overview of the Blue Gene/L system architecture. IBM Journal of Research and
Development, 49(2/3), 2005.

[4] Wilfried Oed and Martin Walker. An overview of cray research computers including the y-
mp/c90 and the new mpp t3d. In SPAA ’93: Proceedings of the fifth annual ACM symposium
on Parallel algorithms and architectures, pages 271–272, New York, NY, USA, 1993. ACM.

[5] Steven L. Scott. Synchronization and communication in the t3e multiprocessor. In ASPLOS-VII:
Proceedings of the seventh international conference on Architectural support for programming
languages and operating systems, pages 26–36, New York, NY, USA, 1996. ACM.

[6] Jeffrey S. Vetter and Andy Yoo. An empirical performance evaluation of scalable scientific
applications. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference on Super-
computing, pages 1–18, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

10


