
RC24942 (W1002-002) February 1, 2010
Mathematics

IBM Research Report

Planar Three-Index Assignment Problem via Dependent
Contention Resolution

Dmitriy Katz-Rogozhnikov, Maxim Sviridenko
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Planar Three-Index Assignment Problem via Dependent
Contention Resolution

Dmitriy Katz-Rogozhnikov∗ Maxim Sviridenko†

Abstract

In this paper we design an approximation algorithm for the planar three-dimensional assignment
problem with performance guarantee 0.669. The algorithm is based on a novel rounding technique
of the linear programming relaxation (the dependent contention resolution) that might be interesting
in its own right and applied to other optimization problems.

1 Introduction

In the three-dimensional (or three-index) assignment problem we are given three index sets V1, V2 and
V3 of size n each. We are also given a three dimensional array W = (wijk|(i, j, k) ∈ V1 × V2 × V3).
The goal is to choose a set of triples of maximum weight satisfying certain feasibility criteria. The
two most popular variants are the axial three-dimensional assignment and the planar three-dimensional
assignment problems [21, 22]. In the axial three-dimensional assignment problem we must choose a
set of at most n triples such that each element of V1 ∪ V2 ∪ V3 is in at most one triple. In the planar
three-dimensional assignment problem we must choose a set of at most n2 triples such that each element
of (V1 × V2) ∪ (V2 × V3) ∪ (V1 × V3) is in at most one triple.

In this paper we study the planar three-dimensional assignment problem that can be naturally for-
mulated as the following integer programming problem:

max
∑

i∈V1,j∈V2,k∈V3

wijkxijk, (1)

∑

i∈V1

xijk ≤ 1, j ∈ V2, k ∈ V3, (2)

∑

j∈V2

xijk ≤ 1, i ∈ V1, k ∈ V3, (3)

∑

k∈V3

xijk ≤ 1, i ∈ V1, j ∈ V2, (4)

xijk ∈ {0, 1}, i ∈ V1, j ∈ V2, k ∈ V3. (5)

We consider the linear programming relaxation where we replace constraints (5) with the constraints

xijk ≥ 0, i ∈ V1, j ∈ V2, k ∈ V3. (6)

Problem Motivation and Applications: The maximum planar three-index assignment problem
is a well-known optimization problem [6, 7, 21, 22]. It models some natural real-life problems, e.g.
timetabling [17], practical rostering problem [14], sattelite launching [3].

∗IBM T.J. Watson Research Center, dkatzrog@us.ibm.com
†IBM T.J. Watson Research Center, sviri@us.ibm.com

1

The planar three-dimensional assignment problem also naturally models the so-called partial Latin
Square Extension (LSE) Problem which has applications in conflict-free wavelength routing in wide-
area optical networks [4], statistical designs and error-correcting codes [8, 9]. In the LSE problem,
given a partial Latin Square, i.e. a square matrix such that some entries are colored by {1, . . . , n} such
that there are no color repetitions in each row and column, the goal is to complete the partial coloring
in a feasible way. Such a completion is not always possible, moreover the problem of deciding if such
a completion exists is NP-complete. The natural optimization variant is to color as many entries as
possible in a feasible way. To model LSE using (1)-(5) one needs to identify one set of indices (say V3)
with the set of colors and the other two sets of indices with the set of indices in the partial Latin Square.
We define wijk = 1 if the entry (i, j) in Latin Square is not defined and wijk = 0, otherwise.

Another popular variant of the problem is when constraints (2)-(4) are replaced with equalities.
While most applications are shared for both variants of the problem, they are not equivalent. The simple
example is when |V1| = |V2| = |V3| = 2, w111 = w222 = 1 and all other weights in the objective
function are zero. For this simple example the problem with constraints (2)-(4) has an optimal solution
of value two but the problem with equalities has optimal value of one. In this paper we consider the
variant with constraints (2)-(4) only.

Previous Work: The maximum planar three-index assignment problem is known to be NP-hard [13]
and even APX-hard [16]. There are exact branch and bound algorithms and tabu search type heuristics
developed for the problem with equality constraints, see survey articles and books [6, 7, 21, 22]. The
structure of the problem polyhedron was studied in [1, 10, 20].

The first approximation algorithm was developed for the LSE problem in [19]. This algorithm had
a performance guarantee of 1/2. That was improved to 1 − e−1 in [15]. Note that the algorithm in
[15] was general enough to handle arbitrary linear objective function and as a by-product their paper
implies an (1−e−1)-approximation algorithm for the maximum planar three-index assignment problem
(1)-(5). It was noted in [16] that the LSE problem can be actually represented as an instance of a
maximum axial three-index assignment problem (or 3-dimensional matching) and therefore applying
the best known algorithm for that problem [18] one can get a 2/3− ε-approximation algorithm for any
ε > 0. The same argument also holds for the more general problem (1)-(5) with wijk ∈ {0, 1}. It
should be noted that for the set packing type of problems there is a large difference between problems
with general nonnegative weights and problems with {0, 1}-weights, e.g. the algorithm from [18] gives
a (2/3 − ε)−approximation for the axial three-dimensional assignment problem while the best known
algorithm for the problem with general weights has performance guarantee 2 [2, 5]. Analogously, while
the reduction from [16] implies that the maximum planar three-index assignment problem (1)-(5) with
{0, 1}-weights has an algorithm with performance guarantee (2/3 − ε), the best known algorithm for
the general problem has performance guarantee 1− e−1 [15].

Contention Resolution: Randomized rounding of linear programming relaxations is a standard way
to develop approximation algorithms. Quite often a natural randomized rounding leads to an infeasible
solution. For example, if we have n players competing for one item and choosing that item independently
with probability pi for i = 1, . . . , n such that

∑n
i=1 pi = 1 then it might happen that this item will be

allocated to few players at the same time. There are few ways to resolve such conflicts [13, 12]. For
example it is possible to resolve conflicts at random in such a way that each player obtains items with
probability (1−∏n

i=1(1− pi))pi [12] which leads to numerous applications in the design and analysis
of randomized rounding type of algorithms.

In all applications of the contention resolution published so far the key element was that conflicts are
resolved independently for each violated constraint (item). While such an approach greatly simplifies the
analysis it might lead to a worse rounding scheme. In this paper we demonstrate that resolving conflicts
in a coordinated way leads to an algorithm with better performance guarantee than the independent
contention resolution. We believe that such an approach will appear to be useful for other randomized
rounding algorithms.

2

Our Results: Our main result is a randomized polynomial time approximation algorithm for the pla-
nar three-dimensional assignment problem with performance guarantee lower bounded by 0.669 which
is an improvement upon the best known performance guarantee of 1 − e−1 [15]. Actually, our perfor-
mance guarantee even beats the performance guarantee of the local search algorithm for the unweighted
case of the problem. The main tool used in the design of the algorithm and the proof of its performance
guarantee is a dependent contention resolution scheme.

The rest of the paper is organized as follows. In the Section 2 we give the basic algorithm which
our improvement is based on. In the Section 3 we outline the intuition and the reasoning behind our
dependent contention resolution scheme, which improves the Basic algorithm. We give the formal
description of our modification in Section 4 and then prove several basic Lemmas about it. We give the
rest of the proof of the performance in Sections 5 and 6, and conclude with Section 7.

2 Basic Algorithm

Our algorithm starts by solving the linear programming relaxation (1)-(4),(6) of the planar three-dimensional
assignment problem. Let (yijk), i ∈ V1, j ∈ V2, k ∈ V3 be an optimal solution of this relaxation. The
fractional solution (yijk), i ∈ V1, j ∈ V2, k ∈ V3 naturally corresponds to |V1| fractional solutions of the
bipartite matching problem. More precisely, for each index i ∈ V1 we consider the complete bipartite
graph K|V2|,|V3|. Then the matrix Yi = (yijk), j ∈ V2, k ∈ V3 defines a feasible fractional solution of
the bipartite matching problem in the complete bipartite graph K|V2|,|V3| (the variable yijk corresponds
to the edge (j, k) ∈ K|V2|,|V3|) and therefore it can be represented as a convex combination of partial
permutation matrices or in other words the fractional matching corresponding to Yi can be represented
as a convex combination of integral matchings in K|V2|,|V3|. Let Mit for t = 1, . . . ,mi be the set of
matchings and λit be the set of coefficients in that convex combination. Obviously, mi ≤ |V2 × V3|,∑mi

t=1 λit = 1 and
∑

t|(j,k)∈Mit
λit = yijk. Let Π(Mit) be a partial permutation matrix corresponding

to the matching Mit. Then Yi =
∑mi

t=1 λitΠ(Mit).
Our next step is a straightforward randomized rounding. For each index i ∈ V1 choose one index

t = 1, . . . , mi (or corresponding partial permutation matrix or a matching) at random using probability
distribution defined by the coefficients (λit) in the convex combination. This randomized rounding
defines a solution of the planar three-dimensional assignment problem such that constraints (3) and (4)
are satisfied. Unfortunately, the constraints (2) might be violated for some pairs j ∈ V2, k ∈ V3. Let
(ȳijk), i ∈ V1, j ∈ V2, k ∈ V3 be an infeasible integral solution obtained by the above randomized
rounding.

We will call a set of elements Cjk = {(i, j, k)|i ∈ V1} ⊆ V1 × V2 × V3 a column corresponding
to the indices j ∈ V2, k ∈ V3. Note that each constraint of type (2) corresponds to one column in the
array V1 × V2 × V3. Our randomized rounding defines an infeasible solution ȳijk such that there might
be some columns Cjk with few triples (i, j, k) ∈ Cjk such that ȳijk = 1. Our next step is to apply some
contention resolution scheme, i.e. for each column Cjk such that there are ljk ≥ 1 indices i ∈ V1 with
ȳijk = 1 we choose at most one index i′ ∈ V1 and define ỹi′jk = ȳi′jk = 1 and all other variables in the
same column are defined to be zero, i.e. ỹijk = 0 for i 6= i′. In the future sections we will refer to the
infeasible integral solution ȳ before the contention resolution and the feasible integral solution ỹ after
the contention resolution.

There are few ways to define a contention resolution scheme. The simplest way is to choose an index
i ∈ V1 with ȳijk = 1 at random with probability 1/ljk for each column Cjk independently. After that
all variables except chosen ones are defined to be zero and ỹijk = 1 for the chosen triples. This scheme
was proposed and analyzed in [15]. It leads to an (1−e−1)-approximation algorithm for the unweighted
variant of our problem, i.e. wijk ∈ {0, 1}. A more sophisticated schemes were suggested in [13,
12] for different applications. Unfortunately, doing contention resolution independently at random for
each column does not seem to lead to much better performance guarantees even for more sophisticated

3

schemes. In the next section we will describe a dependent contention resolution scheme that resolves
conflicts for different columns in a coordinated way. Now, assuming that we have a contention resolution
scheme with certain properties we finish the description of the basic algorithm.

Lemma 1 If the contention resolution scheme has the property that Pr(ỹijk = 1) ≥ (1− e−1)yijk than
the expected value of the solution obtained by the above algorithm is at least 1− e−1 times the optimal
value of the linear programming relaxation (1)-(4),(6).

Proof. The proof is by the linearity of the expectation and the fact that ỹ is a feasible solution of the
planar three-dimensional assignment problem. 2

We say that a triple (i, j, k) conflicts with a triple (p, q, r) if at least two out of three equalities i = p,
j = k, k = r are satisfied, i.e. variables corresponding to those triples cannot both have value one due
to constraints (2)-(4). The proof of the next lemma describes a way to boost the performance guarantee
of an algorithm if a contention resolution scheme has additional properties.

Lemma 2 Let Uijk be an event corresponding to the triple (i, j, k) ∈ V1 × V2 × V3 such that in the
solution ỹ obtained after contention resolution we have ỹi′j′k′ = 0 for all triples (i′, j′, k′) that conflict
with the triple (i, j, k). If for our rounding algorithm combined with contention resolution scheme
Pr(Uijk) ≥ Q then there exists an approximation algorithm with performance guarantee 1−e−1

1−Q .

Proof. First we describe our algorithm and then we prove its performance guarantee. Our algorithm
proceeds in phases. In the beginning of each phase we already have a partial solution ỹ (initially, ỹ = 0).
Let U ⊆ V1 × V2 × V3 be the subset of triples (i, j, k) such that we have ỹi′j′k′ = 0 for all triples
(i′, j′, k′) conflicting with (i, j, k), i.e. the event Uijk happened on the previous phase of the algorithm.

Since for each triple (i, j, k) ∈ U there are no conflicts with the existing solution we basically
run our rounding algorithm again restricted to the set U . More specifically, we restrict our fractional
solution to triples from U , we also restrict the matchings Mit to the edges corresponding to triples from
U . The new phase of the algorithm defines a preliminary assignment of variables corresponding to U
by choosing one matching at random for each i ∈ V1 and after applying the contention resolution on the
elements of U belonging to the same column we obtain a feasible assignment. Again after this phase
there are some elements from the set U that were not included in the assignment moreover for some
of them there are no conflicts with the existing assignments. We run our rounding again for this set of
elements and we repeat until no such elements left.

On each phase the probability that the triple (i, j, k) ∈ U is chosen ≥ (1 − e−1)yijk by Lemma
1. Moreover, by the conditions of this Lemma the probability that an element belongs to the set U
after s iterations is at least Qs. Therefore, the probability that ỹijk = 1 in the final solution is at least
(1− e−1)

∑∞
s=1 Qsyijk = (1− e−1)yijk/(1−Q). 2

3 Intuition Behind Dependent Contention Resolution

On the limitations of the independent contention resolution. As we showed in Lemma 2, the quality
of our solution depends on Q where Pr(Uijk) ≥ Q. Let Ui be event that for any i′ we have ỹi′jk = 0,
i.e. no triple conflicting with (i, j, k) is present in the same column Cjk. Likewise, let Uj and Uk be
events that ỹij′k = 0 for any j′ and ỹijk′ = 0 for any k′ in other words there is no conflict with (i, j, k)
in ”lengthwise” row and ”depthwise” row correspondingly. Clearly, Uijk = Ui ∧ Uj ∧ Uk. It is easy
to design contention resolution for which Pr(Ui) = Pr(Uj) = Pr(Uk) ≈ e−1, e.g. if we apply Feige
and Vondrak [12] contention resolution independently for each column. If all variables y are small then
there is no positive correlation between the three events, thus Q ≈ e−3 < 0.05. Actually, the worst

4

case happens when some variables y are large and in this case the value of Q is even smaller, thus it
is not possible to obtain a significant improvement over (1 − e−1) approximation guarantee using the
independent contention resolution scheme.

Our goal with dependent contention resolution is to increase Q by establishing a strong positive
correlation between Uj and Uk, so if there is no conflict in ”lengthwise” row with (i, j, k) (i.e. Uj

occurs) then there is likely no conflict in ”depthwise” row (i.e. Uk occurs). This would have the effect
of increasing Pr(Uijk), up to e−2 if a perfect correlation could be established (and negative correlations
avoided). Of course, it is unrealistic to expect the perfect correlation between events Uj and Uk. We use
the following technique to establish the positive correlation:

The key technique of dependent contention resolution. For each i ∈ V1, choose a number ui at
random from U [0, 1] (uniform distribution). Then, in contention resolution stage, for each column have
triples (i, j, k) with smaller ui be more likely to ”win”, i.e. have ỹijk = 1, and with larger ui more likely
to lose. This has the effect of strongly correlating Uj and Uk, since for small ui both events are unlikely
to happen, and for large ui both are more likely to happen.

Making it work. It would be easiest to just have the element with the smallest ui in a column
win contention resolution. But while this works if all y′s are vanishingly small, it might violate the
assumption of Lemma 1 when some y′s are large. So instead, we must adjust our tecnique to satisfy the
assumption of Lemma 1 (Pr(ỹijk = 1) ≥ (1−e−1)yijk). To do this we use the following technical trick,
instead of using ui’s direcly, we use si(ui, yijk)’s, and have the element with the smallest si(ui, yijk) in
a column win. We choose the (monotonically increasing in ui) function si() in such a way as to have
contention resolution scheme satisfy assumption of Lemma 1 with equality.

Other technical tricks. We noticed that in the worst case for our analysis the events Ui and Uj ∧Uk

are positively correlated. It motivated us to introduce parameter a to partly counteract the effect of
such positive correlation. Part of the reason behind us introducing a, is to obtain an algorithm with
performance guarantee > 2/3. While with a = 0 we would still have an improvement over the best
known bound for the weighted case (1 − e−1), a = .34 results in a (weighted case) approximation
guarantee better than the previously best known bound for the usually easier unweighted case (2/3),
which we felt was worth the extra effort.

4 Dependent Contention Resolution Scheme

Let a = 0.34 be a fixed parameter. For each i ∈ V1 we choose a number, ui ∈ [0, 1] uniformly at
random. Let Ujk ⊆ Cjk be the set of triples in column Cjk that participate in the randomized rounding
on the current phase of our algorithm (recall that this is a set of triples that do not have conflicts with
the triples chosen on the previous phases). For each column Cjk we define a dummy element (0, j, k).
We define y0jk = 1 − ∑

(i,j,k)∈Ujk
yijk and ȳ0jk = 0. We add this dummy element to the set Ujk to

guarantee that
∑

(i,j,k)∈Ujk
yijk = 1. If the dummy element (0, j, k) wins the contention resolution then

we define ỹijk = 0 for all (i, j, k) ∈ Ujk. For each triple (i, j, k) ∈ Ujk with yijk > 0 and ȳijk = 1, i.e.
for each triple chosen on the current phase of the algorithm we define

sijk = sijk(ui) =
− ln(1− uiyijk)

yijk − ay2
ijk

.

Note that sijk(ui) is monotonically increasing for ui ∈ [0, 1].
For each triple (i, j, k), let Rijk be an exponentially distributed random variable with intensity yijk−

ay2
ijk, i.e. Pr(Rijk > r) = e−(yijk−ay2

ijk)r. For a dummy element (0, j, k) ∈ Ujk we define s0jk =
R0jk. For each yijk > 0, ȳijk = 0 and i ≥ 1 we define

sijk = Rijk +
− ln(1− yijk)
yijk − ay2

ijk

.

5

Let bjk = a
∑

(i,j,k)∈Ujk
y2

ijk (including the dummy element (0, j, k)). For each triple (i, j, k) ∈ V1 ×
V2 × V3, let

zijk =
− ln

(
1− (1−bjk)(1−e−1)

1−ayijk

)

1− bjk
.

Contention resolution. Let (i′, j, k) be a triple such that si′jk = mini∈Ujk
sijk. The triple (i′, j, k)

is our candidate to win the contention resolution for column Cjk. If si′jk ≤ zi′jk and ȳi′jk = 1 then
we define ỹi′jk = 1 that is we declare the triple (i′, j, k) to be the winner of the contention resolution
scheme. Of course in this case we must define ỹijk = 0 for all other elements i ∈ Ujk. Finally if there
is no such triple (i′, j, k) then we define ỹijk = 0 for all triples (i, j, k) ∈ Ujk.

Let uijk(s) = (1 − e−(yijk−ay2
ijk)s)/yijk be the inverse function of sijk(u). We now prove some

properties of our contention resolution scheme.

Lemma 3 The random variable sijk has an exponential distribution with intensity yijk − ay2
ijk, i.e.

P (sijk > s) = e−s(yijk−ay2
ijk)

Proof. This statement is true for the dummy triple (0, j, k) by the definition. Fix any nondummy triple
(i, j, k) ∈ Ujk, let s′ = − ln(1−yijk)

yijk−ay2
ijk

. We consider two cases. If s ≥ s′ then Pr(sijk ≥ s′) = Pr(Rijk ≥
s− s′) · (1− yijk) since in the case when ȳijk = 1 we are guaranteed that sijk ≤ s′. Therefore,

Pr(sijk ≥ s′) = e−(yijk−ay2
ijk)(s−s′) · (1− yijk) =

e−(yijk−ay2
ijk)s · e(yijk−ay2

ijk)s′ · (1− yijk) = e−(yijk−ay2
ijk)s,

where the last equality follows from the definition of s′.
If s < s′ then using the definition of the inverse function uijk(s) we obtain

Pr(sijk ≥ s) = yijk · Pr(ui > uijk(s)) + (1− yijk) =

yijk(1− uijk(s)) + (1− yijk) = 1− yijkuijk(s) = e−(yijk−ay2
ijk)s.

2

To estimate the probability that a triple is chosen during one phase of our algorithm we will need the
following property of the exponential distributions:

Lemma 4 We are given a collection of independent exponential random variables X1, . . . , Xn with rate
parameters (or intensities) λ1, . . . , λn, i.e. Pr(Xi > s) = e−λis. Let Z ≥ 0 be a real number then for
any index i′ = 1, . . . , n:

Pr(Xi′ = min
i=1,...,n

Xi| min
i=1,...,n

Xi < Z) =
λi′∑n
i=1 λi

.

Proof. Using the fact that the random variable mini=1,...,n Xi is an exponential random variable with
the intensity

∑n
i=1 λi, we estimate Pr(Xi′ = mini=1,...,n Xi|mini=1,...,n Xi ∈ [Y, Y + δ]) in the limit

when δ → 0. We have

lim
δ→0

Pr(Xi′ = min
i=1,...,n

Xi| min
i=1,...,n

Xi ∈ [Y, Y + δ]) =

lim
δ→0

Pr(Xi′ = mini=1,...,n Xi
∧

mini=1,...,n Xi ∈ [Y, Y + δ])
Pr(mini=1,...,n Xi ∈ [Y, Y + δ])

=

lim
δ→0

Pr(Xi′ ∈ [Y, Y + δ]
∧

(Xi > Y for i 6= i′))
Pr(mini=1,...,n Xi ∈ [Y, Y + δ])

=

lim
δ→0

λi′e
−λi′Y δ · e−

∑
t6=i′ λtY

∑n
i=1 λiδ · e−

∑n
i=1 λtY

=
λi′∑n
i=1 λi

.

6

Note that the second and third equalities only hold in the limit when δ → 0. Since E(B|A) =∑k
t=1 E(B|Ai)Pr(Ai) where A and B are arbitrary events and A1, . . . , Ak is an arbitrary partition

of A the Lemma follows by deconditioning. 2

To prove the main property of our contention resolution scheme we will need the following technical
Lemma.

Lemma 5 The inequality zijk < sijk(1) holds for any triple (i, j, k) ∈ Ujk, j ∈ V2, k ∈ V3.

Proof. Basically, the statement of the Lemma claims the following inequality

− ln
(
1− (1−bjk)(1−e−1)

1−ayijk

)

1− bjk
<
− ln(1− yijk)
yijk − ay2

ijk

(7)

where bjk = a
∑

(s,j,k)∈Ujk
y2

sjk.

Let A = 1−e−1

1−ayijk
and X = 1− bjk. First we show that that the left hand side of (7) is monotonically

decreasing function of bjk. Indeed,

(− ln (1−A ·X)
X

)′
=

A·X
1−A·X + ln (1−A ·X)

X2
≥ 0.

Combined with the fact that bjk ≥ ay2
ijk it is enough to prove the inequality

F (yijk) =
− ln(1− yijk)
yijk − ay2

ijk

−
− ln

(
1− (1−ay2

ijk)(1−e−1)

1−ayijk

)

1− ay2
ijk

> 0.

The function F (yijk) is monotonically increasing on the interval (0, 1] and is minimized in the limit
when yijk → 0 and limy→0 F (y) = 0, this fact can be checked numerically in Mathematica. We leave
the analytical proof of this fact to the next version of the paper. 2

Lemma 6 The probability that a triple (i, j, k) is chosen during one phase of our algorithm is exactly
(1− e−1)yijk.

Proof. By the construction of our algorithm the triple (i′, j, k) is chosen if ȳi′jk = 1, si′jk = mini∈Ujk
sijk

and si′jk ≤ zi′jk. By the Lemma 5, zi′jk < si′jk(1). Therefore, if si′jk ≤ zi′jk then ȳi′jk = 1 since for
all triples (i, j, k) with ȳijk = 0 we defined sijk = Rijk + sijk(1).

By the Lemma 3 each random variable sijk has exponential distribution. Therefore, the minimum of
random variables mini∈Ujk

sijk is distributed as an exponential distribution with the intensity equal to
the sum of the intensities of variables participating in the minimum (

∑
i∈Ujk

(yijk − ay2
ijk) = 1− bjk),

i.e.

Pr(si′jk ≤ zi′jk) = 1− Pr(si′jk > zi′jk) = 1− e−zi′jk(1−bjk) =
(1− bjk)(1− e−1)

1− ayi′jk
, (8)

where the last equality holds by the definition of zi′jk. Using Lemma 4 we obtain

Pr(si′jk = min
i∈Ujk

sijk| min
i∈Ujk

sijk ≤ zi′jk) =
yi′jk − ay2

i′jk

1− bjk
. (9)

Combining (8) and (9) we obtain the statement of the Lemma. 2

7

Corollary 1 The probability that a triple (i, j, k) is chosen during one phase of our algorithm condi-
tioned on the fact that it was chosen during the randomized rounding of that phase, i.e. ȳijk = 1, is
exactly 1− e−1.

Proof. Follows immediately from the Lemma 6, using the facts that Pr(A|B) = Pr(A ∧ B)/Pr(B)
and that any element chosen during one phase must have been chosen during the randomized rounding
of that phase. 2

Lemma 7 Each column Cjk contains no elements after conflict resolution with probability is at least
e−1.

Proof. Our algorithm either chooses exactly one triple or none. The Lemma follows immediately from
the Lemma 6 and the fact that

∑
i∈Ujk

yijk = 1 (including the dummy element). 2

In the rest of the paper we will show that for our contention resolution scheme Q ≈ 0.0555 and
therefore the performance guarantee of our algorithm is at least (1− e−1)/0.9445 ≈ 0.6692 by Lemma
2. We also would like to notice that the key technique in achieving this performance guarantee is the de-
pendent contention resolution. It is possible to show that the independent contention resolution scheme
leads to an approximation algorithm with performance guarantee < 2/3 and therefore does not improve
the best known algorithm for the unweighted case.

5 Estimating Q

What we need to show is a lower bound on the value Q used in the proof of the Lemma 2. We consider
one phase of our algorithm. Recall that Uijk is an event corresponding to the triple (i, j, k) ∈ V1×V2×V3

during that phase such that in the solution ỹ obtained after the contention resolution we have ỹi′j′k′ = 0
for all triples (i′, j′, k′) conflicting with triple (i, j, k). Let Nijk be an event that ỹij′k′ = 0 for any triple
(i, j′, k′) with either j′ = j or k′ = k (but not both), i.e. there are no conflicting triples with the triple
(i, j, k) that share the same first index i (but the event ỹijk = 0 is not included in Nijk). Finally, let Bjk

be an event that ỹi′jk = 0 for any triple (i′, j, k), i.e. the column Cjk is empty after the current iteration.
Obviously, Uijk = Bjk ∧Nijk. We would like to show that it is enough to estimate the probabilities of
the events Bjk and Nijk separately to derive a lower bound on the value of Q.

Recall, that after randomized rounding step our algorithm generates a collection of partial per-
mutation matrices that in turn generate an infeasible solution (ȳijk, (i, j, k) ∈ V1 × V2 × V3). Let
Yjk = (ȳijk|i ∈ V1) be a {0, 1}-vector corresponding to column Cjk. Let Djk be the event that we
chose Yjk for column Cjk after randomized rounding and ΩD be the set of all possible events Djk.

Lemma 8 The events Bjk and Nijk are independent conditioned on the event Djk.

Proof. Indeed, assume we fixed vector Djk. We claim that events Bjk and Nijk are defined by non-
intersecting sets of independent random variables. Indeed, let Y 1

jk = {(i′, j, k) ∈ Cjk|ȳi′jk = 1} and
Y 0

jk = {(i′, j, k) ∈ Cjk|ȳi′jk = 0}. Then the event Bjk depends only on random variables Ri′jk for
(i′, j, k) ∈ Y 0

jk and ui′ for (i′, j, k) ∈ Y 1
jk. All these random variables are independent.

Consider now event Nijk. If ȳijk = 1 then Pr(Nijk) = 1 since the fact that we choose a partial
permutation matrix (or a matching) implies that there are no conflicting triples sharing the same first
index i with the triple (i, j, k) and there is nothing to prove. Assume that ȳijk = 0. Then there could
be at most one triple (i, j′, k) for all k ∈ V3 such that ȳij′k = 1 and at most one triple (i, j, k′) for
all j ∈ V2 such that ȳijk′ = 1 since we choose a partial permutation for each index i. The event of
Nijk happens when both such triples are not chosen in the end of the iteration due to the contention

8

resolution, i.e. ỹij′k = ỹijk′ = 0. These events depend either on random variables Rpqr for the triples
(p, q, r) ∈ Y 0

j′k ∪ Y 0
jk′ or variables up for the triples (p, q, r) ∈ Y 1

j′k ∪ Y 1
jk′ . All these variables are

independent of each other.
The key observation is to notice that if a triple (p, j, k) ∈ Y 1

jk then the triples (p, j′, k) 6∈ Y 1
j′k and

(p, j, k′) 6∈ Y 1
jk′ since for each p ∈ V1 the elements (p, q, r) with ȳpqr = 1 form a partial permutation

matrix. Therefore, the sets of variables up for p ∈ V1 that events Bjk and Nijk depend on are non-
intersecting for these two events. Therefore, both events depend on different sets of independent random
variables up for p ∈ V1 and therefore these events are independent. 2

Corollary 2

Pr(Bjk ∧Nijk|Djk) = Pr(Bjk|Djk)Pr(Nijk|Djk),
P r(Bjk ∧Nijk ∧Djk)Pr(Djk) = Pr(Bjk ∧Djk)Pr(Nijk ∧Djk).

Let D0jk ∈ ΩD be an event that the vector Yjk consists of zeros only.

Lemma 9 Pr(Djk|Bjk) ≤ Pr(Djk) for any Djk ∈ ΩD \D0jk.

The proof of this Lemma can be found in Appendix.

Lemma 10 Pr(Nijk|D0jk) ≥ Pr(Nijk|Djk) for any Djk ∈ ΩD \D0jk;

Proof. The proof this lemma is very similar with the proof of the item 3 in the Lemma 9. Let I be the
set of indices such that ȳsjk = 1 when the event Djk happens, i.e. I corresponds to the set of chosen
triples during the event Djk. We again use the conditioning on the choice of random variables. We fix all
random variables u and R. We also fix the choice of random matchings during the randomized rounding
for the indices p ∈ V1 \ I and we call the set of those fixed matchings M. The only random choice left
is the choice of random matchings by randomized rounding for the indices p ∈ I .

Recall, that Nijk is the event in the end of the current phase there is no triples (i, j′, k′) chosen that
conflict with the triple (i, j, k). We claim that Pr(Nijk|D0jk∧u∧R∧M) ≥ Pr(Nijk|Djk∧u∧R∧M)
for any Djk ∈ ΩD \D0jk. First notice that under this conditioning Pr(Nijk|Djk∧u∧R∧M) ∈ {0, 1}
since any matching we can choose randomly for index p ∈ I must have 1 in the column Cjk and therefore
ȳpj′k = ȳpjk′ = 0 for all indices j′ 6= j and k′ 6= k. Therefore, the choice of such a matching cannot
influence the contention resolution for the triples (i, j′, k′) conflicting with the triple (i, j, k) (i.e. either
j′ = j or k′ = k).

Assume now that Pr(Nijk|Djk ∧ u ∧ R ∧M) = 1 and consider Pr(Nijk|D0jk ∧ u ∧ R ∧M).
Again the only random choice left is to choose matchings for p ∈ I ⊆ V1 such that these matchings have
zeros in the column Cjk and ones in the columns Cj′k and Cjk′ of the triples that can potentially conflict
with (i, j, k). It can can only increase the probability of the event Nijk since having additional ones
(instead of zeros) in the columns Cj′k and Cjk′ can only decrease the probability of the triples (i, j′k)
and (i, j, k′) winning the contention resolution. 2

Finally, combining the previous Lemmas we derive the main Lemma in this Section.

Lemma 11 Pr(Nijk|Bjk) ≥ Pr(Nijk)

Proof. Obviously, Pr(Nijk) =
∑

Djk∈ ΩD
Pr(Nijk|Djk)Pr(Djk). By Corollary 2, we have

Pr(Nijk|Bijk) =
Pr(Nijk ∧Bijk)

Pr(Bijk)
=

∑

Djk∈ ΩD

Pr(Nijk ∧Bijk ∧Djk)
Pr(Bjk)

=

∑

Djk∈ ΩD

Pr(Bjk ∧Djk)Pr(Nijk ∧Djk)
Pr(Bjk)Pr(Djk)

=
∑

Djk∈ ΩD

Pr(Nijk|Djk)Pr(Djk|Bjk). (10)

9

Therefore, Pr(Nijk|Bjk) − Pr(Nijk) =
∑

Djk∈ ΩD
Pr(Nijk|Djk) (Pr(Djk|Bjk)− Pr(Djk))) . We

now prove that ∑

Djk∈ ΩD

Pr(Nijk|Djk) (Pr(Djk|Bjk)− Pr(Djk))) ≥ 0.

By using Lemmas 9 and 10 and the fact that
∑

Djk∈ ΩD
Pr(Djk|Bjk) =

∑
Djk∈ ΩD

Pr(Djk) = 1, we
derive

∑

Djk∈ ΩD

Pr(Nijk|Djk) (Pr(Djk|Bjk)− Pr(Djk))) =

Pr(Nijk|D0jk) (Pr(D0jk|Bjk)− Pr(D0jk))) +∑

Djk∈ ΩD\D0jk

Pr(Nijk|Djk) (Pr(Djk|Bjk)− Pr(Djk))) ≥

Pr(Nijk|D0jk) (Pr(D0jk|Bjk)− Pr(D0jk))) +∑

Djk∈ ΩD\D0jk

Pr(Nijk|D0jk) (Pr(Djk|Bjk)− Pr(Djk))) =

Pr(Nijk|D0jk)
∑

Djk∈ ΩD

(Pr(Djk|Bjk)− Pr(Djk))) = 0.

2

The Lemmas 7 and 11 imply that Q = Pr(Bjk)Pr(Nijk|Bjk) ≥ Pr(Bjk)Pr(Nijk) ≥ e−1Pr(Nijk).
The next section is devoted to estoimating the quantity Pr(Nijk).

6 Estimating Pr(Nijk)

In this section, we give a lower bound on the probability of the event Nijk. More precisely, the goal
of this section is to show that Pr(Nijk) > LB = 0.1508. Recall, that the event Nijk is the event
that all triples with the same index i that conflict with the triple (i, j, k) were not chosen on the current
phase of our rounding algorithm. We lower bound the expression for Pr(Nijk) from below by using a
complicated function of four variables which then is minimized by using Mathematica. We also wrote
our own independent optimizer to check the validity of the obtained answer. Our optimizer found the
same minimum solution. This bound leads us to the estimate on the value of Q > e−1 ·0.1508 ≈ 0.0555.
The proof of this fact is highly technical and is given in the Appendix due to lack of space.

7 Conclusion

The most interesting open question left unresolved in this paper is to find a rounding algorithm for the
linear programming relaxation of the planar three-index assignment problem that matches its integrality
gap.

References

[1] G. Appa, D. Magos and I. Mourtos: A new class of facets for the Latin square polytope. Discrete
Applied Mathematics 154(6): 900-911 (2006)

[2] E. Arkin and R. Hassin, On local search for weighted k-set packing, Math. of Oper. Research 23(3)
(1998), 640–648.

10

[3] E. Balas and P. Landweer, Traffic assignment in communication sattelites, Operations Research
Letters v. 2 (1983), pp. 141-147.

[4] R. Barry and P. Humblet, Latin routers, design and implementation, IEEE/OSA J. Lightwave Tech.
v.11 (1993), pp. 891-899.

[5] P. Berman, A d/2 approximation for maximum weight independent set in d-claw free graphs,
Nordic J. Comput. 7(3) (2000), 178–184.

[6] R. Burkard, M. Dell’Amico and S. Martello, Assignment Problems, Society for Industrial and
Applied Mathematics, Philadelphia, 2009.

[7] R. Burkard and E. Cela, Linear assignment problems and extensions. Handbook of combinatorial
optimization, Supplement Vol. A, 75–149, Kluwer Acad. Publ., Dordrecht, 1999.

[8] J. Denes and A. Keedwell, Latin squares and their applications. Academic Press, New York-
London, 1974.

[9] J. Denes and A. Keedwell, Latin squares. New developments in the theory and applications. With
contributions by G. B. Belyavskaya, A. E. Brouwer, T. Evans, K. Heinrich, C. C. Lindner and D.
A. Preece. With a foreword by Paul Erdos. Annals of Discrete Mathematics, 46. North-Holland
Publishing Co., Amsterdam, 1991.

[10] R. Euler, R. Burkard and R. Grommes, On latin squares and the facial structure of related polytopes.
Discrete Mathematics 62(2), 155-181 (1986).

[11] U. Feige, On maximizing welfare when utility functions are subadditive. STOC’06: Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, 41–50, ACM, New York, 2006.

[12] U. Feige and J. Vondrak, Approximation algorithms for allocation problems: Improving the factor
of 1-1/e, in FOCS 2006, 667-676.

[13] A. Frieze, Complexity of a 3-dimensional assignment problem. European J. Oper. Res. 13 (1983),
no. 2, 161–164.

[14] K. Gilbert and R. Hofstra, An algorithm for a class of three-dimensional assignment problems
arising in scheduling applications, IIE Transactions, v.8 (1987), pp. 29-33.

[15] C. Gomes, R. Regis and D. Shmoys, An improved approximation algorithm for the partial Latin
square extension problem. Oper. Res. Lett. 32 (2004), no. 5, 479–484.

[16] I. Hajirasouliha, H. Jowhari, R. Kumar and R. Sundaram, On completing Latin squares. STACS
2007, 524–535, Lecture Notes in Comput. Sci., 4393, Springer, Berlin, 2007.

[17] A. Hilton, The reconstruction of Latin squares with applications to school timetabling and to exper-
imental design. Combinatorial optimization, II (Proc. Conf., Univ. East Anglia, Norwich, 1979).
Math. Programming Stud. No. 13 (1980), 68–77.

[18] C. Hurkens and A. Schrijver, On the size of systems of sets every t of which have an SDR, with
an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math.
2 (1989), no. 1, 68–72.

[19] S. Kumar, A. Russell and R. Sundaram, Approximating Latin square extensions. Algorithmica 24
(1999), no. 2, 128–138.

11

[20] D. Magos and I. Mourtos, The wheels of the OLS polytope: Facets and separation. Discrete Math-
ematics 308(16), 3634-3651 (2008).

[21] M. Queyranne and F.C.R. Spieksma, Multi-index transportation problems, in: ”the Encyclopedia
of Optimization”, edited by C. Floudas and P. Pardalos, Kluwer (2001), Dordrecht.

[22] F.C.R. Spieksma, Multi index assignment problems: complexity, approximation, applications, in:
”Nonlinear Assignment Problems, Algorithms and Applications”, edited by L. Pitsoulis and P.
Pardalos, (2000), Kluwer, Dordrecht, pages 1-12.

A Proof of Lemma 9

Proof. Instead of the statement in the Lemma we will show that Pr(Bjk|Djk) ≤ Pr(Bjk) holds for
any Djk ∈ ΩD \ D0jk. Then the statement of the Lemma follows from the equality Pr(A|B) =
Pr(B|A) ·Pr(A)/Pr(B). We fix an event Djk ∈ ΩD \D0jk. Let I be the corresponding set of indices
such that ȳsjk = 1 for s ∈ I . Let (i′, j, k) be a triple such that i′ ∈ I and zi′jk = mins∈I zsjk.

We now define a collection of various events and show relationships between them. Let Ejk be the
event that si′jk > zi′jk. Let Fjk be the event that si′jk ≤ zi′jk and the winner of the contention resolution
for the column Cjk is some triple (w, j, k) for w ∈ V1 \ I . Let Gjk(s) be the event that ȳsjk = 1. Note
that Djk = ∧s∈IGjk(s) ∧s∈V1\I Gjk(s). Finally, let Hjk be the event that in the final solution the
element ỹi′,j,k = 0, i.e. the triple (i′, j, k) is not a winner of the contention resolution scheme.

Then we claim the following relations between the above defined events:

1. Pr(Bjk|Djk) ≤ Pr(Ejk|Djk) + Pr(Fjk|Djk), this fact follows directly from the observations
that Ejk ∩ Fjk = ∅ and Bjk ⊆ Ejk ∪ Fjk;

2. Pr(Ejk|Djk) = Pr(Ejk|Gjk(i′)), this equality is a direct consequence of the fact that Ejk is
completely independent on the triples of the column Cjk other than the triple (i′, j, k) and there-
fore

Pr(Ejk|Djk) = Pr(Ejk| ∧s∈I Gjk(s) ∧s∈V1\I Gjk(s))) =

Pr
(
Ejk ∧ (∧s∈IGjk(s) ∧s∈V1\I Gjk(s))

)

Pr
(
∧s∈IGjk(s) ∧s∈V1\I Gjk(s)

) =

Pr (Ejk ∧Gjk(i′)))
Pr (Gjk(i′))

= Pr(Ejk|Gjk(i′));

3. Pr(Fjk|Djk) ≤ Pr(Fjk|Gjk(i′)), this inequality is a consequence of the following observations.
For each i ∈ V1, fix random variables ui and Rijk then Pr(Fjk|Djk ∧ u ∧ R) ∈ {0, 1} while
Pr(Fjk|Gjk(i′)∧u∧R) ∈ [0, 1] since once we fix random variables u and R and vector Djk our
contention resolution scheme becomes deterministic. Moreover, we claim that if Pr(Fjk|Djk ∧
u ∧R) = 1 then Pr(Fjk|Gjk(i′) ∧ u ∧R) = 1. To show this consider a specific choice of u and
R when Pr(Fjk|Djk ∧ u ∧ R) = 1. We would like to show that for any vector D̄jk such that
ȳi′jk = 1 we have that Pr(Fjk|D̄jk ∧ u ∧ R) = 1, i.e. it does not matter which matchings were
chosen on the first rounding step as long as we condition on the event Gjk(i′).

By the definition of Fjk, we know that si′jk(ui′) ≤ zi′jk and at the same time Rwjk + swjk(1) ≤
si′jk(ui′) for some w ∈ V1 \ I (w is the winner of the contention resolution for column Cjk).
That is there is an index w ∈ V1 \ I with smallest value of swjk. In the vector D̄jk some zeros
in the set V1 \ I can become ones and their parameter s will go down (by the definition of s).

12

This can change the winner of the contention resolution but since the winner will still be from
the set V1 \ I , the event Fjk will occur. Also some ones in the set I can become zeros and their
s-value will increase and therefore, if they were not winners before they cannot win the contention
resolution after that change. In any case for a new vector some element of the set V1 \ I is the
winner of the contention resolution, i.e. the triple with smallest s-value will be from the set V1 \ I
which is exactly the definition of the event Fjk . Therefore, Pr(Fjk|D̄jk ∧ u ∧R) = 1.

The inequality Pr(Fjk|Djk) ≤ Pr(Fjk|Gjk(i′)) now follows by rewriting the inequality using
the conditioning on u and R.

4. Pr(Ejk|Gjk(i′)) + P (Fjk|Gjk(i′)) ≤ Pr(Hjk|Gjk(i′)), since Ejk ∩ Fjk = ∅ and under both
events the triple (i′, j, k) is not a winner of the contention resolution scheme;

5. Combining items 1-4 we obtain Pr(Bjk|Djk) ≤ Pr(Ejk|Gjk(i′))+P (Fjk|Gjk(i′)) ≤ Pr(Hjk|Gjk(i′)) =
e−1 ≤ P (Bjk), where the last equality and inequality follow from Corollary 1 and Lemma 7.

2

B Estimating Nijk

In this section, we give a lower bound on the probability of the event Nijk. More precisely, the goal
of this section is to show that Pr(Nijk) > LB = 0.1508. Recall, that the event Nijk is the event
that all triples with the same index i that conflict with the triple (i, j, k) were not chosen on the current
phase of our rounding algorithm. Let

∏
(Mi) be the partial permutation matrix (matching) chosen on

the randomized rounding step of the current phase for the index i ∈ V1. If (i, j, k) ∈ Mi, i.e. ȳijk = 1
then there are no conflicting triples (i, j′, k′) such that either j′ = j or k′ = k. Therefore, in this case
Pr(Nijk|Mi) = 1 > LB. Another easy case is when matching Mi contains only one conflicting triple
either (i, j, k′) or (i, j′, k) (it can happen since our matching is not necessarily perfect). In this case by
Corollary 1, Pr(Nijk|Mi) = e−1 > LB.

We now assume that the matching Mi contains exactly two triples (i, j1, k) and (i, j, k2) conflicting
with (i, j, k). The event Nijk occurs if both triples (i, j1, k) and (i, j, k2) lose the contention resolution.
We fix the random variable ui corresponding to the matching Mi. We will estimate the probability
Pr(Nijk|Mi ∧ ui) from below depending on different values of ui. Recall, that if zij1k < sij1k and
zijk2 < sijk2 then both triples (i, j1, k) and (i, j, k2) lose the contention resolution. We define w1 =
u(zij1k) and w2 = u(zijk2) to be the critical values for random variable ui (we define u(s) to be the
inverse of s(u)). Let umin = min(w1, w2) and umax = max(w1, w2). First we show lower bounds in
easy cases.

Lemma 12

1. if ui ≥ umax then Pr(Nijk|Mi ∧ ui) = 1;

2. if ui ∈ [umin = w1, umax = w2] then Pr(Nijk|Mi ∧ ui) = 1− e
−sijk2

(1−bjk2
−yijk2

+ay2
ijk2

),

3. if ui ∈ [umin = w2, umax = w1] then Pr(Nijk|Mi ∧ ui) = 1− e
−sij1k(1−bj1k−yij1k+ay2

ij1k)

Proof. If ui ≥ umax then both triples (i, j1, k) and (i, j, k2) cannot win the contention resolution since
in this case sij1k > zij1k and sijk2 > zijk2 . Therefore, the event Nijk conditioned on the choices of Mi

and ui always occurs.

13

In the case when ui ∈ [umin = w1, umax = w2], the triple (i, j1, k) cannot win the contention
resolution by the same argument. The triple (i, j, k2) wins the contention resolution if for any triple
(i′, j, k2) ∈ Ujk2 , i.e. any triple that participates in the rounding on the current stage including the

dummy triple (0, j, k2) we have si′jk2 > sijk2 . This events happens with probability e
−sijk2

(yi′jk2
−ay2

i′jk2
)

by the Lemma 3. Since the random variables ui′ are chosen independently for different indices i′ we
obtain that the probability of not winning the contention resolution for the triple (i, j, k2) is exactly

1−
∏

(i′,j,k2)∈Ujk\{(i,j,k2)}
e
−sijk2

(yi′jk2
−ay2

i′jk2
) = 1− e

−sijk2
(1−bjk2

−yijk2
+ay2

ijk2
)
.

The last case is proved analogously to the case 2. 2

The next lemma corresponds to the most difficult case when ui < umin. In this case the events in
the columns Cj1k and Cjk2 are dependent and we need to use a more sophisticated argument.

Lemma 13 If ui < umin then

P (Nijk|Mi ∧ ui) ≥
(
1− e

−sij1k(1−bj1k−yij1k+ay2
ij1k)

)
×

(
1− e

−sijk2
(1−bjk2

−yijk2
+ay2

ijk2
)
)

×

1−

√
(bj1k/a− y2

ij1k)(bjk2/a− y2
ijk2

)

(1− yij1k)(1− yijk2)


 .

To prove Lemma 13, we will need the following technical facts.

Lemma 14 Given two sequences of real numbers 0 < a1 ≤ · · · ≤ an and b1 ≥ · · · ≥ bn > 0 such that
a1b1 ≤ a2b2 ≤ · · · ≤ anbn then

√∑n
i=1(aibi)2∑n
i=1 aibi

≤

√∑n
i=1 a2

i∑n
i=1 ai

Proof. Obviously if bi = b for all i = 1, . . . , n then the inequality holds with equality. Assume now that
b1 = · · · = bk = b for some k ≥ 1 and bk > bk+1. We define b′1 = · · · = b′k = b − ε and b′i = bi + ε′

for i = k + 1, . . . , n. Where ε and ε′ are the roots of the following system of linear equations

ε
k∑

i=1

ai = ε′
n∑

i=k+1

ai,

b− ε = bk+1 + ε′.

Therefore,

ε′ =
b− bk+1∑n

i=1 ai
·

k∑

i=1

ai and ε =
b− bk+1∑n

i=1 ai
·

n∑

i=k+1

ai.

Moreover, the new collection satisfies the conditions of the lemma, i.e. b′1 ≥ · · · ≥ b′n > 0 and

14

a1b
′
1 ≤ a2b

′
2 ≤ · · · ≤ anb′n. We now show that

∑n
i=1(aib

′
i)

2 ≥ ∑n
i=1(aibi)2. Indeed,

n∑

i=1

(aib
′
i)

2 =
n∑

i=1

(aibi)2 + ε2
k∑

j=1

a2
j + ε′2

n∑

j=k+1

a2
j − 2ε

k∑

j=1

a2
jbj + 2ε′

n∑

j=k+1

a2
jbj ≥

n∑

i=1

(aibi)2 − 2ε

k∑

j=1

a2
jbj + 2ε′

n∑

j=k+1

a2
jbj ≥

n∑

i=1

(aibi)2 − 2εak+1bk+1

k∑

j=1

aj + 2ε′ak+1bk+1

n∑

j=k+1

aj =
n∑

i=1

(aibi)2.

Repeating this process, we get the final collection b′1 = · · · = b′n = b > 0 such that
∑n

i=1(aib
′
i)

2 ≥∑n
i=1(aibi)2 and

∑n
i=1 aibi =

∑n
i=1 aib

′
i. The Lemma follows from the observation in the beginning

of the proof that
√∑n

i=1(aib′i)2∑n
i=1 aib′i

≤

√∑n
i=1 a2

i∑n
i=1 ai

.

2

Lemma 15 For any A and B such that 0 < A < B the following inequality holds

(1− e−A) ≥ A

B
(1− e−B)

Proof. The inequality follows from the monotonicity of the function (1− e−x)/x for x > 0. 2

B.1 Correlation Property

Let fijk = yijk − ay2
ijk. For any index i′ ∈ V1 \ {i}, let Ji′ be the event that si′j1k < sij1k and let

Ki′ be the event that si′jk2 < sijk2 . Notice that any set of J and K events with distinct indices are
independent, e.g. {J1, J2, . . . , Jn} or {K1, J2, K3, J4, ..} since they depend on different independent
random variables, but events Ji and Ki might be correlated. Since would like to estimate Pr(Nijk|Mi∧
ui), we will use the notation J ′i , K ′

i and N ′
ijk for the events Ki, Ji and Nijk conditioned on Mi and ui.

By the Lemma 3, we have Pr(Ji′) = 1− e−sij1kfi′j1k and Pr(Ki′) = 1− e−sijk2
fi′jk2 . Using these two

fact we derive

Pr(∨i′ 6=iJi′) = 1−
∏

i′ 6=i

P (J̄i′) = 1−
∏

i′ 6=i

e−sij1kfi′j1k = 1−
∏

i′ 6=i

e−sij1k(1−bj1k−fij1k).

Analogously we derive
Pr(∨i′ 6=iKi′) = 1−

∏

i′ 6=i

e−sijk2
(1−bjk2

−fijk2
).

Moreover, the same formulas hold for the events involving K ′
i′ and J ′i′ , because of independence from

level i.
Let J ′ii′ = ∨q 6=i,i′J

′
q and K ′

ii′ = ∨q 6=i,i′K
′
q. As we noted before the events involving different indices

i′ ∈ V1 \ {i} are independent. In particular, the events J ′i′ and J ′ii′ are mutually independent. Similarly,
the following pairs of events are mutually independent (J ′ii′ , K ′

i′), (K ′
ii′ ,J

′
i′), (K ′

ii′ , K ′
i′).

Notice that N ′
ijk = (J ′ii′ ∨ J ′i′) ∧ (K ′

ii′ ∨ K ′
i′) that basically means that N ′

ijk occurs in this case
only when both triples (i, j1, k) and (i, j, k2) lose the contention resolution to one of the triples in their
respective columns. By the standard distributive law of set union and intersection we get

(J ′ii′ ∨ J ′i′) ∧ (K ′
ii′ ∨K ′

i′) = (J ′ii′ ∧K ′
ii′) ∨ (J ′ii′ ∧K ′

i′) ∨ (K ′
ii′ ∧ J ′i′) ∨ (J ′i′ ∧K ′

i′).

15

We need an analog of above equality such that the right hand side contains the union of disjoint events,
in this case we could write the probability of the left hand side as the sum of probabilities of the events
in the right hand side. The analog of the standard distributive law using the disjoint unions only is

(J ′ii′∨J ′i′)∧(K ′
ii′∨K ′

i′) = (J ′ii′∧K ′
ii′)∨(J ′ii′∧K̄ ′

ii′∧K ′
i′)∨(J̄ ′ii′∧K ′

ii′∧J ′i′)∨(J̄ ′ii′∧K̄ ′
ii′∧J ′i′∧K ′

i′). (11)

Therefore, using the observation that the events on right hand side of (11) are disjoint and the indepen-
dence we obtain for ui such that sij1k(ui) < zij1k and sijk2(ui) < zijk2

Pr(N ′
ijk) = Pr(J ′ii′ ∧K ′

ii′) + Pr(J ′ii′ ∧ K̄ ′
ii′ ∧K ′

i′) +
Pr(J̄ ′ii′ ∧K ′

ii′ ∧ J ′i′) + Pr(J̄ ′ii′ ∧ K̄ ′
ii′ ∧ J ′i′ ∧K ′

i′) =
Pr(J ′ii′ ∧K ′

ii′) + Pr(K ′
i′) · Pr(J ′ii′ ∧ K̄ ′

ii′) +
Pr(J ′i′) · Pr(J̄ ′ii′ ∧K ′

ii′) + Pr(J ′i′ ∧K ′
i′) · Pr(J̄ ′ii′ ∧ K̄ ′

ii′). (12)

Consider now some index i′ ∈ V1 \ {i} and two corresponding variables yi′j1k and yi′jk2 . In the
decomposition of the matrix Yi′ into partial permutation matrices there are matchings that contain both
edges corresponding to the triples (i′, j1, k) and (i′, j, k2) and there are matchings that contain only
single such edge. Then for some ∆i′ ≤ min{yi′jk2 , yi′j1k} we have

∑

Mit|(j,k2)∈Mit,(j1,k)∈Mit

λit = ∆i′ ,

∑

Mit|(j,k2)∈Mit,(j1,k) 6∈Mit

λit = yi′jk2 −∆i′ ,

∑

Mit|(j,k2)6∈Mit,(j1,k)∈Mit

λit = yi′j1k −∆i′ ,

∑

Mit|(j,k2)6∈Mit,(j1,k) 6∈Mit

λit = 1− yi′j1k − yi′jk2 + ∆i′ .

That is ∆i′ is the total weight of matchings that contains ones corresponding to both triples (i′, j1, k)
and (i′, j, k2).

We claim that Pr(N ′
ijk) is minimized when ∆i′ = max{0, yi′j1k + y′i′jk2

− 1}, i.e. for each i′ the
amount of matchings that contain both edges (j1, k) and (j, k2) is as small as possible. We prove it
iteratively. Consider one index i′ and the equation (12). Out of all terms in the equation (12) only the
term Pr(J ′i′ ∧K ′

i′) depends on ∆i′ . Moreover, we can compute Pr(J ′i′ ∧K ′
i′) by the formula

Pr(J ′i′ ∧K ′
i′) = ∆i′Pr(J ′i′ ∧K ′

i′ |ȳi′j1k = 1 ∧ ȳi′jk2 = 1) +
(yi′jk2 −∆i′)Pr(J ′i′ ∧K ′

i′ |ȳi′j1k = 1 ∧ ȳi′jk2 = 0) +
(yi′j1k −∆i′)Pr(J ′i′ ∧K ′

i′ |ȳi′j1k = 0 ∧ ȳi′jk2 = 1) +
(1− yi′j1k − yi′jk2 + ∆i′)Pr(J ′i′ ∧K ′

i′ |ȳi′j1k = 0 ∧ ȳi′jk2 = 0) =

we simplify the formula by using the independence that follows from the fact that events are defined by
non-crossing sets of independent random variables are independent

∆i′Pr(J ′i′ ∧K ′
i′ |ȳi′j1k = 1 ∧ ȳi′jk2 = 1) +

(yi′jk2 −∆i′)Pr(J ′i′ |ȳi′j1k = 1 ∧ ȳi′jk2 = 0)Pr(K ′
i′ |ȳi′j1k = 1 ∧ ȳi′jk2 = 0) +

(yi′j1k −∆i′)Pr(J ′i′ |ȳi′j1k = 0 ∧ ȳi′jk2 = 1)Pr(K ′
i′ |ȳi′j1k = 0 ∧ ȳi′jk2 = 1) +

(1− yi′j1k − yi′jk2 + ∆i′)Pr(J ′i′ |ȳi′j1k = 0 ∧ ȳi′jk2 = 0)Pr(K ′
i′ |ȳi′j1k = 0 ∧ ȳi′jk2 = 0) =

∆i′Pr(J ′i′ ∧K ′
i′ |ȳi′j1k = 1 ∧ ȳi′jk2 = 1) +

(yi′jk2 −∆i′)Pr(J ′i′ |ȳi′j1k = 1)Pr(K ′
i′ |ȳi′jk2 = 0) +

(yi′j1k −∆i′)Pr(J ′i′ |ȳi′j1k = 0)Pr(K ′
i′ |ȳi′jk2 = 1) +

(1− yi′j1k − yi′jk2 + ∆i′)Pr(J ′i′ |ȳi′j1k = 0)Pr(K ′
i′ |ȳi′jk2 = 0). (13)

16

We can now define some of these probabilities exactly Pr(J ′i′ |ȳi′j1k = 1) = ui′j1k(sij1k) = a,
Pr(K ′

i′ |ȳi′jk2 = 1) = ui′jk2 = b and Pr(J ′i′∧K ′
i′ |ȳi′j1k = 1∧ȳi′jk2 = 1) = min{ui′j1k(sij1k), ui′jk2(sijk2)} ≥

ui′j1k(sij1k) · ui′jk2(sijk2) = ab. Moreover, Pr(K ′
i′ |ȳi′jk2 = 1) = b ≥ Pr(K ′

i′ |ȳi′jk2 = 0) = b′ and
Pr(J ′i′ |ȳi′j1k = 1) = a ≥ Pr(J ′i′ |ȳi′j1k = 0) = a′ since we defined sijk to be always smaller in the case
when ȳijk = 1 then in the case when ȳijk = 0 (a, b, a′, b′ are just shorter notations). All these imply that
∆i′ is multiplied by the term ab− ab′ − a′b + a′b′ = (b− b′)(a− a′) in (13) which is nonnegative and
therefore Pr(J ′i′∧K ′

i′) is minimized when ∆i′ is as small as possible which is max{0, yi′j1k+yi′jk2−1}.
We repeat this argument iteratively for all i′ ∈ V1 \ {i} and derive that Pr(N ′

ijk) is minimized when
∆i′ = max{0, yi′j1k + yi′jk2 − 1} for all i′ ∈ V1 \ {i}.

More formally, the event N ′
ijk depends only on the value of LP variables and random variables

restricted to two column Cj1k and Cjk2 . We can also restrict matchings defined for each i′ ∈ V1 to just
these two columns. After that we can just try to change the random process in such a way that Pr(N ′

ijk)
decreases. In the previous paragraph, we noticed that if we replace our original random process with the
process where matchings corresponding to the same index i′ ∈ V1 have smallest possible overlap then
Pr(N ′

ijk) decreases. After changing this process |V1 \ {i}| times (once for each index i′ ∈ V1 \ {i})
we get a different random process with probability of the event N ′

ijk in this process lower bounding the
original probability.

Another such trick that we will need in the next section is to assume that each triples (i′, j1, k) and
(i′, j, k2) have independent variables uij1k and ui′jk2 instead of having a single random variable ui′ . It
follows from (13) that when we define two independent random variables instead of one we will only
change Pr(J ′i′∧K ′

i′ |ȳi′j1k = 1∧ȳi′jk2 = 1) in the expression (13) from min{ui′j1k(sij1k), ui′jk2(sijk2)}
to ui′j1k(sij1k) ·ui′jk2(sijk2) and therefore the probability of the event N ′

ijk decreases in the new random
process. From now on we consider an above defined random process when we are bounding Pr(N ′

ijk)
corresponding to that process.

Let J ′ = ∨i′ 6=iJi′ , K ′ = ∨i′ 6=iKi′ and let L′i′ be the event that i′ is the index with lowest si′j1k,
i.e. si′j1k = minq sqj1k conditioned on Mi and ui. The next subsection is devoted to proving that
P (K ′

ii′ |L′i′) ≥ P (K ′
ii′).

B.2 Proving P (K ′
ii′|L′i′) ≥ P (K ′

ii′).

Recall, that Gjk(i′) is the event that ȳi′jk = 1, i.e. the triple (i′, j, k) was chosen on the randomized
rounding phase (before the contention resolution). Using the conditioning argument that we used in the
proofs of Lemmas 9 and 10 we claim

Pr(Gj1k(i′′)|Li′) ≤ Pr(Gj1k(i′′)) (14)

and equivalently Pr(Li′ |Gj1k(i′′)) ≤ Pr(Li′) for all indices i′′ 6= i, i′.
Indeed, if we condition on all random variables and events except the choice of the random matching

for i′′ and call this event Ei′′ we obtain that Pr(Li′ |Gj1k(i′′) ∧ Ei′′) ∈ {0, 1} since the event Gj1k(i′′)
basically fixes the last remaining random choice for column Cj1k. If Pr(Li′ |Gj1k(i′′) ∧ Ei′′) = 1 then
Pr(Li′ |Ei′′) = 1 because if under all fixed random choices the triple (i′, j1, k) won the contention
resolution in the column Cj1k it will win this process even if ȳi′′jk = 0 (since the value si′′j1k can only
increase in this case).

The second fact that we will need in this subsection is

Pr(Gj1k(i′′)|Gjk2(i
′′)) ≤ Pr(Gj1k(i′′)). (15)

This fact follows directly from the discussion in the end of the previous subsection since

Pr(Gj1k(i′′)∧Gjk2(i
′′)) = ∆i′′ = max{0, yi′′j1k+yi′′jk2−1} ≤ yi′′j1k·yi′′jk2 = Pr(Gj1k(i′′))Pr(Gjk2(i

′′)).

17

The third fact used in this subsection is

Pr(Gjk2(i
′′)|Li′) ≥ Pr(Gjk2(i

′′)) (16)

for any index i′′ 6= i, i′. Notice the difference with (14), here we have events corresponding to column
Cjk2 while the conditioning is done on the events defined for column Cj1k. Intuitively, if in the column
Cj1k we know that a winner of the contention resolution is the triple (i′, j1, k) it could only increase the
probability of the the triple (i′′, j, k2) to be chosen on the randomized rounding stage. Formally,

Pr(Gjk2(i
′′)|Li′) =

Pr(Gjk2(i
′′)|Gj1k(i′′))Pr(Gj1k(i′′)|Li′) + Pr(Gjk2(i

′′)|Ḡj1k(i′′))Pr(Ḡj1k(i′′)|Li′) =
Pr(Gjk2(i

′′)|Gj1k(i′′))Pr(Gj1k(i′′)|Li′) + Pr(Gjk2(i
′′)|Ḡj1k(i′′))(1− Pr(Gj1k(i′′)|Li′)) =

we continue by adding and subtracting the same quantity

Pr(Gjk2(i
′′)|Gj1k(i′′))

[
Pr(Gj1k(i′′)|Li′) + Pr(Gj1k(i′′))− Pr(Gj1k(i′′))

]
+

Pr(Gjk2(i
′′)|Ḡj1k(i′′))

[
1− Pr(Gj1k(i′′)|Li′) + Pr(Gj1k(i′′))− Pr(Gj1k(i′′))

]
=

Pr(Gjk2(i
′′)|Gj1k(i′′))Pr(Gj1k(i′′) + Pr(Gjk2(i

′′)|Ḡj1k(i′′))Pr(Ḡj1k(i′′)) +
(Pr(Gjk2(i

′′)|Gj1k(i′′))− Pr(Gjk2(i
′′)|Ḡj1k(i′′)))(Pr(Gj1k(i′′)|Li′)− Pr(Gj1k(i′′))) =

Pr(Gjk2(i
′′)) +

(Pr(Gjk2(i
′′)|Gj1k(i′′))− Pr(Gjk2(i

′′)|Ḡj1k(i′′)))(Pr(Gj1k(i′′)|Li′)− Pr(Gj1k(i′′))) ≥ Pr(Gjk2(i
′′)),

where the last inequality is the implication of inequalities (14), (15) and the fact that Pr(A|B) ≤ Pr(A)
implies Pr(A|B) ≤ Pr(A|B̄).

Finally we are proving Pr(K ′
ii′ |L′i′) ≥ Pr(K ′

ii′). We will prove this inequality for each index
i′′ 6= i, i′ separately, i.e. we will prove that Pr(K ′

i′′ |L′i′) ≥ Pr(K ′
i′′). The main inequality will imme-

diately follow since K ′
ii′ = ∨i′′ 6=i,i′K

′
i′′ and events K ′

i′′ are disjoint. Observe that Pr(K ′
i′′ |Gjk2(i

′′)) ≥
Pr(K ′

i′′ |Ḡjk2(i
′′)) because if we condition on all events and random variables except the choice of the

matching for i′′ and the triple (i′′, j, k2) wins the contention resolution when ȳi′′jk2 = 0, it must win
when ȳi′′jk2 = 1.

Let α = Pr(Gjk2(i
′′)|L′i′)− Pr(Gjk2(i

′′)). The inequality (16) implies that α ≥ 0. Note also that
−α = Pr(Ḡjk2(i

′′)|L′i′)− Pr(Ḡjk2(i
′′)).

The events K ′
i′′ and L′i′ are independent when conditioned on Gjk2(i

′′) since both events are defined
by the disjoint set of random variables. Here we used the fact that we have two independent random
variables ui′′j1k and ui′′jk2 in the modified random process defined at the end of the previous subsec-
tion. Therefore, Pr(K ′

i′′ ∧ L′i′ |Gjk2(i
′′)) = Pr(K ′

i′′ |Gjk2(i
′′))Pr(L′i′ |Gjk2(i

′′)) which in turn implies
Pr(K ′

i′′ |Gjk2(i
′′) ∧ L′i′) = Pr(K ′

i′′ |Gjk2(i
′′)). Finally,

Pr(K ′
i′′ |L′i′) = Pr(K ′

i′′ |Gjk2(i
′′))Pr(Gjk2(i

′′)|L′i′) + Pr(K ′
i′′ |Ḡjk2(i

′′))Pr(Ḡjk2(i
′′)|L′i′) =

Pr(K ′
i′′ |Gjk2(i

′′))(Pr(Gjk2(i
′′)) + α) + Pr(K ′

i′′ |Ḡjk2(i
′′))(Pr(Ḡjk2(i

′′))− α) =
Pr(K ′

i′′ |Gjk2(i
′′))Pr(Gjk2(i

′′)) + Pr(K ′
i′′ |Ḡjk2(i

′′))Pr(Ḡjk2(i
′′)) +

α(Pr(K ′
i′′ |Gjk2(i

′′))− Pr(K ′
i′′ |Ḡjk2(i

′′))) ≥ Pr(K ′
i′′).

18

B.3 Estimating Pr(N ′
ijk) = Pr(K ′ ∧ J ′).

We rewrite Pr(K ′ ∧ J ′) as follows

Pr(K ′ ∧ J ′) = Pr(J ′)
∑

i′ 6=i

Pr(Li′ |J ′)Pr(K ′|Li′) ≥

Pr(J ′)
∑

i′ 6=i

Pr(Li′ |J ′)Pr(K ′
ii′ |Li′) ≥

Pr(J ′)
∑

i′ 6=i

Pr(Li′ |J ′)Pr(K ′
ii′).

As we noticed in the previous subsections the independence of different K ′
j for j ∈ V1 and the

property of the random variable sijk from Lemma 3 imply

Pr(Kii′) = (1− e−sijk2
(1−bjk2

−fi′jk2
−fijk2) ≥

1− bjk2 − fi′jk2 − fijk2

(1− bjk2 − fijk2)

(
1− e−sijk2

(1−bjk2
−fijk2

)
=

1− bjk2 − fi′jk2 − fijk2

(1− bjk2 − fijk2)
Pr(K ′),

where the inequality follows from the Lemma 15 with A = sijk2(1 − bjk2 − fi′jk2 − fijk2) and B =

sijk2(1− bjk2 − fijk2). By Lemma 4 we have Pr(Li′ |J ′) =
fi′j1k

1−bj1k−fij1k
.

Combining these two facts we derive

Pr(N ′
ijk) = Pr(K ′ ∧ J ′) ≥

Pr(J ′)Pr(K ′)


∑

i′ 6=i

fi′j1k

(1− bj1k − fij1k)
· 1− bjk2 − fi′jk2 − fijk2

(1− bjk2 − fijk2)


 =

Pr(J ′)Pr(K ′)

(∑
i′ 6=i

[
fi′j1k(1− bjk2 − fijk2)− fi′j1kfi′jk2

]

(1− bj1k − fij1k)(1− bjk2 − fijk2)

)
=

Pr(J ′)Pr(K ′)
(

1−
∑

i′ 6=i fi′j1kfi′jk2

(1− bj1k − fij1k)(1− bjk2 − fijk2)

)
≥

Applying the Cauchy-Schwartz inequality we continue

P (J ′)P (K ′)


1−

√
(
∑

i′ 6=i f
2
i′j1k)(

∑
i′ 6=i f

2
i′jk2

)

(1− bj1k − fij1k)(1− bjk2 − fijk2)


 =

P (J ′)P (K ′)


1−

√
(
∑

i′ 6=i f
2
i′j1k)(

∑
i′ 6=i f

2
i′jk2

)

(
∑

i′ 6=i fi′j1k)(
∑

i′ 6=i fi′jk2))


 ≥

We continue by applying the Lemma 14 twice with ai′ = yi′j1k, bi′ = (1− ayi′j1k), ai′bi′ = fi′j1k and
ai′ = yi′jk2 , bi′ = (1− ayi′jk2) and ai′bi′ = fi′jk2 . Note that if y1 ≤ y2 then y1 − ay2

1 ≤ y2 − ay2
2 for

19

a ≤ 0.5 and therefore the ordering of aibi is consistent with the ordering of ai.

P (J ′)P (K ′)


1−

√
(
∑

i′ 6=i y
2
i′j1k)(

∑
i′ 6=i y

2
i′jk2

)

(
∑

i′ 6=i yi′j1k)(
∑

i′ 6=i yi′jk2))


 =

P (J ′)P (K ′)


1−

√
(bj1k/a− y2

ij1k)(bjk2/a− y2
ijk2

)

(1− yij1k)(1− yijk2)


 .

The Lemma 13 follows.

B.4 Putting it all together

Recall w1 = u(zij1k) and w2 = u(zijk2). We proved that for four fixed parameters bj1k, bjk2 , yij1k, yijk2 ∈
(0, 1] such that w1 ≤ w2 we have an estimate

Pr(Nijk) ≥
∫ 1

w2

dui +
∫ w2

w1

(
1− e

−sijk2
(1−bjk2

−yijk2
+ay2

ijk2
)
)

dui +
∫ w1

0

(
1− e

−sij1k(1−bj1k−yij1k+ay2
ij1k)

)(
1− e

−sijk2
(1−bjk2

−y′ijk2
+ay2

ij1k)
)


1−

√
(bj1k/a− y2

ij1k)(bjk2/a− y2
ijk2

)

(1− yij1k)(1− yijk2)
dui


 (17)

The above now is a well-behaving (derivatives do not get large) function of four variables, bj1k, bjk2 , yij1k, yijk2

for y ∈ (0, 1) and y2 ≤ b/a ≤ 1, the minimum of which can be evaluated numerically with good ac-
curacy. Using Mathematica to minimize, we find that the minimum of (17) is achieved at yijk2 =
yij1k = 0, bjk2/a ≈ 0.32, bj1k/a ≈ 0.43, and has a value of 0.1508. Moreover, to verify the correctness
of the found solution we wrote our own solver to estimate (17) by discretizing the solution space and
enumerating over all possible solutions. Our solver found the same solution as Mathematica.

20

