
RC24945 (W0901-038) January 12, 2009
Computer Science

IBM Research Report

Performance Modeling of Operators in a Streaming System

Xiaolan J. Zhang
UIUC

Sujay S. Parekh, Bugra Gedik, Henrique Andrade, Kun-Lung Wu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Performance Modeling of Operators in a Streaming System

ABSTRACT
Modeling the resource consumption of each runtime process-
ing element (PE) is essential to the optimal resource alloca-
tion of System S–a distributed streaming processing plat-
form. SPADE is the programming language of System S for
developing streaming applications using an operator-based
approach. Because a SPADE operator tends to be small
in CPU consumption, multiple operators are usually fused
at compile time into PEs for efficient runtime deployment.
As a result, modeling the resource function (RF) at the
SPADE operator level becomes increasingly important for
the system to optimally (1) fuse operators into PEs at com-
pile time and (2) allocate PEs to physical nodes at runtime.
There are two main challenges in modeling operator-level
resource functions. First, how do we recover the baseline
operator-level resource functions (OP RF s) from the raw
data collected with limited precision and under a changing
runtime environment? Second, how do we estimate the re-
source function for a PE with any given fusion and node
mapping from the baseline OP RF s?

In this paper, we propose a new operator-level RF learn-
ing infrastructure for System S. (i) The infrastructure spec-
ifies the necessary procedures to recover OP RF (s) from
PEs running in fused/unfused mode and (ii) use the result-
ing OP RF (s) to predict the PE RF (s) with different fu-
sion scenarios. We studied the resource profiling for major
SPADE built-in operators and presented several techniques
to overcome measurement errors from SPADE OP data col-
lection. The impact of hardware speed and multi-threading
contention are also studied. We show that our method can
be applied to several SPADE applications and the prediction
of the PE RF s is on the average within 15% of the actual
CPU usage fractions from runtime PE measurement.

1. INTRODUCTION
As the world becomes ever more information-centric, we are
entering an era in which it is necessary to process large vol-
umes of heterogeneous data in near-realtime, in order to
make effective decisions and maintain a competitive advan-
tage. Traditional offline-based models of information pro-
cessing and decision support are not effective here, and there
has been an increasing interest in systems that process data
“on-the-fly”, also known as stream processing systems. In
these systems, data is seen as arriving in continuous flows
(streams), such as stock and options trading data in finan-
cial systems, environmental sensor readings, satellite data
in astronomy, and network traffic state or statistics. Key
considerations in such systems are performance, scalability,

Figure 1: An example PE processing graph.

and efficient use of available resources.

This paper is about building quantitative resource models
of streaming computations. Our work is in the context of
the System S distributed streaming platform [3, 12, 20, 11,
19] and the SPADE [9, 4] application development environ-
ment. In System S, a streaming application is composed of
one or more jobs, each of which is organized as a data flow
graph with processing elements (PE) as the nodes and data
streams between the PEs as directed edges in the graph.
Each stream carries data in the form of typed tuples. Data
may be exchanged between PEs from any jobs, even across
applications. An example is shown in Figure 1. PEs ex-
ecute inside a PE container (PEC) which is an operating
system process. A PE consists of one or more operating
system threads that carry out the processing logic of that
PE. These PEs are deployed onto the physical nodes of a
distributed compute cluster, which is shared among multi-
ple applications, and they are managed by the System S
runtime.

The first important motivation for building quantitative re-
source models is to provide a key input for dynamic intelli-
gent resource management. These resource management de-
cisions in System S are performed by the optimizing sched-
uler SODA [19] which dynamically determines which jobs
are admitted into the system, the placement of admitted
PEs onto the nodes, and the share of node resources received
by a PE over the time according to the demand of streams.
These allocations must respect a number of user-provided
constraints such as restricting PEs to a subset of nodes,
license availability, and memory footprint, while simulta-
neously making effective use of available resources without
overloading individual nodes or network links. At its core,
this is a highly complex bin packing and flow balance prob-
lem, and multiple heuristic techniques are applied to meet
the deadline for realtime load balancing. Knowing accurate
“size” of the PEs is critical to make the right resource man-
agement decisions.

A second motivation arises from the development environ-
ment SPADE, which takes a code generation approach to
facilitate the development of efficient, scalable streaming ap-
plications. In this approach, the developer composes an ap-
plication in the SPADE language by using building blocks
known as operators (OP), which are simpler, finer-grained

computations than PEs. SPADE comes with a set of built-
in operators (mostly providing relational algebra operations
in a streaming context) and also allows the flexible use of
user-defined operators. Similar to the PE dataflow graph,
the operators are organized in a logical dataflow graph. The
SPADE compiler assembles the physical PE-level graph from
this logical operator-level graph, through a process called
fusion, where multiple operators are combined to form a
PE. A key decision is to decide how many, and which op-
erators must be fused together. For example, on a small
cluster of powerful nodes it is desirable to fuse more opera-
tors into less PEs of larger size, whereas on a larger cluster
of weaker nodes, it should preferably to have smaller PEs.
The SPADE compiler allows a developer to automatically
generate the appropriate optimized code in either scenario
without rewriting or refactoring their application. To do
this well, it needs to know the “size” of both operators and
PEs.

There are two levels of monitoring infrastructure available in
System S for collecting usage metrics, on which we can base
the resource models. First, the System S runtime provides
PE and PEC level CPU monitoring information, which is
identical to the OS-level thread information available from
Linux top command or /proc filesystem. It also collects
information on the data tuples flowing in and out of PEs.
Second, SPADE provides a profiling mechanism that inserts
instrumentation points and collects metrics at the operator
level. These metrics include statistics on the CPU resources
consumed and the data tuples processed (size and rate) at
the operator level.

We describe the resource usage models as resource functions
(RF), which are described in more detail in Section 2.1. In
this paper, we address two inter-related questions. First, us-
ing the metrics collected from possibly fused operators, how
can we obtain consistent, reusable operator RF s? By con-
sistent, we mean that the resource model should be the same
regardless of how the operator is fused with other operators
(which may introduce interference in the measurements). By
reusable, we mean that the resource model is useful for pre-
dicting the outcome of a fusion. We refer to such an RF as
the baseline OP RF , and the process as OP RF recovery.
Second, how to compose the PE RF for a PE given its con-
stituent operators and their baseline RF s? This is called PE
RF prediction. We find that in addition to “adding up” the
constituent RF s, it is necessary to factor in issues such as
multi-threading and contention.

Our contributions include a unified framework for SPADE
and SODA to obtain and use both operator- and PE-level
resource models, integrated in the System S infrastructure.
We show that the existing SPADE instrumentation may
yield inaccurate OP RF s due to some approximations per-
formed by the profiling system to overcome the limitations of
the underlying OS APIs. We analyze the problem and find
a way to “patch” these inaccurate RF s as a post process-
ing step that does not require changes to the infrastructure
or introduce additional overhead. Our method includes an
approach to profiling the communication overhead of PEs,
which is used for both OP RF recovery and PE RF pre-
diction. We evaluate our methodology on several common
built-in SPADE operators and show the effectiveness of the

Table 1: Definitions

u CPU usage fraction (cpuFrac) of a PE or OP.
ur CPU usage fraction overhead of a PE/OP input port.
us CPU usage fraction overhead of a PE/OP output port.
rr tuple data rate (bps) of a PE/OP input port.
r

r a vector of rates for a set of ports.
tr tuple count rate (nps) of a PE/OP input port.
t

r a vector of rates for a set of ports.
rs tuple data rate (bps) of a PE/OP output port.
r

s a vector of rates for a set of ports.
ts tuple count rate (nps) of a PE/OP output port.
t

s a vector of rates for a set of ports.
cr CPU process time of a tuple in an OP
cs CPU submit time of a tuple in an OP
b CPU process basecost of a thread
M set of additional threads of a OP not driven by an input
I set of input ports of a PE/OP
O set of output ports of a PE/OP
K set of OPs fused in a PE
f CPU usage function in an RF

g rate function that specifies the relation of the input and
output data rates of a PE/OP. g

i is ith vector function
that corresponds to the ith output ports in a PE/RF.

solutions. While our results are encouraging, we face limita-
tions in terms of handling complex PEs and operators, and
we discuss the challenges posed by those structures. How-
ever, our initial approach can already handle many operators
and produce useful results for our resource allocation engine
to optimize many practical streaming applications.

The organization of the paper is as follows. Section 2 reviews
the basic concepts of resource function, SPADE operator
fusion and OP-level metric collection. Section 3 presents
our OP RF modeling framework on System S and in it, we
discuss the techniques that we use for each functional block.
Two examples of OP RF recovery and PE RF prediction
are show in Section 3.6. Section 4 discusses previous related
works. Finally, Section 5 concludes the paper.

2. BACKGROUND
In this section, we review the concepts of resource function,
SPADE operator fusion, and operator level metric collection.
Table 1 summarizes the notations used in this paper.

2.1 PE Resource Functions
The resource demands of a PE are described to SODA in the
form of resource functions (RF). Let ue be the CPU usage
fraction for PE e, rr

e be the vector of input stream data rates
(bytes per second) of the PE inputs and rs

e be the vector of
output stream data rates for the PE outputs. Then, the RF
of PE e is defined in Equations 1-2 as:

ue = f(rr
e) (1) rs

e = g(rr
e) (2)

The functions f and g capture the effect of the input rates on
the CPU usage ue and the output data rates (respectively).
While accurate PE RF s are crucial to the performance of the
SODA scheduler, obtaining RF s is a challenge, not least be-
cause the PE logic can be arbitrary. For long-running PEs,
it is conceivable to learn the RF s over time, and make bet-
ter resource reallocation decisions as the learning improves.
However, for new PEs, there is a bootstrapping question of
how to obtain reasonable initial RF s to allow SODA to per-
form a good initial resource allocation. For this purpose,

PE input ports

PE output portoperators

funtion call
back from
input port

tuple submits
to output port

tuple arrives
at input port

function call
back from
submission

OP1

OP2

OP3

(a) (b)

OP2 CPU time line

t1

t0

s0

s1

Figure 2: (a) An example fused PE. (b) Operator
profiling statistics collection.

linear f,g are often sufficient. For linear PEs, the f is a
scalar, g is a matrix.

2.2 Operator Fusion
SPADE [9, 4] is an extensible stream-oriented operator-based
language, compiler and toolkit. The SPADE language pro-
vides a set of type-generic built-in operators and also allows
users to define their own operators. In addition, the lan-
guage allows the flexible composition of these operators into
the logical data flow graphs representing the desired compu-
tation. The current built-in operator set is focused on pro-
viding relational algebra operations in a streaming context.
Operators have zero or more input and output ports, where
an output port produces a data stream in unit of tuples
to the connected input ports of another operator. Source
operators have no input ports (they are intended to obtain
data from the external world, such as reading from network
connections, disk, sensors, etc.), while sink operators do not
have any output ports. They provide an output interface to
the external world. An input port may also receive streams
from multiple output ports. The SPADE compiler creates
PEs and PE-level physical data flow graphs from the OP-
level logical dataflow graphs, which are then deployed on the
cluster.

The operation of combining some operators into a PE is
called fusion. Figure 2(a) shows an example PE fused from
three SPADE operators. The PE code is executed by one
(or more) threads of the underlying operating system. The
main PE thread waits for input on one of the input ports.
(This input is provided when a tuple streams in from an-
other PE). Upon receiving a tuple, the thread executes the
intra-PE operator graph in a depth-first fashion. In the ex-
ample, after receiving a tuple for OP1, the thread executes
the OP1 code, then makes a function call to OP3. At this
point, the OP3 code is executed, possibly resulting in out-
put sent via the output port. At this point, the PE thread
is now free to process the next input. Not all operators
are single-threaded, multi-threaded implementations exist
as well. Typically these threads are triggered by data ar-
rival or synchronization events, but in all cases the sending
of data to downstream operators occurs by a function call
to that operator, with the appropriate parameters.

It is important to note that sending tuples across PE con-
tainers involves additional CPU cost for communication.
Within one PE, tuples are passed by references and oper-
ators are fused by function calls. Therefore, fusing small
operators together can save the overhead of unfused PEs.

OP1

OP2

OP3

rrr sOP1 OP2 OP3r r rOP1 sr r OP2 ss OP3

OP3

OP1

OP2

unfused

cost

fused

Figure 3: Fusion saves PE communication overhead.

Figure 3 shows that two unit of sending and receiving over-
heads are saved in fused PE for the OP graph in Figure 2(a).

2.3 Operator and PE Profiling
SPADE provides a profiling system [8] to collect various met-
rics on each individual operator that is contained within a
PE. These metrics can be used by the SPADE compiler to
make better PE fusion decisions. In addition, it may also
enable us to obtain initial resource functions of fused PEs,
which can help SODA to optimize PE runtime placement.
The collection of an operator’s resource profile is illustrated
in Figure 2(b). The arrival of a tuple triggers a series of
function calls, each corresponding to the entry into an op-
erator’s executable code. For each such operator function
call, SPADE records the start time t0 and completion time
t1. Each downstream operator is also a function call, which
means we can obtain the total downstream operators’ sub-
mit time, s1 − s0. Note that these times are in terms of the
elapsed CPU time for the corresponding thread (vs. wall-
clock time). SPADE also counts tuple receiving rate tr in
terms of the number of tuples received per second (nps) for
each input port, and the tuple submission rate ts for each
output port. Finally, each operator thread that is not driven
by input tuples contributes a basecost b. The total CPU us-
age fraction (cpuFrac) u of an operator k is computed as:

uk =
X

i∈Mk

bi +
X

i∈Ik

c
r
i t

r
i −

X

i∈Ok

c
s
i t

s
i (3)

where Mk is the set of additional threads, cr is the average
process time, cs is the average submission time, Ik is the set
of input ports, Ok is the set of output ports. Essentially,
Equation 3 counts the net CPU process time by subtract-
ing the portion used by downstream operators. Using the
SPADE metrics, we can estimate the CPU resource usage of
an operator for a given data set in terms of CPU fraction and
tuple rate. However, as shown in Section 3.3.2, the SPADE
instrumentation does not provide an accurate measure of OP
RF s. While the SPADE profiling instrumentation is a com-
pile time option to collect OP-level metrics, the System S
runtime always collects and provides PE-level metrics. This
uses the Linux built-in APIs to collect per-thread CPU us-
age information which allows us to determine per-PE CPU
usage. In addition, the runtime also reports information on
the dataflow, such as tuple rates and sizes.

3. METHODOLOGY
We now describe a unified methodology to tackle both prob-
lems of OP RF recovery as well as PE RF prediction, based
on the System S and SPADE metrics. After an overview of
all the components, we describe each step in the method-

Figure 4: RF modeling infrastructure for System S.

ology in detail. Then we work through some illustrative
examples of first recovering OP RF s and then using them
to predict PE RF s which are fused from those learned op-
erators.

Our methodology is shown in Figure 4 along with the infor-
mation flows in the context of the existing System S compo-
nents (depicted by oval). Here, the rectangular boxes repre-
sent the building blocks of our methodology. The cylindrical
objects represent data repositories which are either popu-
lated or used by the various steps. The lines represent flow
of information between the blocks, repositories and System S
components.

The starting point of the RF modeling is the raw metrics
reported by the System S infrastructure. The first main step
of the OP RF recovery is performed by the OP RF Normal-
izer (ORN), and the resulting OP RF s are maintained in
the OP RF Database (ORD) for reuse. The second princi-
pal issue of PE RF prediction is performed in the PE RF
Composer (PRC), which is a component that can be used
by either the SPADE compiler for PE fusion or by SODA
for runtime scheduling. For both the ORN and PRC, it is
necessary to separate communication and computation cost.
The information on communication overhead is learned by
the PE Communication Overhead Learner (PCOL).

Our cluster may contain heterogeneous nodes, which poses
two subproblems. First, we must normalize any node-specific
aspects so that the models in the ORD are generalizable
across all the nodes. This normalization occurs based on
information about nodes which is calibrated by the Node
Performance Learner (NPL) and stored in the Node Spec
Database (NSD). Second, when combining PEs to execute
on a specific node, the node-specific information may be used
to obtain a better prediction of the combined PE behavior.
This latter adjustment is performed in the PE RF Adjuster
(PRA) using information from the NSD.

To summarize, for fusion decisions, the SPADE compiler can
obtain PE size estimates from the PRC by submitting the
list of operators to fuse to the PRC. In this sense, PRC serves
as a PE size “Oracle” for the fusion optimizer. For runtime
decisions, SODA must examine various PE placement and
fractional allocation options. The node-specific RF s for the
PEs are obtained from the PRA, which in turn combines
the baseline PE RF from the PRC and the node-specific
information from NSD.

In this paper, we do not cover memory usage profiling be-
cause most PE/OPs in our applications are CPU-bound pro-
grams and the consideration of CPU resource is a more im-
portant factor. In System S information on PE memory
usage can be manually supplied by the developer, and this
information is used as a constraint by SODA to ensure no
node is overallocated. Dynamic memory usage profiling and
optimization are still under research and out of the scope of
this paper.

3.1 Experiment Setup
First, we introduce our experimental environment and no-
tational conventions that are used in the examples shown in
the paper. All results were collected on three type of ma-
chines. Machine type 1 is an Intel Xeon 3G hyper-threading,
1M cache and 6G memory. Machine type 2 is an AMD
Opteron 2.6G dual core, 1M cache and 8G memory. Ma-
chine type 3 is an Intel Xeon 3.4G hyper-threading. Most
of the single PE results were collected from machine type
1. The SPADE profiling system were run at sampling ratio
0.01. The 98% confidence interval is the ±6% data range of
CPU fraction and ±1% of I/O rates, respectively.

In this paper, we show four different types of SPADE ap-
plications: Regex, Aggregate(aggs/aggt), Join and VWAP.
Their SPADE source codes are attached in the Appendix.
Figure 6 illustrates the OP data flow graphs of each appli-
cation. The name of the application for each OP graph is
shown in the caption. The entire Regex application con-
tains three functor OPs (Regex1, Regex2, and Regex 3),
each of which performs some regular expression operations
on each input tuple. Depending on the number of func-
tors contained in an application, we have func1, func2, and
func3. The two aggregate examples (aggs/aggt) share the
same OP graph and almost identical logic except the types
of aggregate windows used. The join example contains an
operator with two input ports. VWAP is a larger example
with two functors (TradeFilter, VWAPSum) and an aggre-
gate (VWAPAggreg). All OPs we focus on in this paper
are single-threaded. Except the source OP (|Mk| = 1) that
has a driver thread of its own, all other OPs do not have
basecost (|Mk| = 0). The CPU fraction of PE/OPs in our
examples will be always a real number ranging from 0 to 1.

Figure 5 illustrates different PE fusion and node placement
configurations for a certain OP graph. The connection of
source and sink OPs (solid half circles) are also presented in
the figures. The other boxes with OP marks are operators.
Dashed boxes that groups one or more operators represent
PEs. Solid boxes that contain PEs represent nodes that only
run the PEs and Linux OS. An application could only use a
certain fusion and placement configuration if its OP graph
matches the exact OP graph shown in the configuration.

OP1

PE1

Node1

OP3OP2OP1

Node1

PE1

OP3OP2OP1

Node2

PE2

Node1

PE1

OP1

PE1

Node1

PE2

Node2

OP3

PE3

Node3

OP2

OP3OP2OP1

PE1

Node1

PE2

Node2

OP1

PE1

Node1(a) cf1 (a.1) cf1.1

OP1

PE1

Node1

OP2

(b) cf2

(c) cf3 (d) cf4

(e) cf5 (f) cf6

Figure 5: Example fusion and PE-to-node mapping
scheme for operator graphs. (a) cf1, (a.1) cf1.1, (b)
cf2, (c) cf3, (d) cf4, (e) cf5, (f) cf6

Functor FunctorFunctor
Regex1 Regex2 Regex3

VWAP
Aggreg

VWAP
Sum

TradeFilter

FunctorFunctor
Regex1 Regex2

Functor
Regex1

(a.1) func2

(a.2) func3

(b) aggs/aggt

(a) func1

(d) vwap

(c) join

JoinAggreg

Figure 6: Example SPADE operator graphs. (a)
func1, (a.1) func2, (a.2) func3, (b) aggs/aggt, (c)
join, (d) vwap

For example, notation “func3-cf3” means the three functors
in Regex (OP graph Figure 6(a.2)) are unfused and placed
in the same way as the three operators in Figure 5(c). The
same application, func3, can also be configured as in cf4,
which fuses all OPs together with additional sinks. This
application configuration is notated by “func3-cf4”.

3.2 PE Communication Overhead Learner

(PCOL)
As discussed in Section 2.2, the cost of receiving and sending
tuples between PEs is an integral part of the overall PE re-
source usage, so it is important to obtain a good measure of
his overhead. An earlier study [8] has established that this
overhead grows with increasing tuple sizes and rates. The
PCOL component learns this functional dependency of the
overhead on tuple sizes and rates. It operates on metrics col-
lected by running a special calibration application consisting
of one source operator connected to one sink operator, each
in its own PE on separate nodes, as shown in Figure 8. The
source operator is a cheap tuple generator that does no other
processing on the tuple, and the sink simply discards the re-
ceived tuple. Thus, the CPU time for the PE is almost all
spent on the communication. We run the application using
variable tuple sizes m and obtain the resulting maximum
tuple data rate rmax(m), source PE CPU fraction usrc(m)

and sink PE CPU fraction usink(m). Figure 7 shows these
metrics for machine types 1 and 2. For these machines, we
see that when the tuple size is small, the source PE is the
bottleneck and uses 100% CPU. As tuple size increases, the
TCP network interface becomes the bottleneck. For a given
PE input port with measured input data rate rr and tu-
ple rate tr, we can estimate the input port CPU overhead
ur(rr, tr) using Equation 4 and our overhead profiling data.
In the same way we can compute the output port overhead
by Equation 5.

u
r(rr

, t
r) = usink(

rr

tr
)

rr

rmax(rr

tr)
(4)

u
s(rs

, t
s) = usrc(

rs

ts
)

rs

rmax(rs

ts)
(5)

3.3 OP RF Normalizer (ORN)
This step tackles the construction of the baseline OP RF
using data from the System S runtime and the SPADE pro-
filing infrastructure. The RF s are stored in the ORD for
easy access by other components. We first discuss our for-
mulation of the OP RF s. Next, we show that the SPADE
profiling introduces some undesirable approximation errors,
but that these errors can be corrected by post-processing in
certain cases. We illustrate this approach by applying it to
some example applications.

3.3.1 Operator RFs
In general, the OP RF s take the same form as the PE RF s
presented in Section 2.1, capturing the input rate-dependent
aspect of the operator’s resource usage. There are other
factors such as the operator parameterization (e.g., window
size for the Join operator) that can affect the resource usage.
Rather than model the effect of such parameters in the RF ,
we treat each different parameterization of an operator as a
distinct operator. This may result in a larger set of operator
models, but on the other hand, it is a simpler approach that
does not require much modeling of the use and semantics of
that parameter in that operator’s algorithm.

For many OPs, CPU usage metrics can show non-linear ef-
fects when the load on a processor approaches its limit, even
when the actual OP RF is linear. In this paper, we ignore
such effects. Most operators in our study have CPU RF s
which are linear in their tuple input rate with a few excep-
tions, such as a join OP with time-based windows on each
input port. The output rate RF g is related to the prob-
ability of a tuple being filtered at each input port and the
change of tuple size between an input and output tuple of
the OP. For single input and output linear operators, g is
simply a scalar g.

The training data for building the OP RF s is obtained by
running the application at a range of source rates. It is fea-
sible that the OP RF data is dependent on the data content
as well. At this time, we do not model the dependency of the
OP RF on the input data distribution. It is not always pos-
sible to obtain representative input data at development or
compile time. The design point of System S is that learning
OP and initial PE RF s is a starting point, which is bet-
ter than making fusion or initial SODA placement decisions
without any information at all. The SODA scheduler is ex-
plicitly designed to respond to by dynamic and responds to

 1

 10

 100

 1000

 10000

 100000

 10 100 1000

m
a

x
.

ra
te

 (
K

b
y
te

)

tuple size (byte)

Machine 1 max rate
Machine 2 max rate

(a) Maximum data rate

 0

 0.5

 1

 1.5

 2

 10 100 1000

c
p

u
F

ra
c

tuple size (byte)

Machine 1 src
Machine 1 sink

(b) CPU fraction at maximum rate on
machine type 1

 0

 0.5

 1

 1.5

 2

 10 100 1000

c
p

u
F

ra
c

tuple size (byte)

Machine 2 src
Machine 2 sink

(c) CPU fraction at maximum rate on
machine type 2

Figure 7: PE communication overhead profiling.

changes in incoming data or PE behavior by updating its
RF s for already running PEs based on new observed data.

3.3.2 SPADE OP-Level Profiling and Inaccuracy
The training data for OP-level RF construction is collected
by the SPADE profiling infrastructure mentioned earlier. It
provides OP-level resource utilization metrics, including the
CPU time tc used by each operator. The only source of
CPU usage information is the underlying OS, and in our case
the native Linux OS maintains CPU usage information at a
10-millisecond precision. This is a critical limitation, since
the CPU time spent on processing a single tuple arriving
on an input port of the operator could potentially be at
a nanosecond scale. Hence, most of the measurements of
process time and submit time in Figure 2(b) will be zero.
To work around this limitation, SPADE uses the following
approximation. Instead of the CPU time, it measures the
elapsed time te (based on the CPU cycle counter), which
is available at a nanosecond resolution (for modern CPUs
which operate at GHz frequency). Thus, the raw process
time and submit time are actually in terms of the elapsed
time. To convert te it into the CPU time tc, these times
are scaled by the average OS thread-level CPU utilization u

(including both user and system time charged to the process)
during the previous 500 milliseconds, to obtain an estimate
t̂c = te×u. However, because u includes activity from all the
component operators of the PE, as well as the tuple reading
and writing, the resultant t̂c is not necessarily representative
of the actual tc. This causes an inaccuracy in the operator’s
CPU usage measurement.

Specifically, CPU-bound operators may be under-estimated
because their CPU utilization are very likely to be higher
than the average utilization of the whole thread. Analo-
gously, I/O-bound operators may be over-estimated because
their CPU utilization are likely lower than the thread-wide
average. For example, Figure 10 shows the CPU usage frac-
tion of the Regex1 operator in various applications (func1,
func2, func3) and configurations (cf1, cf2, cf3, cf4) using
Equation 3 and based on the scaled CPU time t̂c. Refer
to Section 3.1 for a detailed explanation of the application
configurations. In this simple application, all the input rates
equal the output rates in terms of number of tuples along
the chain. The maximum rate where each curve ends is
the saturated rate for the corresponding application run-
ning in a specific resource configuration. func3-cf4 cannot
sustain as high a saturated rate as func3-cf3 because cf4

fuses all operators into one PE with additional sinks and
uses only one node. For comparison purposes, we also show
the CPU utilization based on raw elapsed times te, which is
denoted by the legends marked with “-rt”. Regex1 is a func-
tor with a regular expression match logic (see the Appendix
for source code) that does not contain any blocking function
calls. Since the PE that contains Regex1 also runs on an
empty node1, the CPU should be able to be dedicated to
the PE thread while the tuple is being processed in Regex1,
so that there is no context switch during the tuple process-
ing. Therefore, the wall-clock result should be an accurate
measure of the CPU usage time, and we see that the SPADE
profiling result is an under-estimate of the true value for all
input rates below the saturated rate. The reason is that the
PE thread will block to wait for the arrival of a new tuple
when the application is running at a lower rate than the
maximum sustainable rate given the processing capability
of the node. The blocking time at PE input ports reduces
the average CPU utilization of the whole thread, which is
smaller than 100%. In this case, t̂c < tc.

Figure 11 shows that Regex2 exhibits the same problem.
Unlike Regex1, the t̂c for Regex2 in func3-cf3 is not accu-
rate even at the saturated input rate, because Regex2 is
not the bottleneck operator in the application (Regex1 is
the bottleneck) so even when the application throughput is
saturated, the PE that contains Regex2 still needs to wait.
However, when Regex1 and Regex2 are fused together in the
func2 configuration, the measurement is more accurate be-
cause Regex2 is invoked only when there is data to process.
The wall-clock time measurement in Figures 10 and 11 also
verify that these functors should have linear RF s.

There are some approaches that may improve CPU time
measurement precision but are not suitable for System S.
One way is to use kernel APIs to access hardware counters,
such as PAPI [5] to acquire a better measurement. It re-
quires installation of external kernel patches on Linux, which
is problematic for the Enterprise versions of the OS, which
preclude such actions. Moreover, the SPADE profiling is de-
signed to minimize the impact on system performance. An
alternate way is suggested by our Regex1 example – use the
elapsed time measure. However, in general, a thread can be
context switched during tuple processing, or block due to re-

1the Linux OS daemon threads use negligible CPU resources
and are most likely scheduled on another context in our
multi-process machines

Source PE

Node2Node1

Sink PE

Figure 8: Experiment setup to pro-
file a computing node.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3

R
e
g
e
x
1
 c

p
u
F

ra
c

Machine type

 0

 5

 10

 15

 20

 25

 30

 1 2 3

m
a
x
.
ra

te
 (

b
p
s
)

p
e
r

M
IP

S

Machine type

Figure 9: Comparison of node ca-
pacity on running func3-cf4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

c
p

u
F

ra
c

i-rate (Knps)

func1-cf1
func2-cf2
func3-cf3

func3-cf4
func3-cf3-rt
func3-cf4-rt

Figure 10: Comparison of the mea-
sured OP RF of Regex1 in different
configurations on machine type 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

c
p

u
F

ra
c

i-rate (Knps)

func2-cf2
func3-cf4

func3-cf3
func3-cf3-rt

Figure 11: Comparison of the mea-
sured OP RF of Regex2 in different
configurations on machine type 1.

source sharing and synchronization, which will erroneously
inflate the measured in-operator elapsed time, causing it to
deviate from the on-CPU time. Since it is hard to differen-
tiate variance caused by data processing variance from that
caused by blocking, it may be even harder to correct elapsed
time measurements for the general case.

3.3.3 OP RF Recovery
In this paper, we are interested in two RF s for each oper-
ator: one for CPU, and another for the output rates. The
operator metrics for input and output tuple counts and rates
are not subject to the measurement error, so it is possible
to obtain the output rate RF based on the SPADE profil-
ing metrics. As mentioned above, we assume linear RF s,
which are obtained from the raw metrics data using a linear
regression that goes through the origin.

For the CPU RF s, given the inaccuracy in the OP-level CPU
metrics, we formulate a two-pronged strategy. First, for an
operator which is unfused with others (i.e., it is in a PE by
itself) it is possible to use the PE-level metrics to recover
the OP-level RF . A procedure to do this recovery is shown
in Algorithm 1. We can estimate the PE’s communication
overhead via the PCOL information and subtract it from
the PE’s CPU usage fraction to obtain the OP’s computa-
tional CPU usage. The functional RF forms are obtained
from this data using a least-squares fit using the lowest order
polynomial form that provides good fit. More advanced sta-
tistical techniques may be used as well, although we have not
yet found it necessary in practice. For applications where
it is possible to deploy each operator in its own PE, this
approach can be used, and does not even use the SPADE
profiling metrics (beyond the PCOL information).

For applications with hundreds or thousands of operators, it
may not be possible to even deploy or start the application
unless the operators are first fused into a more manageable
number of PEs. For such operators, the PE level metrics
are not very useful. Hence, we must rely on the OP-specific
metrics collected by the SPADE profiling mechanism. The
challenge here is whether the measurement errors introduced
by the profiling mechanism can be corrected. This brings us
to the second part of our strategy.

We begin from the observation that at saturation, the SPADE
measure will accurately reflect the CPU usage. Hence, in the

case of linear RF s, we can interpolate between the system
performance at this saturation point and the origin to re-
cover the RF . Here, saturation refers to the maximum rate
at which the PE can run on this node without other con-
straints. It is not the maximum ingest rate of the system,
which may be limited by other bottleneck PEs. For some
PEs, the saturated point is “virtual” if they are not the bot-
tleneck PEs. Regex2 in Figure 11 is such an example. Func-
tor Regex2 only uses 70% CPU at the maximum throughput
of the application. Regex1 is the processing bottleneck in
this case.

Our approach combines both the PE-level metrics and the
SPADE profiling metrics, and is shown in Algorithm 2. We
first obtain the operator-specific input rate at which the con-
taining PE is saturated. For this, we first obtain a functional
relationship u = fe,k(r) between the operator’s input rate
rr

k and the PE CPU usage data ue (step 4). This function
is interpolated or projected to find the input rate r̃ where
the PE is saturated, i.e., fe,k(r̃) = 1 (step 5). Then, we use
that operator’s SPADE profiling metrics (step 7) to find the

lower-order polynomial u = f̃k(rr
k) that best describes the

OP-specific data. This operator’s correct CPU utilization at
the saturated point is given by f̃k(r̃) (step 8). Finally, the

operator’s linear RF is the line between (0, 0) to (r̃, f̃k(r̃))
(step 9). This approach works well for linear RF operators
that are single threaded, non-blocking, and have a single in-
put and output port. Examples include functors and punc-
tors in SPADE. Since functors are usually small operators
and are heavily used in most streaming applications for ba-
sic data manipulation, such as data filtering, transformation
and computation, it is worthwhile to study the fusion case
specifically targeted at functor-like operators. Our correc-
tion method may also work for some single-thread blocking
operators if the error is in an acceptable range. To illustrate
the case, if an operator consumes 60% of the real time at
80% CPU utilization and the rest of time is non-blocking (so
100% utilization for that part), the average CPU utilization
measured will be 0.6 × 0.8 + 0.4 = 0.88, which is used by
SPADE to approximate the real OP CPU utilization that is
80%. Thus, the SPADE measure will have 10% error when
it is used to compute the CPU fraction for that OP.

3.3.4 OP RF Recovery Examples
Let us consider some examples for the recovery of OP RF s
using our algorithms. All the operators we have studied are

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30

c
p

u
F

ra
c

i-rate (Knps)

measured PE data
measured OP data

PE fitting function
recovered OP RF

Figure 12: OP RF recovered
from the unfused PE in aggs-cf1,
on machine type 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

c
p

u
F

ra
c

i-rate (Knps)

measured PE data
measured OP data

PE fitting function
recovered OP RF

Figure 13: OP RF recovered
from the unfused PE in aggt-cf1,
on machine type 1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90

o
-r

a
te

 (
K

n
p

s
)

i-rate (Knps)

aggt-cf1
linear fitted I/O ratio g=1/10

Figure 14: Input and output
rates for aggt-cf1, on machine
type 1.

Algorithm 1 Recover OP RF (f,g) from unfused PE.

1: Run the PE application at different source rates.
2: For all rates, read PE CPU fraction ue from Linux; Read

all input ports data rate vector rr, tuple rate tr, and
output ports data rate rs, tuple rate ts from SPADE.

3: Find the least square polynomial fitting function fe for
data tuples (tr, ue).

4: Find rate function g for I/O tuple rate (tr, ts) using
least square polynomial fitting for each output port.

5: Compute the overhead function
P

i∈I
ur(rr

i , tr
i) +

P

i∈O
us(gi(rr)T ,gi(tr)T) using Equations 4-5 and get

the OP RF by f = fe − (ur + us).

Algorithm 2 Recover OP RF (f, g) from fused PE.

1: Run the PE application at different source rates.
2: For all rates, read PE CPU fraction ue from Linux. Read

each fused OP k’s CPU fraction uk, input port data rates
rr

k, tuple rates tr
k, and output ports data rates rt

k, tuple
rates tt

k from SPADE.
3: for each operator k ∈ Ke do
4: Find the least square linear fitting function fe,k for

data tuples (rr
k, ue).

5: Compute the saturated rate r̃ where fe,k(r̃) = 1.

6: Compute rate RF as g =
ts

k

tr

k

.

7: Find the least square quadratic fitting function f̃k

for data tuples (tr, uk).

8: Compute the saturated rate point (r̃, f̃k(r̃)).

9: Recover the OP CPU RF as fk = f̃k(r̃)
r̃

rr
k

10: end for

mostly CPU intensive, so their original SPADE OP mea-
surements are under estimated. We show the recovery of
aggregate and join operators RF s; the demonstration for
fused functors will be presented in Section 3.6.1.

As its name suggests, an aggregate operator combines each
newly arrived tuple with previously arrived tuples in its win-
dow according to some user defined logic and emits the result
of the aggregation. Here we show two examples of the ag-
gregate OP with different window types: aggs uses a sliding
window of size 10 and step 1; aggt uses a tumbling window
of size 10. The source code is provided in the Appendix.
Both application have the same OP graph, shown in Fig-
ure 6(b). aggs outputs one tuple per arrival at steady state
so the input and output rates are the same. Since the OP
is unfused in its PE, we can use Algorithm 1 for recover-

ing its RF . Figure 12 shows the quantities computed by the
steps in the algorithm. aggt outputs one tuple every 10 ar-
rivals. Figure 14 verifies that the I/O tuple rates measured
by SPADE is precisely 10:1. Figure 13 illustrates the same
recovery technique for aggt as for aggs.

The recovery of OP RF for multi-port operators can also
be performed using Algorithm 1. Join operator is a built-in
multi-port operator with 2 inputs and 1 output. Figures 15
and 17 present the recovery of the join RF with one input
that is configured with a 30-slot sliding window and the
other input that is configured with a 15-slot sliding window.
The SPADE OP measurements for join operators also under-
estimate the actual values. Figure 16 shows the computation
of rate function g for the multi-input case. We see that the
I/O ratio for this application is still linear.

3.4 PE RF Composer (PRC)
PRC composes baseline PE RF from learned OP RF s. PRC
is called by SPADE to estimate fused PE RF s at compile-
time. The composed baseline PE RF s are also used by
SODA to project PE RF s at runtime for resource balanc-
ing. PE RF composition for a fused PE e consists of two
steps: one is to construct I/O rate function ge given the
functions gk from each fused operator k ∈ Ke. The other
is to compute the CPU usage fraction function fe given fk

of each fused operator. For the first step, the vector func-
tion gi

e can be computed backwards for each output port
i. For the example of a fused PE in Figure 2(a), given the
function g1 : rs

1 = a1r
r
1 + a2r

r
2 for OP1, g2 : rs

2 = brr
3 for

OP2, and g3 : rs = c1r
s
1 + c2r

s
2 for OP3, the function for

the PE is thereby ge : rs = c1a1r
r
1 + c1a2r

r
2 + c2br

r
3. The

same approach can be applied on non-linear rate functions
or loop topology where the output To compute the function
f , it simply sums all fused OP RF s and the communication
overhead. Equation 6 shows the composition.

fe(r
r
, tr) =

X

k∈Ke

fk(rr
k) +

X

i∈Ie

u
r(rr

i , t
r
i)

+
X

i∈Oe

u
s(gi

e(r
r)T

,gi
e(t

r)T) (6)

3.5 Node Performance Learner (NPL) and PE

RF Adjuster (PRA)
NPL is responsible for profiling the computing node capacity
as well as the CPU contention due to multi-threading. The
results from NPL are used by PRA to adjust the baseline

 0 10 20 30 40 50 60 0 10 20 30 40 50 60

 0

 0.2

 0.4

 0.6

 0.8

 1

cpuFrac

measured PE data
measured OP data

PE fitting function
estimated OP RF

i0-rate (Knps) i1-rate (Knps)

cpuFrac

Figure 15: Join OP RF recovered from the unfused
PE in join-cf1.1, on machine type 2

 0 10 20 30 40 50 60

 0 10 20 30 40 50 60

 0

 10

 20

 30

 40

 50

 60

o-rate (Knps)

measured I/O rates
linear fitted I/O ratio g = 0.2916x+0.5680y

i0-rate (Knps) i1-rate (Knps)

o-rate (Knps)

Figure 16: Join OP rate function recovered from the
unfused PE in join-cf1.1, on machine type 2

PE RF s to the actual run-time environment. Furthermore,
the results are used by ORN to normalize the learned OP
RF s to the baseline OP RF s. However, the general problem
of node capacity modelling is a hard one. This is because
the execution time of a program varies greatly over different
hardware. Besides CPU frequency, micro-architecture plays
a role in how fast a program can run. Multiple levels of
caches and look-up tables in the system increases the unpre-
dictability of program execution time. Another important
factor is the CPU contention on multi-threaded systems. To
make things worse, CPU contention can vary depending on
micro-architecture and operating system-level load balanc-
ing.

A challenge in modeling the CPU demands of a program is
that this demand will vary depending on the specific CPU
being used. In order to construct a general model that can
be used across all nodes in a heterogeneous cluster, SODA
uses MIPS as a measure of machine capacity. The MIPS
used here is based on the processor Bogomips [18] reported
by the Linux kernel and adjusted for the multi-context run-
time environment. However, our experiences indicate that
Bogomips is not a reliable measure of machine capacity and
we could achieve better accuracy by applying domain spe-
cific capacity profiling techniques. Accordingly, we propose
to use the maximum throughput achieved from running cer-
tain streaming mico-benchmarks, instead of CPU MIPS, to
model the node capacity. The node specification database

(NSD) saves the maximum data rate for each machine type
based on the results from the streaming micro-benchmarks.
This information is later used by PRA and ORN. In PRA,
the input rates of the PE RF are multiplied by the nor-
malized maximum data rate of the machine the PE will be
placed on. In ORN, the input rates of the OP RF are di-
vided by the normalized maximum data rate of the machine
that the PE is running on.

Designing benchmarks for different types of streaming ap-
plications is still an on-going work. Figure 9 shows a com-
parison of three machine types using func3-cf4 as our micro-
benchmark. MIPS for machine type 1 is 11773.4, machine
type 2 is 9946.59, and machine type 3 is 13057.4. Since Bo-
gomips is a metric loosely related to CPU frequency, the
type-2 node has the lowest MIPS count. First, we observe
that the SPADE measured CPU fraction for Regex1 is equal
on all three machine types. This is because when the PE is
taking 100% of the CPU resources, the splitting of CPU us-
age amongst the fused operators is the same for different
machine types. We also observe that the maximum data
processing rate (bytes per second) per MIPS is not the same
for certain pairs of machine types. A type-2 node is able
to process more data per MIPS than the other two types.
We know that type-1 and 3 nodes have the same Intel ar-
chitecture with different CPU speeds but type-2 nodes have
the AMD architecture. From this study, we found that the
MIPS metrics that SODA have been using to model node
capacity may be useful for the same machine architecture
with different CPU speeds. However, it can be misleading
for machines with different architectures.

Placing multiple PEs on the same node/core may affect the
performance if they are sharing caches, memories, and other
resources. Our results show that running two PEs on the
hyper-threading machines (type-1) will affect the RF s, but
multi-core machines (type 2) do not show such contention.
Figure 21 shows the PE CPU fraction measurement of func1-
cf1 on machine type 1 that has 4 processors. Figure 25 shows
the results on machine type 2 with dual-core processors.
“func1-cf1-b”is the result when the PE is running on one pro-
cessor and the other three processors are each pinned with a
100% CPU load program. Compared to the results from an
idle machine, the CPU usage of the PE increased almost by
50% for processing at the same rate. Legend notation “-zx”
means that all four processors are pinned with a program us-
ing 0.x fraction of the CPU. The program maintains a busy
loop that wakes up periodically and writes to 10M of mem-
ory space. To simulate the worst case contention, the pro-
gram uses 10M residential memory space and makes sure to
clear the processor cache of the CPU during context switch.
We adjust CPU utilization of the program by varying the
sleeping period. Whichever processor the PE is scheduled,
it always shares resources with our contention thread. On a
type-2 machine, we see that increasing CPU demand of the
other process does not change the PE RF . In this case, PE
RF adjustment is not needed. However, sharing multiple
threads on the hyper-threading node will affect the PE RF
(Figure 21). The contention observed from hyper-threading
node may be caused by increasing cache misses on level-2
caches and stall cycles [6]. An analytical model for hard-
ware context switching [16] has suggested that the number
of threads that a CPU can support with linear growth of

performance is limited. In this paper, we suggest to use an
idle machine or dual-core machines with at most two threads
on the same processor for accurate measurement. The study
of load contention in the general case is left as future work.

3.6 Demonstration
In this section, we present two simple applications to il-
lustrate our OP RF recovery and PE RF estimation algo-
rithms. The PE RF s that are estimated from the recovered
OP RF s will be compared against the real PE measure-
ments.

3.6.1 Regex Application
Recall the func2-cf2 application, where operators Regex1
and Regex2 are fused and running on a single node. Fig-
ure 18 shows the OP RF s of Regex1 and Regex2, recov-
ered from a fused PE using our OP RF recovery algorithms.
Concretely, using Algorithm 2, a curve is fitted to the PE
measurements and the saturated rate point is projected as
(18.16,1). Then, additional curves are fitted to the OP mea-
surements and the OP RF s are recovered by plugging the
saturated rate point into these curves.

Now we show that our recovered OP RF s from func2-cf2
can be used to predict the PE RF s of unfused Regex1 and
Regex2 operators in func3-cf3. Figure 22 shows the esti-
mated PE RF of Regex1 using Equation 6. Similarly, Fig-
ure 26 shows the estimated PE RF of Regex2. The measured
PE RF from running func3-cf3 is plotted for comparison.
Throughout the range of rates up to the saturated rate, the
difference between our prediction and the actual measure-
ment is smaller than 5% for Regex1. For Regex2, the error
stays within 10% for most part of the comparison, until we
reach the small region covering higher rates where non-linear
effects are observed.

3.6.2 VWAP Application
We now study a larger application that contains functor
and aggregate operators. Unlike the previous example, in
this one some of the operators are performing data filter-
ing and data reduction depending on predefined conditions.
The example, named as VWAP, is part of a financial trading
application and consists of three operators: TradeFilter (a
functor), VWAPAggreg (an aggregate), and VWAPSum (a
functor). TradeFilter filters out tuples that do not represent
trading activity (such as quotes). VWAPAggreg finds the
maximum/minimum of the trading prices on a sliding win-
dow of size 4 and step 1. VWAPSum performs arithmetic
operations on tuple data fields to create a volume weighted
average price.

Figures 19, 23, and 27 show the OP RF s recovered from
an unfused configuration running on a type-2 machine. All
OP RF s are normalized using the source rate for ease of
comparison. Figure 20 shows the output tuple rate of each
operator relative to the source rate. Figure 24 shows the
predicted and actual PE RF s for the fused PE containing
TradeFilter and VWAPAggreg operators. Figure 28 shows
the predicted and actual PE RF s for the fused PE containing
VWAPAggreg and VWAPSum operators. For TradeFilter
and VWAPAggreg combined, our prediction exactly matches
the actual PE measurements throughout the full range of

input rates. For combined VWAPAggreg and VWAPSum,
our prediction over-estimates by at most 15% CPU fraction
at the highest rate.

4. RELATEDWORK
Studying the performance of parallel programs on multi-
core systems is receiving growing interest as multi-core pro-
cessors become prevalent. Performance studies using hard-
ware counters on simultaneous multi-threading (SMT) sys-
tems can be found in [6]. Their results showed that hyper-
threading contention accounts for an average 69% increase
of level-2 cache misses and 1.5 times more stall cycles for
some benchmarks. On the contrary, multi-core execution
context did not contribute to performance loss in most cases.
SPADE measurement of multi-threading contention agrees
with their main results. Further study is still needed to
model the impact of multi-threading/multi-core contention
on the resource function of independent threads with vary-
ing data sets. The architecture of Intel multi-core proces-
sors and Linux SMP schedulers were discussions in [17, 1].
Using queuing theory, [2] provided a deterministic model
to estimate the executing time for a parallel program on a
symmetry multi-processor system. However, the parameters
that were used in the model are still hard to estimate in our
system.

Many efforts have been made to improve the throughput
of streaming systems by using data and task parallelism.
StreamIT [13] is a stream processing system built mainly
for signal processing. [10] explored the potential of par-
allelism on dataflow graphs. MapReduce technique intro-
duced by [7] provided another programming model to pro-
cess large amounts of static data (pre-existing on disks) with
implicit parallelism. System S is explicitly parallelized (the
processing graph is modified explicitly when more PEs are
allocated), and we are also working on implicit parallelism
functionality for real-time data flows. Our approach in this
paper focuses on learning and predicting the resource con-
sumption of each operator and processing element for vary-
ing data rates.

Some profiling tools have been developed to measure run-
time resource consumption for general-purpose software pro-
grams. The authors in [15] compared existing performance
analysis tools, and PAPI [5] provided a cross-platform in-
terface for software programs to use performance hardware
counters. Profiling and optimization for executing general
programs on a single machine has been extensively studied
in the past. An operating system level profiling and exe-
cution optimization tool was introduced in [21] to improve
the execution for programs on a single machine. [14] pro-
posed a run-time optimization system with hardware-driven
profiling system. In SPADE, we try to profile our streaming
program in a distributed execution environment without the
aid of additional kernel patches.

5. CONCLUSION
In this paper, we have outlined a first empirical approach
to constructing quantitative resource usage models for basic
operators in streaming systems. The dataflow architecture
suggests the use of rate-driven resource models for both CPU
and I/O rates, which we have found to be effective in practice
for a variety of streaming operators. The first main chal-

lenges addressed here is constructing normalized, reusable
operator RF s, wherein the node-specific information is suit-
ably factored out of the collected metrics to yield RF s that
can be reused for predicting that OP’s resource usage in
other scenarios. The second challenge addressed is about
composing these RF s into predictions on RF s for fused PEs.
These PE-level RF s are utilized both for compile-time fu-
sion optimizations as well as runtime resource allocation op-
timizations.

One aspect of our approach is to specifically tackle the in-
accuracy in the SPADE OP-level profiling metrics for fused
operators. We also presented a general technique to recover
OP RF s from unfused PEs for those OPs that cannot be re-
covered accurately in fused form using SPADE metrics. Our
two-pronged approach effectively increases the efficiency and
accuracy of OP and PE resource profiling. In an end-to-end
application of our approach on real SPADE applications, we
first obtain OP RF s, then obtain estimated PE RF s from
fusing those OPs. We find that the PE RF are within 15%
CPU fraction compared to actual measurements from the
fused PE. From a methodology perspective, we find that
additional contention introduced by a multi-threaded ma-
chine may require additional modeling, whereas multi-core
machines exhibit less interference and so are easier to han-
dle.

This paper presents an initial attempt to tackle a hard and
complex problem. We believe it warrants further investi-
gation into tackling more complex fused PEs and an even
greater diversity of operators. One specific area is dealing
with multi-threaded operators, especially in fused configu-
rations. From the hardware perspective, accounting for ad-
ditional contention on multi-threaded processors or having
a large number of active threads on a multicore is an inter-
esting open question.

6. REFERENCES
[1] J. Aas. Understanding the Linux 2.6.8.1 CPU

Scheduler. Silicon Graphics, Inc. (SGI), Feb. 2005.

[2] V. S. Adve and M. K. Vernon. Parallel program
performance prediction using deterministic task graph
analysis. ACM Trans. Comput. Syst., 22(1):94–136,
2004.

[3] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen,
R. King, P. Selo, Y. Park, and C. Venkatramani. Spc:
a distributed, scalable platform for data mining. In
DMSSP ’06, pages 27–37, New York, NY, USA, 2006.
ACM.

[4] H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu. On
optimizing the aggregation/join architectural pattern
for high-performance data stream processing. In
submission, 2008.

[5] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors. The
International Journal of High Performance Computing
Applications, 14:189–204, 2000.

[6] M. Curtis-Maury. Improving the Efficiency of Parallel
Applications on Multithreaded and Multicore Systems.
PhD thesis, Virginia Tech, Mar. 2008.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified

data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[8] B. Gedik, H. Andrade, and K.-L. Wu. A code
generation approach to optimizing high-performance
distributed data stream processing. In submission,
2008.

[9] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and
M. Doo. Spade: the system s declarative stream
processing engine. In SIGMOD ’08, pages 1123–1134,
New York, NY, USA, 2008. ACM.

[10] M. I. Gordon, W. Thies, and S. Amarasinghe.
Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In ASPLOS-XII,
pages 151–162, New York, NY, USA, 2006. ACM.

[11] G. Jacques-Silva, J. Challenger, L. Degenaro, J. Giles,
and R. Wagle. Towards autonomic fault recovery in
system-s. In ICAC ’07, page 31, Washington, DC,
USA, 2007. IEEE Computer Society.

[12] N. Jain, L. Amini, H. Andrade, R. King, Y. Park,
P. Selo, and C. Venkatramani. Design,
implementation, and evaluation of the linear road
benchmark on the stream processing core. In SIGMOD
’06, pages 431–442, New York, NY, USA, 2006. ACM.

[13] A. A. Lamb. Linear Analysis and Optimization of
Stream Programs. PhD thesis, Massachusetts Institute
of Technology, May 2003.

[14] M. C. Merten, A. R. Trick, C. N. George, J. C.
Gyllenhaal, and W. mei W. Hwu. A hardware-driven
profiling scheme for identifying program hot spots to
support runtime optimization. In ISCA ’99, pages
136–147, Washington, DC, USA, 1999. IEEE
Computer Society.

[15] S. Moore, D. Cronk, K. S. London, and J. Dongarra.
Review of performance analysis tools for mpi parallel
programs. In Proceedings of the 8th European
PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing
Interface, pages 241–248, London, UK, 2001.
Springer-Verlag.

[16] R. H. Saavedra-barrera, D. E. Culler, and T. V.
Eicken. Eicken. analysis of multithreaded architectures
for parallel computing. In In Second Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 169–178, 1990.

[17] S. Siddha. Multi-core and linux kernel. Intel Inc., 2007.

[18] W. van Dorst. BogoMips mini-Howto.
http://tldp.org/HOWTO/BogoMips/.

[19] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan,
R. Wagle, and K.-L. Wu. SODA: An optimizing
scheduler for large-scale stream-based distributed
computer systems. In Middleware ’08, Dec. 2008.

[20] K.-L. Wu, P. S. Yu, B. Gedik, K. Hildrum, C. C.
Aggarwal, E. Bouillet, W. Fan, D. George, X. Gu,
G. Luo, and H. Wang. Challenges and experience in
prototyping a multi-modal stream analytic and
monitoring application on system s. In VLDB, pages
1185–1196, 2007.

[21] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D.
Smith. System support for automatic profiling and
optimization. SIGOPS Oper. Syst. Rev., 31(5):15–26,
1997.

http://tldp.org/HOWTO/BogoMips/

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

c
p

u
F

ra
c

i1-rate (Knps)

measured PE data
measured OP data

PE fitting function
estimated OP RF

Figure 17: The 2-D slicing of Fig-
ure 15 at input 1 rate of 30Knps

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20

c
p

u
F

ra
c

i-rate (Knps)

measured Regex1 OP data
measured Regex2 OP data

measured PE data
Regex1 fitting function
Regex2 fitting function

PE fitting function
recovered Regex1 OP RF
recovered Regex2 OP RF

Figure 18: Regex1 and Regex2
OP RFs recovered from the fused
PE in func2-cf2, on machine type
1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

c
p

u
F

ra
c

src i-rate (Knps)

measured PE data
measured OP data

PE fitting function
recovered OP RF

Figure 19: TradeFilter OP RF re-
covered from the unfused PE in
vwap-cf3, on machine type 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

o
-r

a
te

 (
K

n
p

s
)

src i-rate (Knps)

vwap-TradeFilter
vwap-VWAPAgg

vwap-VWAPSum

Figure 20: I/O rate ratios for
VWAP OP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

c
p

u
F

ra
c

i-rate (Knps)

func1-cf1
func1-cf1-z10

func1-cf1-z40
func1-cf1-b

Figure 21: CPU utilization for the
PE in func1-cf1, on machine type
1 and in a multi-threaded environ-
ment

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

c
p

u
F

ra
c

i-rate (Knps)

recovered Regex1 OP RF
estimated PE RF

measured PE data

Figure 22: Estimated PE RF for
unfused Regex1 in func3-cf3, on
machine type 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

c
p

u
F

ra
c

src i-rate (Knps)

measured PE data
measured OP data

PE fitting function
recovered OP RF

Figure 23: VWAPAggreg OP RF

recovered from the unfused PE in
vwap-cf3, on machine type 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

c
p

u
F

ra
c

src i-rate (Knps)

recovered TradeFilter+VWAPAggreg OP RF
estimated PE RF
measured PE RF

Figure 24: Estimated PE RF for
fused TradeFilter and VWAPAg-
greg in vwap-cf5, on machine type
2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

c
p

u
F

ra
c

i-rate (Knps)

func1-cf1
func1-cf1-z20

func1-cf1-z60
func1-cf1-b

Figure 25: CPU utilization for the
PE in func1-cf1 on machine type 2,
in a multi-threaded environment.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

c
p

u
F

ra
c

i-rate (Knps)

recovered Regex2 OP RF
estimated PE RF

measured PE data

Figure 26: Estimated PE RF for
unfused Regex2 in func3-cf3, on
machine type 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

c
p

u
F

ra
c

src i-rate (Knps)

measured PE data
measured OP data

PE fitting function
recovered OP RF

Figure 27: VWAPSum OP RF re-
covered from the unfused PE in
vwap-cf3, on machine type 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

c
p

u
F

ra
c

src i-rate (Knps)

recovered VWAPAggreg+VWAPSum OP RF
estimated PE RF
measured PE RF

Figure 28: Estimated PE RF for
fused VWAPAggreg and VWAP-
Sum in vwap-cf6, on machine type
2

APPENDIX

A. SPADE APPLICATION SOURCE CODE

A.1 func3-cf4
[Application]
regex

[Typedefs]
typespace regex

[Nodepools]
nodepool pool[4] := ()

[Program]
stream Source1(dateTime:String)

:= Source()["file:SourceData.dat",nodelays,
csvformat,throttledRate=1000]{}

-> partition["pe0"], node(pool, 0)

stream Regex1(dateTime:StringList)
:= Functor(Source1)[]

{ regexMatch(dateTime, "([0-9]*)-([0-9]*)-([0-9]*) (.*)") }
-> partition["pe1"], node(pool, 1)

stream Regex2(date:String, time:String, seq:Long)
:= Functor(Regex1)[]

{ dateTime[3]+"-"+
select(toInteger(dateTime[2])-1,
"JAN", "FEB", "MAR", "APR", "MAY", "JUN",
"JUL", "AUG", "SEP", "OCT", "NOV", "DEC")+
"-"+dateTime[1], dateTime[4], seqNum()

}
-> partition["pe2"], node(pool, 2)

stream Regex3(schemaFor(Regex2))
:= Functor(Regex2)[]

{ date, regexReplace(time,"00","0",true), seq }
-> partition["pe3"], node(pool, 3)

stream DummySink(schemaFor(Regex3)) := Functor(Regex3)[false] {}
-> partition["pe0"], node(pool, 0)

A.2 aggs-cf1
[Application]
aggregator

[Typedefs]
typespace aggregator

[Nodepools]
nodepool pool[2] := ()

[Program]
vstream stockReportStream(

symbol : String,
dateTime : String,
closingPrice : Float,
volume : Integer)

vstream aggregatedData(
symbol : String,
recordCnt : Integer,
totalTuples : Integer,
minPrice : Float,
maxPrice : Float,
avgPrice : Float,
minVolume : Integer,
maxVolume : Integer)

stream Source1(schemaFor(stockReportStream))
:= Source()["file:stock_report.dat",

csvformat,throttledRate=1000] {1, 2, 3-4}
-> partition["pe0"], node(pool, 0)

stream Aggreg1 (schemaFor(aggregatedData))
:= Aggregate(Source1 <count(10),count(1), pergroup>)

[symbol]
{Any(symbol), Cnt(), MCnt(), Min(closingPrice), Max(closingPrice),
Avg(closingPrice), Min(volume), Max(volume)}

-> partition["pe1"], node(pool, 1)

stream Sink1(schemaFor(aggregatedData)) := Functor(Aggreg1)[false] {}
-> partition["pe0"], node(pool, 0)

A.3 aggt-cf1
[Application]
aggregator

[Typedefs]
typespace aggregator

[Nodepools]
nodepool pool[2] := ()

[Program]
vstream stockReportStream(

symbol : String,
dateTime : String,
closingPrice : Float,
volume : Integer)

vstream aggregatedData(
symbol : String,
recordCnt : Integer,
totalTuples : Integer,
minPrice : Float,
maxPrice : Float,
avgPrice : Float,
minVolume : Integer,
maxVolume : Integer)

stream Source1(schemaFor(stockReportStream))
:= Source()["file:stock_report.dat",
csvformat,throttledRate=1000] {1, 2, 3-4}

-> partition["pe0"], node(pool, 0)

stream Aggreg1 (schemaFor(aggregatedData))
:= Aggregate(Source1 <count(10), pergroup>) [symbol]
{Any(symbol), Cnt(), MCnt(), Min(closingPrice), Max(closingPrice),
Avg(closingPrice), Min(volume), Max(volume)}

-> partition["pe1"], node(pool, 1)

stream Sink1(schemaFor(aggregatedData)) := Functor(Aggreg1)[false] {}
-> partition["pe0"], node(pool, 0)

A.4 join-cf1.1
[Nodepools]
nodepool pool[2] := ()

[Program]

stream Source1(
bidderName : String,
productName : String,
bidPrice : Float)

:= Source()["file:auction_bid.dat", csvformat, throttledRate=10000]
{}
-> partition["pe0"], node(pool, 0)

stream Source2(
productName : String,
offerPrice : Float)

:= Source()["file:product_match.dat", csvformat, throttledRate=5000]
{}
-> partition["pe0"], node(pool, 0)

stream Join1(
bidderName : String,
productName : String,
bidPrice : Float,
matchingPrice: Float)

:= Join(Source1 <count(30)>; Source2 <count(15)>)
[$1.productName = $2.productName & $2.offerPrice <= $1.bidPrice]
{$1.bidderName, $2.productName, $1.bidPrice, $2.offerPrice}

-> partition["pe1"], node(pool, 1)

stream Sink1(
bidderName : String)

:= Functor(Join1) [false]{}
-> partition["pe0"], node(pool, 0)

A.5 vwap-cf3
[Application]
vwap

[Typedefs]
typespace vwap

[Nodepools]
nodepool pool[4] := ()

[Program]

stream TradeQuote(
ticker : String,
date : String,
time : String,
ttype : String,
price : Double,
volume : Double,
vwap : Double,
askprice : Double,
asksize : Double)

:= Source()["file:TradesAndQuotes.csv.long",
nodelays, csvformat, throttledRate=10000]

{1-3, 5, 7-9, 11, 15-16}
-> partition["pe0"], node(pool, 0)

stream TradeFilter (
date : StringList,
timestamp : Long,
ticker : String,
ttype : String,
price : Double,
volume : Double,
myvwap : Double,
vwap : Double)

:= Functor(TradeQuote)[ttype="Trade"]
{ regexMatch(date, "([0-9]*)-([A-Z]*)-([0-9]*)"),

timeStampToMicroseconds(date,time),
ticker, ttype, price, volume,
price*volume, vwap }

-> partition["pe2"], node(pool, 1)

stream VWAPAggregator (
ticker : String,
cnt : Integer,
minprice : Double,
maxprice : Double,
avgprice : Double,
svwap : Double,
svolume : Double)

:= Aggregate(TradeFilter < count(4), count(1) >)[ticker]
{ Any(ticker), Cnt(ticker), Min(price), Max(price), Avg(price),
Sum(myvwap), Sum(volume) }

-> partition["pe3"], node(pool, 2)

stream VWAPSum (
cminprice : Double,
cmaxprice : Double,
cavgprice : Double,
cvwap : Double)

:= Functor(VWAPAggregator)[true]
{ minprice*100.0d, maxprice*100.0d, avgprice*100.0d,

(svwap/svolume)*100.0d }
-> partition["pe4"], node(pool, 3)

stream DummySink (
cminprice : Double,
cmaxprice : Double,
cavgprice : Double,
cvwap : Double)

:= Functor(VWAPSum)[false]{}
-> partition["pe1"], node(pool, 0)

	1 Introduction
	2 Background
	2.1 PE Resource Functions
	2.2 Operator Fusion
	2.3 Operator and PE Profiling

	3 Methodology
	3.1 Experiment Setup
	3.2 PE Communication Overhead Learner(PCOL)
	3.3 OP RF Normalizer (ORN)
	3.3.1 Operator RFs
	3.3.2 SPADE OP-Level Profiling and Inaccuracy
	3.3.3 OP RF Recovery
	3.3.4 OP RF Recovery Examples

	3.4 PE RF Composer (PRC)
	3.5 Node Performance Learner (NPL) and PE RF Adjuster (PRA)
	3.6 Demonstration
	3.6.1 Regex Application
	3.6.2 VWAP Application

	4 Related Work
	5 Conclusion
	6 References
	A SPADE Application Source Code
	A.1 func3-cf4
	A.2 aggs-cf1
	A.3 aggt-cf1
	A.4 join-cf1.1
	A.5 vwap-cf3

