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ABSTRACT

In this paper we present our experience in building the Re-
search Compute Cloud (RC2), a cloud computing platform
for use by the worldwide IBM Research community. Within
four months of its official release RC2 has reached a com-
munity of 260 users spanning 18 countries, and serves on
average 200 active users and 800 active VM instances per
month. Besides offering a utility computing platform across
a heterogeneous pool of servers, RC2 aims at providing a liv-
ing lab for experimenting with new cloud technologies and
accelerating their transfer to IBM products. This paper de-
scribes our experience in designing and implementing a flex-
ible infrastructure to enable rapid integration of novel ideas
while preserving the overall stability and consumability of
the system.

Categories and Subject Descriptors

K.6.4 [Computing Milieux]: Management of Computing
and Information Systems—System Management

General Terms

Management
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1. INTRODUCTION

Cloud Computing has become synonymous with ways to
contain and manage I'T costs for enterprises. Cloud Comput-
ing is a paradigm where compute capacity is made available
to users in an on-demand fashion through a shared phys-
ical infrastructure. The expectation is that sharing hard-
ware, software, network resources, and management person-

nel would reduce per unit compute cost for enterprises. Sev-
eral vendors such as Amazon EC2, Google, and Rackspace
have been providing commercial Cloud offerings. Though
not enterprise-grade level yet, Cloud Computing has piqued
the interest of several large enterprises, which have started
deploying and experimenting with the technology for their
test and development environments. IBM Research has de-
veloped and deployed a Cloud Computing platform called
Research Compute Cloud (RC2) for use by the worldwide
IBM Research community. The goals of RC2 are to establish
an “innovation” platform for the IBM Research community
and to serve as a “living” lab for the research technologies
developed by the IBM Research community. The platform
has been purposefully architected to facilitate collaboration
among multiple research groups and encourage experimenta-
tion with cloud computing technologies. The platform also
serves as a showcase of new research technologies to IBM
customers and business partners.

The IT infrastructure of the IBM Research division re-
sembles that of a global enterprise having many different
lines of business spread across multiple geographies. IBM
Research is a geographically distributed organization, con-
sisting of several thousand research personnel spread across
8 research laboratories worldwide. Each IBM research lab
operates its own local data center that is used predominantly
for lab-specific research experiments. In addition, a por-
tion of the data center infrastructure is collectively used for
production workloads such as email, employee yellow pages,
wikis, CVS servers, LDAP servers, etc. Critical production
workloads can be replicated across different lab data centers
for purposes of failover. This infrastructure is a substantial
investment built over many years, and is very heterogeneous
in its make up. For instance, IBM’s POWER series systems
and System Z mainframes are mixed with many generations
of commodity x86 blade servers and IBM iDataplex systems.

The Research Compute Cloud (RC2) is an infrastructure-
as-a-service cloud built by leveraging the existing IT infras-
tructure of the IBM Research division. Its goals were two-
fold: (a) create a shared infrastructure for daily use by the
research population, and (b) provide a living lab for exper-
imenting with new cloud technologies. There were several
challenges that the team needed to address to meet the two
goals. The first challenge was to design and build a consis-
tent infrastructure-as-a-service interface over a heterogenous
infrastructure to meet the needs of the Research user com-



munity. The second challenge was to enable a true living
lab where the Research community could develop and test
new technology in the cloud. The architecture of RC2 had
to be flexible enough to enable experimentation with dif-
ferent cloud technologies at the management, platform and
application layers. All this had to be achieved without any
disruptions to the stability and consumability of the overall
infrastructure.

In this paper, we present our experience in building RC2.
In Section 2, we present the architecture of RC2 to meet the
two design goals. Next, we discuss the implementation of
RC2 in Section 3. Section 4 presents our experience specif-
ically in the context of pluggability and extensibility of the
environment. We conclude the paper by discussing related
work in Section 5 and future work in Section 6.

2. ARCHITECTURE

As mentioned in Section 1, RC2 aims to provide a research
platform where exploratory technologies can be rapidly in-
troduced and evaluated with minimal disruption on the op-
eration of the cloud. This requirement calls for a componen-
tized, extensible cloud architecture.

Figure 1 shows the architecture of RC2 which consists
of a cloud dispatcher that presents an external REST API
to users and a collection of managers that provide specific
services. For each manager, the dispatcher contains a proxy
whose role is to marshal requests to and responses from the
manager itself.

This architecture enables a loose coupling between the
managers. Any manager only knows its corresponding proxy;
there is no direct communication between managers. Dif-
ferent groups within IBM Research can work on different
managers without anyone mandating how their code should
integrate. Groups only need to agree on the APIs that the
manager proxies will expose within the dispatcher.

The dispatcher is driven by an extensible dispatch table
that maps request types to manager proxies. When a re-
quest enters the dispatcher (whether from an external source
like an RC2 user or an internal source like one of the man-
agers), the dispatcher looks up the request’s signature and
dispatches it to the manager proxy responsible for that type
of request. A new manager can be added simply by adding
its request type and mapping information to the table.

Another benefit of this design is that, because all requests
pass through the dispatcher, features such as admission con-
trol, logging and monitoring can be implemented easily in
the dispatcher. A potential drawback is that the dispatcher
becomes a bottleneck, but this problem can be solved by
distributing requests among multiple dispatcher instances.

Figure 1 shows the managers that currently exist in RC2.
The user manager authenticates users. The image manager
catalogs, accesses, and maintains virtual-machine images.
The instance manager creates, deploys, and manipulates
runnable instances of the image manager’s images. The se-
curity manager sets up and configures the network isolation
of cloud tenants’ security domains for communication both
outside the cloud and with other security domains inside the
cloud.

Distribution of functionality implies distribution of the
system’s state among individual components. This distribu-
tion makes it difficult to obtain a complete and consistent
view of the system state during long-running requests (for
example, instance creation), which complicates failure detec-

tion and recovery. Our architecture tackles this problem by
requiring each manager to maintain and communicate the
states of the objects it manages. For example, both images
and instances have associated states, which can be queried
by sending a “describe image” or “describe instance” request
to the appropriate manager. Long-running requests are pro-
cessed in two stages. The first stage synchronously returns
an object that represents the request’s result, and the second
stage asynchronously completes the time-consuming remain-
der of the request and updates the object’s state accordingly.
Request completion (or failure) can be determined by query-
ing the object’s state.

Another challenge was to design a set of infrastructure-
as-a-service APIs that could be implemented consistently
across a heterogeneous pool of servers. For example, con-
sider two different hosts: an IBM X-Series blade server and
an IBM P-Series blade server. The former runs a software
virtual-machine monitor (in RC2, Xen or KVM) on com-
modity x86 hardware, while the latter runs a firmware hy-
pervisor (PHYP), on IBM Power hardware.

These two hosts also support different operating systems,
different image formats, and different mechanisms for creat-
ing instances from images. For example, a Linux image for
Xen or KVM is a collection of disk images, while AIX im-
ages for PHYP are collections of filesystem backups in the
“mksysb” format. To create a Xen or KVM instance, one
copies the disk images to the host and starts an instance
with disks bound to those images. By contrast, RC2 creates
PHYP instances through a central server called the Network
Installation Manager (NIM). NIM creates filesystems for the
instance, with files restored from the mksysb backups.

Our design supports multiple platforms by requiring that
requests avoid platform-specific parameters. For example,
the identifiers of Linux images for Xen and KVM belong
to the same namespace as the identifiers of AIX images for
PHYP. Similarly, identifiers of Xen, KVM, and PHYP in-
stances all belong to a common namespace. Requests that
have such identifiers as parameters (for example, the re-
quest that creates an instance) do not require the requester
to know a platform type. This approach minimizes the
complexity of supporting multiple platforms, as only the
instance manager, which receives requests for creating in-
stances, must concern itself with differences among plat-
forms.

3. IMPLEMENTATION

The RC2 hardware infrastructure is comprised of manage-
ment servers, the host server pool, and the storage subsys-
tem. The management servers host the services that manage
RC2, provision and capture of virtual machines, and http
access for users. The host pool houses the provisioned in-
stances and consists of a collection of IBM iDataplex blades
varing in size from 32GB-4way to 128 GB-8way systems. The
storage pool consists of a SAN subsystem that is shared
across both the host servers and the management servers.

3.1 Dispatcher

The RC2 cloud dispatcher is composed of three layers:
a REST servlet, the cloud manager, and several manager
proxies. The REST servlet provides an HTTP-based REST
interface to cloud operations. The interface can be used by
programs as well as through a web-based graphical user in-
terface. The manager proxies decouple interactions between
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Figure 1: RC2 Architecture

user and cloud dispatcher and communication between the
dispatcher and managers. This separation promotes flexi-
bility of managers while allowing uniform cloud interfaces
to users. Although, in the current implementation, all man-
agers are accessed through REST APIs, they can be easily
replaced with implementations that use different communi-
cation mechanisms such as JMS.

The cloud manager sits between the REST servlet and
the manager proxies, providing admission control and rate
control using dispatch queues and request-handler thread-
pools. There are currently two types of dispatch queues:
synchronous request queues and asynchronous request queues.
The former handles short-lived cloud requests such as look-
ing up image information and listing an owner’s instances
whereas the latter handles long-lived cloud requests such as
creating an instance or capturing an image. The thread-
pool size of the synchronous request queue is typically set
to a large value to allow more requests to be processed con-
currently while that of the asynchronous request queue is
limited to a number that matches the rate at which the
back-end manager can process requests. The configuration
of dispatch queues such as queue length and threadpool size
can be changed at runtime through an administrative REST
interface, which is designed to allow feedback-based rate con-
trol in the future.

3.2 Instance Manager

The instance manager keeps track of the cloud’s virtual-
machine instances. An instance-manager implementation
must provide several basic services: “start instance”, which
adds a running instance to the cloud; “stop instance”, which
stops an instance; “delete instance”, which removes an in-

stance from the cloud; and a query service for listing in-
stances and their state. Only the implementation of “start
instance” is described here because it is the least straight-
forward.

Starting an instance involves four tasks: selecting a tar-
get host, creating and configuring an instance on that host
(which includes choosing a security domain), retrieving and
configuring the virtual-machine image, and finally starting
the instance. Each task is implemented by plugins, so as to
support a variety of host and image types.

The instance manager selects a host with the proper re-
sources to run the user-requested instance. The current
implementation uses a best-fit algorithm [7] that considers
memory, cpu, disk, network connectivity, and host-specific
requirements such as the host’s architecture and virtual-
machine monitor. Selecting the host also binds some in-
stance parameters, including the IP address of the new in-
stance.

The instance manager retrieves the image from the image
manager and configures it for execution. Image configura-
tion sets both user-specific parameters, such as ssh keys, and
instance-specific parameters, such as the IP address. Some
parameters are set by modifying the retrieved image before
startup while others are set at startup-time by embedding
an “activation engine” [3] in the image that runs the first
time the instance boots. The instance-specific parameters
are provided through a virtual floppy drive. The activation
engine is designed for extensibility and can configure oper-
ating system, middleware, and application parameters.

Next, the instance manager instructs the chosen host to
allocate a new instance. The details are host-specific; the
current implementation includes plugins for AIX hosts and



for x86 hosts based on Xen and KVM.

Finally, the instance manager starts the instance. The
user is notified and a description of the new instance is sent
to a database for compliance tracking.

3.3 Image Manager

The image manager maintains a library of images. The
image manager cooperates with the user manager to con-
trol access to images and with the instance manager to cre-
ate runnable instances of images and to capture images of
runnable instances as images.

Each image has a unique image identifier, which names the
image for access-control purposes. The library stores one or
more versions of each image and each version has a version
identifier, which names both data and metadata. The data
consists of a set of files, including disk images and other files
required to create a runnable instance. The metadata is a
set of version attributes, such as a name, a description, and
the identifier of the version’s parent.

Version data is immutable. Therefore, if a disk image is
modified by a running instance, it can be captured back to
the library only as a new version, whose parent will be the
version from which the instance was created. Some version
attributes are mutable, such as the description, while others
are immutable, such as the parent identifier. The access-
control information associated with an image is mutable.

The most important image manager services are “check-
out” and “checkin”. Given a version or image identifier and
a target URL, checkout creates a runnable instance from
a version; if an image identifier is supplied, the most re-
cent version of that image will be checked out. The target
URL identifies a directory on the SAN where the instance
manager expects to find the runnable instance and to which
the image manager copies the version’s data files. The im-
age manager also places control files in the directory that,
among other things, identify the source version.

Given a source URL, which identifies a directory on the
SAN that was populated by a checkout, checkin creates a
new version. Note that the directory’s data files, including
its disk images, may have been modified by instance execu-
tion. There are two kinds of checkin calls: the first creates
a new version of the original image while the second creates
the first version of a new image. Currently, only the second
kind is exposed to RC2 users.

Both checkout and checkin are asynchronous calls. The
instance manager invokes these two interfaces and tests for
completion by polling a status file, which the image man-
ager updates on completion, or by supplying the URL of a
callback, which the image manager invokes on completion.

The image manager controls access to images in the li-
brary. Each image has an owner, a list of users and groups
with checkout access, and a list of users and groups with
both checkout and checkin access. Only the owner may up-
date the lists. Each image manager call includes an owner
and a list of groups to which the owner belongs, which the
manager uses to verify that the caller has the required access
for the call. The image manager assumes that a call’s owner
and group list is correct: the user manager is responsible for
user authentication and the cloud dispatcher ensures that
calls do not forge user or group names.

The image manager provides other services besides checkin
and checkout. These include calls that list, describe, and
delete images and versions, plus calls that update access-

control lists. Deleted versions retain their metadata but lose
their data files.

The image manager uses a file-granularity, content-addressable

store (CAS) to maintain the image content [9]. The CAS
saves space by guaranteeing that the same item is never
stored twice. It also keeps the reference information neces-
sary to garbage collect deleted image data.

3.4 Security Manager

RC2 has been architected with several mechanisms to pro-
vide security in a cloud environment. In particular, the secu-
rity manager provides support for isolation between different
cloud user’s workloads in a heterogeneous, multi-tenant en-
vironment. The isolation model follows our established con-
cepts of Trusted Virtual Domains (T'VDs) [2] and a Trusted
Virtual Data Center (TVDc) [10]. A TVD is a grouping of
(one or more) VMs belonging to the same user that share a
trust relation and common rules for communicating among
themselves as well as with the outside world.

The security manager exports a broad API through the
cloud dispatcher and provides extensive functionality for life-
cycle management of security domains and their runtime
configuration.

The security manager is currently built on top of modifica-
tions to the Xen daemon for the establishment and runtime
configuration of firewall rules on virtual machines’ interfaces
in Domain-0. Our architecture makes use of the fact that
in the Xen hypervisor all virtual machines’ network packets
pass through the management virtual machine (Domain-0)
and firewall rules can be applied on the network interface
backends that each VM has in that domain. This allows
us to filter network traffic originating from and destined to
individual virtual machines.

The extensions to the Xen daemon provide functionality
for the application of layer 2 and layer 3 network traffic filter-
ing rules using Linux’s ebtables and iptables support. While
a VM is running, its layer 3 network filtering rules can be
changed to reflect a user’s new configuration choices for the
security domain a virtual machine is associated with. We
support a similar network traffic filtering architecture with
the Qemu/KVM hypervisor where we implemented exten-
sions to the libvirt management software providing equiva-
lent functionality as the extensions to the Xen daemon.

Functionality that the security manager provides for sup-
port of security domain life cycle management involves the
following:

e Creation and destruction of security domains.

e Renaming and configuration of parameters of security
domains.

Retrieval of security domain configuration data.

Modifications of security domains’ network traffic rules.

Establishment of collaborations between security do-
mains of the same or different cloud tenants.

Altogether, the security manager adds 17 new commands
to the dispatcher API.

The realization of the security domains concept drove ex-
tensions to several other existing components in the archi-
tecture. Extensions were implemented in the cloud dis-
patcher layer to make the new APIs visible to other manage-



ment components as well as external entities. The instance-
manager request that creates a virtual machine instance was
extended with optional parameters describing the security
domain into which a virtual machine is to be deployed. A
new internal request was added to the instance manager for
deployment of filtering rules associated with VM instances.
Several previously existing workflows, which are part of the
instance manager, were modified to notify the security man-
ager of VMg’ life cycle events as well as to perform configu-
ration in the Xen management virtual machine (Domain-0).

3.5 Chargeback

We implemented a simple allocation-based pricing model
to experiment with users’ behavior in resource consump-
tion under different pricing models. Users are charged for
compute capacity based on a billable unit of “per instance
hour consumed”. This begins with instance creation and
ends when an instance is destroyed. At this time, the same
charges are incurred whether the instance is active (that
is, running) or inactive (stopped). Rates differ by system
type (XEN, PHYP, and KVM) and configuration (small,
medium, large, and extra large). In addition, there are sep-
arate charges for end-user initiated transactions that lead
to state changes of their instances (Initialize, Start, Stop,
Reboot, Destroy). Charges are calculated on an hourly ba-
sis and are integrated with IBM’s existing internal billing
systems.

3.6 User Manager

The user manager authenticates users by invoking services
available in the IBM infrastructure and associating authen-
tication with sessions. It also manages user-specific informa-
tion, such as ssh public keys, that can be queried by other
managers during provisioning.

4. EXPERIENCE

RC2 was released in a Beta version in early April, 2009,
and officially released to IBM Research world-wide in early
September, 2009. In this section, we present global usage
statistics of RC2 and our experiences using RC2 as a research
platform to experiment with new cloud technologies.

4.1 RC2 Usage

Within three months of its official production release, RC2
has served 260 distinct users spanning 18 countries. The im-
age library has accumulated a collection of 540 images, all
of which derive from just three root images that were im-
ported into the libary at the beginning. Figure 2 shows how
the number of images in the library grew starting about a
week after the Beta release. The library grew modestly dur-
ing the Beta testing period but has been experiencing faster
growth since the official release in early September. The
number of instances has grown at a similar rate; Figure 3
shows this growth since the production release.

The average number of active instances per month is also
growing, reaching 800 in the most recent month. This in-
cludes 84 instances of the System P type, which has been
available for only a month. On average there are about
200 distinct active users per month, who consume a total of
300,000 virtual-machine hours.

RC2 was first released free of charge. When charges for
instance ownership were introduced in early October, it had
a dramatic impact on user behavior, as shown in Figure 4.
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There was a significant drop in the number of instances right
after users received their first statements, leading to a drop
in memory utilization. Interestingly, the number quickly
bounced back, and memory utilization again approached
pre-chargeback levels. We consider this to be a strong en-
dorsement from our user community about the value of the
service provided by RC2.

4.2 RC2 as a Living Lab

In addition to its role as a production-quality IT offer-
ing for IBM’s research organization, RC2 also serves as an
experimental testbed for innovative cloud management tech-
nologies. To this end, we show how RC2’s architectural em-
phasis on extensiblity and pluggability has helped facilitate
these experimental activities.

The initial version of RC2 consisted of three managers:
the image manager, the instance manager, and the user man-
ager. The security manager was added to provide stronger
isolation between multiple tenants’ workloads in the cloud.
While the security manager presented significant function-
ality enhancements, the core RC2 architecture remained es-
sentially the same given that it was designed to be extensible
from the start and most changes were contained at the cloud
dispatcher.
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The pluggable cloud dispatcher architecture enabled us to
deploy an image manager based on the Network File System
(NFS) for Research sites that lack a SAN storage environ-
ment. For these sites, we reimplemented the image man-
ager interfaces using NFS as the backing store. As with the
SAN;, the file system is mounted on each hypervisor node
so that images are locally accessible. The instance manager
required no change as the NFS-based image manager sup-
ports the same set of requests as does the SAN-based image
manager. The flexibility of RC2 allowed researchers to ex-
periment with alternate implementations without requiring
changes to other components.

S. RELATED WORK

Current cloud computing offerings focus on building an
optimized, homogeneous environment for delivery of com-
pute services to customers. Amazon’s EC2 [1] and IBM’s
Developer Cloud [4] are examples of such offerings. By con-
trast, our work focuses on heterogeneity and providing a
pluggable and extensible framework to serve as a living lab
for cloud technologies. The open source project Eucalyptus
[8] provides capabilities similar to those of Amazon’s EC2
and could be used in a living lab, as developers can modify
and extend the source. However, the project lacks support
for heterogeneous platforms and a pluggable architecture.

6. CONCLUSION AND FUTURE WORK

The RC2 project succeeded in achieving its two main
goals: (1) it delivers high-quality cloud computing services
for the IBM Research community and (2) it provides an ef-
fective framework for integration of novel ideas into a real
cloud platform, rapidly enriching the evaluation of new tech-
nologies by offering meaningful, realistic user experience and
usage/performance data. Many of these new technologies
were adopted by newly announced IBM products in 2009
such as Websphere Cloudburst Appliance [6] and VM Con-
trol [5].

The current RC2 system is implemented only in the New
York area data center. However, the RC2 services are avail-
able to all of the worldwide IBM Research Labs. In 2010,

we plan to create RC2 zones in at least two other labs on
two different continents.

The current RC2 production system has numerous moni-
toring probes installed at different points in the infrastruc-
ture and in the management middleware that runs the data
center. These probes provide a rich set of real-time mon-
itoring data, which is itself available as a service provided
through a collection of REST APIs. We plan to use this fea-
ture to provide a simulated data center environment over the
RC2 production environment, for experimental purposes.
The simulated environment will behave as if it is the ac-
tual production environment underneath, by tapping into
the real-time monitoring data provided by the probes.
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