
RC24949 (W1002-054) February 19, 2010
Computer Science

IBM Research Report

Are Flexible Modeling Tools Applicable to
Software Design Discussions?

Harold Ossher1, Bonnie John1,2, Michael Desmond1, Rachel Bellamy1

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

2Carnegie-Mellon University
Human-Computer Interaction Institute

5000 Forbes Avenue
Pittsburgh, PA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Are Flexible Modeling Tools applicable to Software
Design Discussions?

Harold Ossher1, Bonnie John1,2, Michael Desmond1, Rachel Bellamy1

1IBM T.J Watson Research Center
19 Skyline Drive

Hawthorne, New York 10532

2Carnegie-Mellon University

Human-Computer Interaction Institute
 5000 Forbes Avenue, Pittsburgh, PA

Abstract

We have been developing an approach to modeling which we call
flexible modeling. Our aim is to support the work of pre-
requirements analysts whose activities are characterized by in-
formal use of representations and evolution of both representa-
tions and concepts. However, we believe that the features of flexi-
ble modeling tools have more general applicability to tasks in-
volving conceptual development. Furthermore we believe that
design is such a task. This paper investigates whether the charac-
teristics that make flexible modeling useful and usable for the
work of pre-requirements analysis might also make it a good
approach for supporting the kinds of discussion that take place
around a whiteboard in the early phases of a software design
project.

Keywords-flexible modeling; design discussions; concerns

I. INTRODUCTION
We have been developing an approach to modeling called

flexible modeling [3][4]. Flexible modeling developed out of
our observations that business users working on pre-
requirements analysis, prefer to use office tools such as Micro-
soft Word, Powerpoint and Excel, rather than modeling tools.
Office tools are usually used for many good reasons. However,
these tools are semantics free, are limited in organizing infor-
mation, and do not have an underlying domain model. Consis-
tency can only be maintained manually, and even small
changes can take a lot of effort to propagate. Practitioners re-
ported that entire days are often spent on the mechanics of
maintaining consistency, which is not only time-consuming,
but also disrupts flow. Migrating results from these tools to
downstream modeling tools, which are founded on underlying
domain models, is also a manual process, and traceability is
usually lost.

To support such users, we developed flexible modeling
tools that blend the advantages of office and modeling tools. A
flexible modeling tool would allow users to work freely and
easily with visual elements, yet be able to attribute semantics to
visual characteristics when necessary, enabling automatic con-
struction and maintenance of an underlying model and man-
agement of consistency. Given suitable domain-specific defini-
tions, the tool provides guidance and checking, but without
requiring strict conformance to a rigid metamodel. Users can

thus move smoothly between informal exploration and model-
ing with varying degrees of formality and precision.

Flexible modeling tools support this style of activity by
providing specific features:

• A visual layer providing multiple views, in which the
user can work with much of the freedom of office
tools.

• An underlying model consisting of related visual and
semantic sub-models, enabling visual cues to be given
semantics.

• A forgiving approach to domain-specific guidance,
with structure definitions specifying structural con-
straints used to check for structural violations and pro-
vide assistance. When provided as a package, they ef-
fectively define a meta-model. Models that violate
them can, however, be created, manipulated and saved.

• Refactoring support to allow convenient reorganiza-
tion.

• A presentation layer supporting the synthesis of pres-
entations from working views.

We believe that the style of activity flexible modeling tools
aim to support—moving between informal exploration and
more formal modeling—is characteristic of many kinds of
early design activities. This paper investigates whether it is also
characteristic of software design discussions that take place at a
whiteboard. Our investigation consists of an informal analysis
of three software design discussions that took place using a
whiteboard. Our analysis focuses on how representations and
the whiteboard is used during the identification and develop-
ment of concerns. This focus limits the scope of the analysis
such that obvious issues such as running out of space on the
whiteboard are not discussed. Our consideration of flexible
modeling is not concerned with the detailed issues of how to
design a usable flexible modeling whiteboard tool, but focuses
on whether flexible modeling would be a useful and suitable
approach.

The structure of this paper is as follows. First we briefly de-
scribe BITKit, an example of a flexible modeling tool. Then we
talk about the analysis methodology we used, next we discuss
what we observed about the design process. We conclude by
discussing implications of our findings for the application of
flexible modeling tool features to software design discussions.

This research was sponsored in part by the National Science Foundation under
grant CCF-0845840 .

II. BITKIT: AN EXAMPLE OF A FLEXIBLE MODELING TOOL
We describe BITKit, to illustrate how flexible modeling can

be embodied in a particular tool. This is an example of flexible
modeling concepts, not of a flexible modeling tool for an elec-
tronic whiteboard; differences in the affordances of white-
boards would demand a very different user interface. BITKit
was designed to support the activities of pre-requirements ana-
lysts: gathering information, organizing it to gain insight, envi-
sioning alternative possible futures, and presenting insights and
recommendations to stakeholders. The storyboard frames be-
low describe an hypothetical business user uses BITKit to ex-
plore communication issues within her organization. Her in-
sights will later be used to help formulate requirements for new
collaboration tools for the organization.

Creating views, just like office tools—In this typical BITKit work-
space our user is creating a diagram just as she would using a typical
diagramming tool. She is using the diagram to represent data about
communication patterns. She collected this data from her group mem-
bers using an informal survey. Just like in typical diagramming tools,
she can add items to the diagram from a palette, and label them. She
has added items representing all the people who responded to the sur-
vey and all the people they said they talked to. She labeled these items
with the people’s names. She has also added lines between the people
items to show who talks to whom.

Emergent structure—By tagging items in the diagram, our user can
readily start to add structure. So when she realizes she needs to dis-
tinguish between people who answered the survey and those who
didn’t, she does so by creating a ‘responder’ tag and a ‘non-
responder’ tag. When she also realizes that she wants to distinguish
the managers from the employees, she does so by creating two addi-
tional tags, ‘Employee’ and ‘Manager’. To structure her tags further,
she creates a tag group called ‘Role’ and places the ‘Employee’ and
‘Manager’ tags into this group. In the previous screenshot we see her
creating the ‘Role’ tag group and its tags in a tag wizard, which she
accessed after first opening the tags view.

Style mapping to associate visual appearance with model struc-
ture—Tags and visual styles can be associated with each other. One
way this is done is using the legend on the left side of the diagram,
where a user can add styling elements such as color and line width,
and then select the tag to associate with that style. Here we can see
that our user has associated colors with the ‘Manager’ and ‘Employee’
tags, so that manager items and employee items are visually distinct in
her diagram.

Multiple views—To get a list of just those people who responded,
for example, our user opens a list view and uses the Venn Diagram
visual query to view just those items that are tagged with ‘responder’.
She also opens a table view and sets the columns to show the tags in
the tag group ‘Role’. This allows her to tabulate which people are
employees and which are managers

Tag wizard

Tags View

Table view

Table view

List view
with visual

query

Table view

Using tags and tag groups, she introduces another semantic distinction,
the office location; which she shows as rows in her table. Using the
drag and drop features of the table, she drags each of the people into
the row that corresponds to their office location. Without having to
think about the underlying model, but just by manipulating the table
structure, she has effectively categorized the people items in the un-
derlying model.

The table does not differentiate people based on whether they re-
sponded or not. Because her list is also a view on the same underlying
model, she can now modify the query, as shown above, to explore the
office locations of the people who responded to her survey.

In this paper we explore whether these same underlying
flexible modeling approach embodied within BITKit (not the
same UI) might be appropriate to support the activities of soft-
ware designers as they converse around a whiteboard.

III. METHODOLOGY
We decided to analyzed the design sessions with respect to

concerns because in software engineering concerns capture the
essential concepts of a design. Identifying concerns is thus a
process of conceptual development. The business users we
designed flexible modeling tools to support were similarly en-
gaged in identifying and developing concepts. By focusing our
analysis on this same process we hope to identify opportunities
for flexible modeling to support design conversations and also
reveal potential mismatches.

Concerns are the primary motivation for organizing and de-
composing software into manageable and comprehensible
parts. Many kinds of concerns may be relevant to different de-
velopers in different roles, or at different stages of the software
lifecycle. For example, the prevalent concern in object-oriented
programming is the class, which encapsulates data concerns.
Appropriate separation of concerns has been hypothesized to
reduce software complexity, improve comprehensibility, pro-
mote traceability, facilitate reuse, non-invasive adaptation, cus-
tomization, and evolution, and simplify component integration.

Though all software engineers are familiar with separation
of concerns, definitions of the term “concern” are hard to come
by and are often inadequate. Following Sutton and Rouvellou
[9], we use the IEEE definition of concerns as “... those inter-
ests which pertain to the system's development, its operation or
any other aspects that are critical or otherwise important to one

or more stakeholders” [2]. In studying concerns in the design
sessions, we will therefore be studying such “interests,” includ-
ing key concepts in the domain (e.g., road), user interface ele-
ments (e.g., visual map), model elements (e.g., Road class),
quality of service issues (e.g., number of intersections sup-
ported), and so on.

In the next section, we describe how we produced an initial
concern model from the design prompt and encoded the design
sessions using the concern model.

IV. CONCERN MODEL AND ENCODING
Many concerns that must be addressed by developers arise

during requirements analysis; others arise as development pro-
ceeds. The design prompt provided to all three design teams
takes the place of a requirements document in this context, and
was therefore treated as the initial source of concerns. The de-
sign sessions both dealt with concerns raised in the design
prompt and introduced new ones.

In this section, we describe the concern model and how it
was produced initially from the design prompt, and the encod-
ing of the design sessions and how the concern model evolved
during this process.

A. Producing an Initial Concern Model
We began by producing an initial concern model [6][9]

from the design prompt. One author analyzed the prompt
phrase by phrase, using both the language of the prompt and
knowledge of the domain to identify concerns to produce a
draft. As subsequent discussion will reveal, there turned out to
be considerable subtlety involved in this process, despite the
simplicity of the design prompt.

Initially, a simple list of concerns was produced, mapping
closely to the phrases in the design prompt. For example, con-
sider the first phrase describing requirements: “Students must
be able to create a visual map of an area.” Taken as a whole,
this phrase expresses a concern that the user interface provide
users with the ability to create a visual map. The sub-phrase
“visual map” expresses a concern that there be a visual map.
Consideration of the domain indicates that the visual map de-
picts a network of roads and intersections. We thus ended up
with five concerns in our first version of the concern model
derived from this single phrase:

1. Road
2. Intersection
3. Network of roads and intersections
4. Visual map
5. Creation of visual map

It quickly became clear that concerns pertain to different
domains. This is illustrated by the example above. The first
three concerns pertain to the physical domain: roads and inter-
sections in the real world, knowledge of which allowed every-
one to understand the problem. The last two concerns are in the
user interface domain, since they involve the visual map pre-
sented to the user. The fourth involves the presentation to the
user whereas the fifth involves giving control to the user.

After initial discussion and refinement of the draft, two of
the authors examined short portions of two of the session tran-
scripts to perform calibration encoding, associating concerns
with utterances as described below. It soon became clear that
the list of concerns was becoming too clumsy. The designers
often dealt with the same concept across different domains. The
last three concerns shown earlier are of this form: they all ad-
dress the concept of a map (or the underlying network of roads
and intersections), but in three domains: physical, user interface
presentation and user interface control. The design prompt was
short enough that the list based on it was manageable, but once
we began examining the transcripts, the list started becoming
the unwieldy cross-product of the set of concepts and the set of
domains.

We therefore decided to restructure the concern model to
reflect this two-dimensional nature directly. Together, we went
through the concerns we had already identified, and separated
them into (concept, domain) pairs. We then discussed the con-
cepts to determine which were subsumed by others, and pared
the list accordingly. In the end, we reduced the initial concern
model to 15 concepts and 5 domains, shown in Table 1 as
originating from the design prompt. A concern henceforth
means a (concept, domain) pair.

Concepts Domains
 avoid crash produc-

ing combinations
 intersection
 lane
 lane sensors
 map
 protected left-hand

turn
 road
 road length
 traffic density
 traffic flow
 traffic flow simula-

tion
 traffic light
 traffic light behavior
 ui layout
 ui modes

 physical domain
 model
 ui control
 ui presentation
 quality of service

TABLE I. ORIGINAL CONCEPT AND DOMAIN CONCERN CODES

B. Encoding the Design Sessions
We encoded the design sessions for three kinds of informa-

tion: concerns being dealt with, activities being performed by
the designers, and types of representations drawn by them on
the whiteboard. The transcripts were used to encode the con-
cerns, with the videos themselves consulted when necessary to
resolve uncertainty. The videos were used directly to encode
the activities and representations. After describing these in the
next three sections, we discuss issues of consistency and reli-
ability.

1) Concern Encoding
With the initial concern model in hand, three of the authors

each encoded a transcript of a design session (Adobe, Amber-

point or anonymous). The encoding involved associating one or
more concerns with each utterance.

Two different granularity issues arose immediately. The
transcripts provided are broken up into fairly large chunks,
divided only by speaker transitions, and time boundaries were
provided only at this level of granularity. A single such chunk
often deals with multiple concerns. However, for this explora-
tory study we simply mapped each chunk to all applicable con-
cerns. This resulted in some potentially-interesting detail being
lost, such as the sequence in which the concerns were men-
tioned and which speaker activities accompanied which of the
concerns. It is worth noting that, even in the case of fine-
grained utterances, it is sometimes necessary to associate mul-
tiple concerns with a single utterance, as in the case of the de-
sign prompt phrase discussed earlier.

The second granularity issue is granularity of concepts, and
hence concerns. For example, consider the following statement
about traffic lights in the anonymous session: “So each one’s
got a state either red, yellow, green.” Traffic light state makes
sense as a concept, introduced by this statement. However, the
statement is also covered by the more general concept traffic
light behavior. In this and similar situations, we chose to use
the existing, coarser-grained concept, and only to introduce
new concepts in cases that did not seem to be covered at all by
concepts identified previously. This made the encoding task
more manageable, but at the cost of losing information. A fine-
grained approach, in which the traffic light state concept would
be introduced and modeled as contributing to [9] [7]traffic light
behavior would lead to a more precise concern model, and
would be of benefit in a study of concern lifecycle: it would be
interesting to examine what fine-grained concerns are raised in
the course of discussing a coarse-grained concern, and whether
and how they become important or ignored. This is left for fu-
ture work.

 The other author encoded the summary presentations given
by the groups at the end of each session, to determine what
concerns were surfaced during these presentations.

Encodings of concerns were performed using spreadsheets,
with one utterance per row. Times, speakers and utterance text
were imported from the transcripts. The end time of an utter-
ance was defined as the start time of the next utterance, an ap-
proximation that allows us to study durations, but again looses
detail about silences. Additional pairs of columns were used as
needed to record concerns as (concept, domain) pairs. This was
done with reference to lists of concepts and domains – the con-
cern model – maintained in a shared GoogleDocs document. In
two cases the document was updated with new concepts and,
very occasionally, domains, so that only concepts and domains
in the concern model were used as codes; in the third case, a
separate list of new concepts was maintained.

2) Activity Coding
We wished to capture the activities performed by designers

as they were working at the whiteboard, to enable us to corre-
late these with concerns being discussed. Table 2 shows the
activity codes we used. These were developed incrementally
during the encoding process, and shared using the GoogleDocs
document mentioned above.

To perform this encoding, the design session videos were
imported into ELAN [http://www.lat-mpi.eu/tools/tools/elan], a
video annotation tool. The videos were viewed in ELAN, and
the activities coded. Unlike the coding of the transcript, the
coding of the activities was not restricted to the timings of ut-
terances, but could use begin and end time as needed.

The activity domains were encoded based on what was rep-
resented on the whiteboard, whereas the concern domains were
encoded based on what was said, though actions and represen-
tations were consulted to resolve uncertainty. Also, a single UI
domain was used for activities, rather than trying to distinguish
presentation from control, since this could generally not be
done based on what appeared on the whiteboard.

3) Limitations
We attempted to ensure that codes were being used consis-

tently. We had several face-to-face discussions early on, dis-
cussing and refining the initial concern model. We then per-
formed calibration encoding on small portions of the session
transcripts, with face-to-face discussions of the results, leading
to adjustments. As encoding proceeded, we had occasional
discussions about what we were finding. We used the Google-
Docs document to share the evolving sets of codes as they
grew, though in the case of the Adobe session, a separate list of
new concepts was made. We used spreadsheet facilities (data
validation or auto-complete) and post-processing as an aid to
ensuring that only codes from the lists were used.

As noted above, however, concern encoding proved subtle,
with most cases open to interpretation. The primary difficulties
were with concepts, especially deciding whether an utterance
really introduced a new concept or should be associated with an
existing, coarser-grained concept. There were also cases, how-
ever, where the domain encoding was unclear. In particular, it
was sometimes difficult to tell whether the designers were talk-
ing about the physical domain or the model. We consulted the
videos themselves to try to resolve such issues, rather than rely-
ing just on the transcripts, but even so some cases were unclear.
Similar issues of interpretation were also discovered for activ-
ity encoding.

The encoding that we did would really be just the first step
of a full study. We would need considerable further discussion
to produce an encoding manual, with definitive lists of codes
and explanations of how to use them, how to handle granularity
issues and simultaneous activities, and so on. This coding man-
ual would then be used to encode a larger body of data, with
further discussion and enhancement if too many cases were
found not to be properly covered by the manual. Given the data

set and timeframe of this exploratory study, such a full ap-
proach was not possible. We did have an agreed-upon initial
concern model from the design prompt, but did not have time
to iterate sufficiently during the encoding to have well-defined
additional concerns. The result is that we do not have inter-
rater reliability, and, since our understanding evolved consid-
erably during the encoding process, there are probably some
inconsistencies within the encoding done by each of us. Any
patterns, similarities or contrasts observed in the visualizations
should, therefore, be treated as suggestive only, pointing to
areas that might be worthy of more rigorous study.

V. VISUALIZATIONS
The approach we took to exploring the coding we had done

of the design transcripts was to create visualizations to help us
see patterns in the data. We used several tools to create these
visualizations. Our initial visualizations were done using
ManyEyes [http://manyeyes.alphaworks.ibm.com/manyeyes/],
which provides a variety of interactive visualizations. In some
cases, we found that ManyEyes does not currently provide the
visualizations we needed. The primary example was timelines,
showing the sequences of concerns and related activities and
representations. To visualize these, we used MacShapa
[http://www.itee.uq.edu.au/~macshapa/].

With these visualizations in hand, we looked to see how
concerns were used in the design process and how they related
to specific design activities and representations used. Knowing
that this study has many limitations, we looked for broad ef-
fects that we couldn’t explain due to limitations in the method
or differences between the coding done by the coders. Below
we describe our exploration of the visualizations and what we
noticed relevant to flexible modeling.

VI. CHARACTERIZING SOFTWARE DESIGN DISCUSSIONS

A. Concerns evolve they do not only originate from
requirements documents
Visual inspection of timelines of concepts shown in Figure

1 reveal that concepts do not only originate in the design
prompt, but evolve over time. In this Figure the concepts in the
top section were inferred from the Design Prompt. The con-
cepts in the second section were added by all three teams dur-
ing their design sessions, the concepts in the third section were
added by two of the three teams during their design session,
and those in the bottom section were added only by the team in
whose timeline they appear (the anonymous team had no such
concepts). Although some variation is undoubtedly due to en-
coder variability, the concepts added by all three teams suggest
that not all valid concepts can be inferred from design require-
ments (in this case, the Design Prompt) and any tool centered
around concerns will have to allow design teams to add new
ones as they work.

However, when the frequency with which concepts were
actually discussed is examined (Figure 2), surprisingly the ma-
jority of concepts discussed arise from the design prompt. This
suggests that initially populating a flexible modeling tool’s
model with concerns derived from a concern analysis of re-
quirements documents may be helpful.

Activity ActivityDomain Representation
 Reading de-

sign prompt
 Pondering
 Marking
 Gesturing
 erasing

 physical do-
main

 model
 ui
 use cases
 metrics
 presentation

 list
 diagram
 paragraph
 sketch
 table
 ui controls

TABLE I. FINAL ACTIVITY, ACTIVITY DOMAIN AND
REPRESENTATION CODES

Figure 1. Timelines for concern concept codes. Showing which originated in the design prompt, which were added for partiuclar teams.

The timelines for the concern domains (Figure 3) show that
they do not evolve as dramatically as the concepts do over the
course of the design sessions. In fact, only use-cases arose as a
new domain in all three session and only the Adobe team dis-
cussed anything else: code complexity and the presentation
they would have to give at the end of the design session. This
observation that there were fewer concern domains, and most
originated in the design prompt further reinforces the possibil-
ity of populating a flexible modeling tool’s model with concern
domains derived from requirements documents.

B. Concern concepts are revisted throughout the design
process
Concern concepts were repeatedly revisited throughout the

discussions of all the teams as can be seen in Figure 1. Exami-
nation of the concept timelines of all three sessions shows con-
stant and frequent jumping around among concepts. This is
especially true of the major concepts introduced in the design
prompt. There are a few cases where the same concept is dis-
cussed for a few minutes at a stretch, but not for very long, and
even then usually in part concurrently with other concepts.

Some concepts, however, were seldom discussed, in some
cases only once. This is especially true of new concepts intro-

duced during the design sessions. White space to the right (jag-
ged right margin) indicates that discussion of a number of con-
cepts is dropped fairly early during the session, never to be
resumed. While some of this may be attributed to encoding
differences, some concerns may be resolved and therefore not
talked about again. The timelines help focus our attention on
when these resolutions might have come about, but further
work is necessary to confirm this hypothesis. If indeed deci-
sions are made and not revisited, a flexible modeling tool may
need to denote these decisions somehow.

Revisiting concepts, going back to concepts that have pre-
viously been discussed is characteristic of discussions in gen-
eral. They are not linear and well-structured, but messy and ill-
structured. During these design conversations, the designers
were struggling to understand the domain, and create a well-
structured representation of the key concerns. This going back
and forth is possibly related to the highly interrelated nature of
concerns. Establishing the best organization for the design is a
challenge.

Flexible modeling tools would aid such conversations by
automatically capturing concepts in an underlying semantic
model as these concepts were externalized by designers in rep-
resentations.

Figure 2. Frequencies for concern codes

Figure 3. Timelines of the domains that were discussed by all three teams.

Although the designers went back and forth between con-
cepts during the discussion, surprisingly they did not explore
multiple possible organizations by drawing them on the board.
All of the teams used different, but a single main organization
for their design, and they developed this early on.

It is well-known that good designs result from exploration
of multiple possible designs. We conjecture that flexible mod-

eling would reduce the burden of creating a representation, and
thus free-up designers to explore more possibilities in their
discussions. It would also facilitate capturing and returning to
previous organizations, something that is not easy to do using a
traditional whiteboard.

Activities

Activity Domain

Representation

Figure 4. Timelines for each activity, activity domain and representation codes for each of the teams.

C. Concern domains are different for teams with different
backgrounds
The timelines for the concern domains (Figure 3) reveal

that the domains discussed are different across the three groups.
The anonymous team barely touched on any aspect of the UI1,
mentioning it only at the very end. The Adobe team had clear

1 We inquired as to whether the video might have been cut short, but

were assured that the data were complete.

phases of discussing mostly the model (Figure 3, 00:06:00:00–
00:55:00:00), then mostly the UI (Figure 3 01:03:00:00–
01:15:00:00, both control and presentation), then back to
mostly the model (01:25:00:00)2. However, there is a much

2 Although the anonymous team seemed to oscillate between discuss-
ing the physical domain and then the model and the Adobe team only touched
on the physical domain, discussion between the encoders when looking at
these timelines revealed that there might have been a difference in coding
criteria for attributing an utterance to physical domain vs. model, and thus,
this difference is not reliable.

Adobe Amberpoint

anonymous

Figure 5. Contents of whiteboards showing representations created. Numbers indicate order in which representations were predominantly used.

larger difference between the Amberpoint team and the other
two: Amberpoint discusses all of the domains inferred from the
Design Prompt all the way through, with heavy emphasis on
the ui control and presentation and substantial time in the
physical domain, model and quality of service. After finding
this pattern, we inquired as to the backgrounds of the different
team members and indeed, although all participants had pro-
gramming in their backgrounds, both members of the Amber-
point team currently held positions as “Interaction Designers”
while the Adobe and anonymous teams were software engi-
neers, software architects or software project managers.

By providing multiple views mapped to a single evolving
semantic model, flexible modeling tools can allow teams to
focus on a particular domain during any particular design con-
versation. That same model can then be used as a starting point
for discussions by the same people (or different members of a
team) that focus on a different domain. The support for map-
ping a single model to different views would be helpful here.

Typical design teams are multi-disciplinary with team
members having very different backgrounds and often using
different language and preferring different representations.
Also their conversations take place across multiple meetings
with different stakeholders. For such teams a single model that
can be mapped to many different views allows people to work
in their preferred domain, but helps maintain consistency.

D. Mulitple representations are used
It is clear from the analysis of the designers activities that

they really did use the whiteboard heavily. This is shown in the
timeline on Figure 4. Marking and gesturing occupied a con-
siderable proportion of their time in all cases. In addition, much
of the time was spent pondering, the designers looked at what
was drawn on the whiteboard, though in some cases we could
not tell what, if anything, they were looking at. A variety of
different representations, from informal sketches and lists to
somewhat more structured diagrams were used. They covered
most the domains, with domain emphasis, unsurprisingly,

seeming to match domain emphasis in the transcripts.

Flexible modeling tools provide multiple representations
that are views onto an underlying model. A flexible modeling
tool for a shared whiteboard would need to support use of
many different representations as views, but we did not observe
any that we have not previously considered and are not in
common use. What is more challenging for flexible modeling
tools is cross-representation annotation such as that used by the
Amberpoint team. This example is visible in the Figure 5,
where in the center of the Amberpoint board there is an labeled
arrow annotation pointing between a diagram and a table.
Flexible modeling tools would need to be extended to deal with
such cross-representation annotations.

E. Representations evolved becoming increasingly formal
and detailed
Designer’s did not make a picture and then talk about it,

people continually updated the picture as they talked. This
interleaving of conversation and marking is typical and is
shown in Figure 6. This figure shows for each team, the activi-
ties centered around list and diagrams that occurred while the
design teams talked about a single concept. In the figure for
each team we show two concepts, the ‘intersection’ concept
first and the ‘road’ concept second.

We also observed that representations used by the designers
evolved over time. We observed that lists commonly became
trees and diagrams. Adobe’s class list evolved into a class dia-
gram. Anonymous’ physical diagram became their UI diagram.
Amberpoint’s entity list became an entity tree.

Often details were added to the representation as the con-
versation led to deeper understanding. Figure 6 shows the in-
terplay between two important concepts: ‘intersections’ and
‘roads’. We focus on the beginning of the timeline where we
see six instances of the designers moving between representa-
tions (indicated by the red arrows). Some of these are examples
of use of multiple representations and some of them are where
the designers were changing the form of a representation. The
insert shows how the anonymous team changed their list into a
diagram by drawing arrows. They came to realized this rela-
tionship existed through the conversation they were having as
they made the list.

 Representations also became more formal and detailed
over time. For Amberpoint and Adobe teams, formality ap-
peared as designers thought about what they needed to present.
Returning to Figure 5, the numbers indicate the phase of activ-
ity in which each representation appeared. Notice that the enti-
tiy-relationship diagram was the final diagram created by the
Amberpoint team, and the Adobe team. The Adobe team also
created a list of use cases to aid their presentation. It was clear
that these two teams thought of the creation of the presentation
as a separate step, and this was not integrated with the concep-
tual exploration they were doing on the whiteboard. When
making diagrams and lists to present, they needed to refer to
what they had previously done, but had to do the work of re-
writing.

Flexible modeling seems highly appropriate to the process
we observed here. Such tools allow the semantics and represen-

tation details to evolve in concert; guidance reminds users of
possible structural violation, but does not enforce precision;
and the presentation layer enables the synthesis of a presenta-
tion from the conceptual explorations that have already hap-
pened during the discussion.

VII. CONCLUSIONS
We learned that at least for the three examples of software

engineering design discussions explored in this paper, the proc-
ess of concept development and use of the representations is
non-linear with concepts gradually evolving over-time. De-
signers make use of multiple different representation to capture
their ideas during the design process, and use these representa-
tion informally and imprecisely. This style of work suggests
that flexible modeling tools would offer the kinds of support
that might facilitate this process.

We also noted that designers move towards more formal
and precise representations as they think about how to present
their designs to others. Thus the presentation layer provided by
a flexible modeling tool would also benefit software engineers.

We should note however that this exploration is limited in
several ways. Firstly, the three design discussions we observed
are not real world instances of design discussions, but were
artificial tasks staged specifically for the purpose of study.
Time was limited and unrealistically focused, the problem was
not real-world, designers were on-camera and knew they were
being recorded for others to watch. There are also limitations to
our analysis of the videos as discussed earlier. Our results are
preliminary, there is no inter-rater reliability in the coding. All
comparisons are only ‘eyeball comparisons.

Despite such limitations we believe that flexible modeling
tools would support software engineering discussions at the
whiteboard.

VIII. ACKNOWLEDGMENT
We would like to thank Sandy Esch from CMU for advice

on using MacShapa.

IX. REFERENCES
[1] Edsger W. Dijkstra, “On the role of scientific thought.” in Dijkstra,

Edsger W., Selected writings on Computing: A Personal Perspective,
Springer-Verlag New York, Inc., pp. 60–66.

[2] IEEE. IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems. IEEE Std. 1471- 2000. Approved 21 Sep.
2000. Page 4.

[3] H. Ossher et. al., “Business Insight Toolkit: Flexible pre-requirements
modeling.” Informal demonstration paper in ICSE 2009 Proceedings
Companion, May 2009.

[4] H. Ossher et. al., “Using tagging to identify and organize concerns
during pre-requirements analysis.” Workshop paper in ICSE 2009
Proceedings Companion, May 2009.

[5] David L. Parnas, “On the criteria to be used in decomposing systems
into modules.” Comm. ACM 15(12), ACM, December 1972, pp. 1053–
1058.

[6] Martin P. Robillard and Gail C. Murphy, “Concern graphs: finding and
describing concerns using structural program dependencies.” In
Proceedings of the 24th International Conference on Software
Engineering, ACM, May 2002, pp. 406–416.

[7] Martin P. Robillard and Gail C. Murphy, “FEAT: a tool for locating,
describing, and analyzing concerns in source code.” In Proceedings of
the 25th International Conference on Software Engineering, ACM,
2003, pp. 822–823.

[8] Martin P. Robillard and Frederic Weigand Warr, “ConcernMapper:
simple view-based separation of scattered concerns.” In Proceedings of
the 2005 OOPSLA workshop on Eclipse technology eXchange, ACM,
2005, pp. 65–69.

[9] Stanley M. Sutton Jr. and Isabelle Rouvellou, “Modeling of software
concerns in Cosmos.” In Proceedings of the 1st International
Conference on Aspect-Oriented Software Development, ACM, April
2002, pp. 127–133.

[10] Peri Tarr, Harold Ossher, William Harrison and Stanley M. Sutton, Jr.,
"N degrees of separation: multi-dimensional separation of concerns." In
Proceedings of the 21st International Conference on Software
Engineering, IEEE, May 1999. pp. 107–119.

