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Abstract

Patching is a critical security service to keep computetesys up to date and to defend against se-
curity threats. Existing patching systems all require ingrsystems. With the increasing adoption of
virtualization, there is a growing number of dormant vittmechine (VM) images. Such VM images
cannot benefit from existing patching systems, and thus féea teft vulnerable to emerging security
threats. It is possible to bring VM images online, apply pat; and capture the VMs back to dor-
mant images. However, such approaches suffer from perfarenehallenges and high operation costs,
particularly in large-scale compute clouds where therédccbe thousands of dormant VM images.

This paper presents a novel tool namiiglva that enables efficient and scalable offline patching
of dormant VM images. Nuwa analyzes patches and, whenldessionverts them into patches that
can be applied offline by removing operations that requirareaning system. Niwa also leverages
the VM image manipulation technologies offered by the Mgaaage library to provide an efficient
and scalable way to patch VM images in batch. Nuwa has bealuaed with real-world patches
and on VM images configured with popular packages accordirnige Ubuntu popularity contest. Our
implementation of Niiwa is based on the Debian package nesiaag our evaluation applies 406 patches
to a fresh installation of Ubuntu-8.04. Nuwa successfapiplies 402 out of the 406 patches, and speeds
up the patching process by more than 4 times compared to tilme@pproach. This can be further sped
up by another 2—-10 times when the tool is integrated with tyitanaking Niwa an order of magnitude
more efficient than the online approach.

1 Introduction

Patching is a basic and effective mechanism for computdeisssto defend against most, although not
all, security threats, such as viruses, rootkits, and wddms21, 22]. Failing to promptly patch physical
machines can subject the systems to huge risks, such asflossfmential data, compromise of system
integrity, and failure to provide regular system servidgafortunately, applying security patches is a noto-
riously tedious task, due to the sheer large number of patahd the high rate at which they are released —
It is estimated that, in the average week, vendors and $gauganizations release about one hundred and
fifty vulnerabilities and associated patching informatj@f]. As a result, most software runs with outdated
patches [12,13].

The problem is exacerbated by the IT industry’s recent saiftirtualization. Virtualization allows a
complete system state to be conveniently encapsulatediitualvnachine (VM) image, which can be run
on any compatible hypervisor. Because VM images are norneal, fihey can be easily copied to create



new VM images. This has led to a new “VM image sprawl!” problefdirect result of the VM image
sprawl problem is the significantly increased managemestttoanaintain these VM images. Because each
VM image is a logical computer, it needs to be maintainedilgghysical counterpart, including regularly
applying security patches. This is true even for dormant WiMges that are not being actively used — they
resemble physical machines that are powered down.

We argue that existing patching utilities, originally adgwd for running systems, are a poor fit for VM
images. Because they require the VM images to be online ddferpatch can be applied, they do not scale
to a large number of images — it takes on the order of minuttggupower up and shut down a VM image.

Current approaches to VM image patching are based on th&édred model where a VM image must
be running in order for the patch to be applied. Thus theyesltize same scalability limitations as the
traditional patching approach. One example is the Micito@dfline Virtual Machine Servicing Tool [11],
which adopts a method to bring the VM image online, apply tailpes, and capture the VM back to a
dormant image.

Realizing that not all VM images are needed immediately byrtlisers, some solutions [25] use a clever
optimization where patches are applied lazily. The patskalfer and patch data are injected into the VM
image in such a way that the patch process is triggered akttidonoting time. This optimization can yield
significant savings in the total time spent in patching indase where only a small percentage of dormant
images will ever be used. However, the tradeoff is that usé@rsiow see a significant delay in their image
startup time, especially for images that have accumulatedglist of yet-to-be-applied patches.

Another weakness shared by all online patching approastltkatiit assumes that the vulnerable versions
of software on the target VM image will not be attacked duriing time period between when the image
boots up and when the patch finishes. That is not the casedfWildows Blast worm [4], where a machine
could get infected immediately after it boots up and befooeuld get a chance to apply the patch. Itis also
possible for an already infected machine to constantlyatlteelf such that the patching process never has
a chance to complete.

We propose an approach that is fundamentally different fioentraditional online model. We argue
that the only way to make the patching process scalable ioual@nvironment where the number of images
can potentially reach millionis to do it offline. A closer look into the patching processaas that it can
be decomposed into a sequence of actions, not all of whiahireeg running system. In fact, most of the
patching actions only depend on and have impact on file systgects, which are already encapsulated in
the VM image itself. Among the actions that do depend on oelanpacts on a running system, we find that
many are unnecessary to execute when patching offline, and san be safely replaced by other actions
that do not need the running system. Based on these findimgdesign and implement NilWaa scalable
offline patching tool for VM images. By performing the patogioffline, Niwa avoids the expensive VM
start and stop time, and ensures that for the majority cades) a VM image is ready to be started, it always
has the latest patches installed.

Because Nuwa is an offline patching tool, it can leverageehg image manipulation technologies
to further improve scalability. In particular, Nuwa is egrated with the Mirage image library [23] which
provides a rich set of tools and APIs for efficient offline ireaganipulation.

Our implementation of NUwa is based on the Debian packageaga [7]. We evaluated NiUwa with
406 patches for a freshly installed Ubuntu-8.04. Our evadnaresults show that Niwa can successfully
apply 402 out of the 406 patches, and speeds up the patchiegss by more than 4 times compared to
the online approach. This can be further improved by andk&0 times when the tool is integrated with
Mirage, making Nuwa an order of magnitude more efficiennttee online approach.

1Amazon EC2 already contains over 6,000 public VM imagess Tinimber does not include private images that users choose
not to share with others [20].
2Named after the Chinese Goddess who patches the sky.



We summarize our contributions below:

1. We designed a scalable offline patching tool for VM imades ts backward compatible with an
existing patch format. To the best of our knowledge, thidésfirst tool of its kind in the academic
literature.

2. We implemented and evaluated the tool based kg, a popular package installation system for
Debian-based Linux distributions, and demonstrated pesar scalability — it sped up patching time
by 8-40 times compared to the traditional online based ambro

This paper is organized as follows. Section 2 gives somedrankd information on patching and
describes our design choices and technical challengeso®8gresents an overview of our approach. Sec-
tion 4 describes the mechanisms we use to convert an onliok ipéo one that can be safely applied offline.
Section 5 describes how we leverage efficient image martipnlenechanisms to further improve scalabil-
ity. Section 6 presents our experimental evaluation resufiection 7 discusses related work. Section 8
concludes this paper with an outlook to the future.

2 Problem Statement

2.1 Background

Software patches, or simply patches, are often distribirte¢tie form of software update packages (e.g.,
.debor .rpmfiles), which are installed using a package installer, ssatpananddpkg. In this section, we
give background information on the format of software paelsaand the package installation process. We
use the Debian package management dpig as an example. Most software package management tools
follow the same general style with only slight differencegy(, a different shell to interpret the installation
scripts).

Packages are distribution units of specific software. A pgekusually includes files for different pur-
poses and associated metadata, such as the name, verpiemgeiece, description and concrete instructions
on how to install and uninstall this specific software. Difiet platforms may use different package formats
to distribute software to their users. But the contentsuidet! inside are mostly the same. A Debian pack-
age, for example, is a standard Urax archive, composed of two compressed tar archives, one éor th
filesystem tree data and the other for associated metadataifitrolling purposes. Inside the metadata,
a Debian package includes a list of configuration files, md&sstor each file in the first archive, name
and version information, and shell scripts that the packaggller runs at specific points in the package
lifecycle.

The main action in patching is to replace the old buggy filesysdata with the updated counterparts.
Beside this, the package installer also needs to perforne soner operations to ensure the updated software
will work well in the target environment. For example, a degence or conflict must be resolved, a new
user or group might have to be added, configuration modifinatby the user should be kept, other software
packages dependent on this one may need to be notified opitiéde) and running instances of this software
may need to be stopped and restarted. Most of these act@specified in the shell scripts provided by the
package developers. Because these scripts are intendedtmked at certain points during the installation
process, they are calldtbok scripts The hook scripts that are invoked before (or after) file aepment
operations are callggre-installation(or post-installation scripts There are also scripts that are intended to
be invoked when relevant packages (e.g., dependent sefta@nflicting software) are installed or removed.

More details about Debian package management tools carubd fo the Debian Policy Manual [8].



2.2 Design Choices and Technical Challenges

Our goal is to build a patching tool that can tadesting patches intended for online systems and apply
themoffline to a large collection of dormant VM images in a manner thaafeandscalable By safety
we mean that applying the patch offline achieves the samet @ifethe persistent file systems in the images
as applying it online. By scalability we mean that the toa$ ha scale to thousands, if not millions of
VM images. We would like to point out that in this paper we onbnsider dormant VM images that are
completely shutdown; VM images that contain suspended Wd®at of the scope of this paper.

We made a conscious design decision to be backward commatibh an existing patch format. It
is tempting to go with a “clean slate” approach, where we defimew VM-friendly patch format and
associated tools that do not make the assumption of a rusgsigm at the time of patch application. While
this is indeed our long-term research goal, we think its &dopwill likely take a long time, given the
long history of the traditional online patching model and fhct that it is an entrenched part of today’s IT
practices, ranging from software development and didiohuo system administration. Thus, we believe
that an interim solution that is backward compatible witistg patch format, and yet works in an offline
manner and provides much improved scalability, would béralele.

Several technical challenges arise in implementing sucbatlsle offline patching tool. The most
outstanding challenges come from the fact that all curraithpng solutions are designed for running sys-
tems. These patching solutions require the system to bénmgina execute many transactions, such as
related component discovery and notification, environnsgeicific customization, and application or ser-
vice restart. Another challenge is to scale the patchingttban extent that it can be routinely run in a
cloud environment where the image collection is expectdaetbuge. We next elaborate these challenges
in detail.

Identifying Runtime Dependences:The current software industry is centered around runnistesys
and so are the available patching solutions. A running sygi®vides a convenient environment to execute
the installation scripts in the patch. The installationsrquery the configuration of the running system in
order to customize the patch appropriately for the systemmeSscripts also restart the patched software at
the end of the patching process to make sure its effect tdaes.pSome patches require running daemons.
For example, some software stores configuration data inadodsé. A patch that changes the configuration
requires the database server to be running in order to pedohema updates.

The challenge is to separate runtime dependences that caidbe emulated (such as information dis-
covery that only depends on the file system state) or remauath (@s restarting the patched software) from
the ones that cannot (such as starting a database servestbelma updates). We address this challenge by
a combination of manual inspection of commands commonlyg irsecripts (performed only once before
any offline patching) and static analysis of the scripts.

Removing Runtime DependenciesOnce we identify runtime dependences that can be safelyadaall
or removed, the next challenge is to safely remove thesemamtependences so that the patch can be applied
to a VM image offline and in a manner that does not break baacke@mpatibility. Our solution uses a script
rewriting approach that preserves the patch format anevallbbpatch intended for an online system to be
applied safely offline in an emulated environment.

Patching at a Massive ScaleAs the adoption of virtualization and cloud computing aecates, it is
a matter of time before a cloud administrator is confronteih & collection of thousands, if not millions
of VM images. Just moving from online to offline patching ist safficient to scale to image libraries
of that magnitude. We address this challenge by leveragiingdd's capabilities in efficient storage and
manipulation of VM images [23].



if [ "$1" = "configure" ]; then
if [ -e /var/run/dbus/pid] &&
ps -p $(cat /var/run/dbus/pid); then
[ usr/share/ update-notifier/notify-reboot-required

fi
fi

O©CoOoO~NOUTr~, WNE

if [ -x "/etc/init.d/dbus" ]; then
10 wupdate-rc.d dbus start 12 2 3 45 . stop 88 1 .
11 if [ -x "“which invoke-rc.d'" ]; then

12 i nvoke-rc.d dbus start
13 else

14 /etc/init.d/ dbus start
15 fi

16 fi

Figure 1: Excerpts of thdbus. posti nst script

3 Approach

It seems plausible that patching VM images offline would waiken the fact that the goal of patching is
mainly to replace old software components, representedeasrfithe file system, with new ones. Indeed, to
patch an offline VM image, we only care about the changes nattetfile system in the VM image; many
changes intended for a running system do not contributest/ M image directly.

One straightforward approach is to perform the file repla@nactions from another host, referred to
as thepatching host Specifically, the patching host can mount and access ane#M image as a part of
its own file system. Using thehr oot system call to change the root file system to the mount pdiet, t
patching host can emulate an environment required by thehipat process on a running VM and perform
the file system actions originally developed for patchingraning VM. For the sake of presentation, we call
this approactsimple emulation-based patchiagd call the environment set up by mounting the VM image
and changing the root file system to the mount pointaimellated environment

Unfortunately, our investigation shows that the instalatscripts used by the patching process pose a
great challenge to simple emulation-based patching. Maighes use scripts to perform pre-installation
and post-installation configurations, such as detectistesy environment to perform conditional actions,
restarting a patched daemon, and notifying relevant softwamponents or the system about the updates
so that they can take extra actions.

Figure 1 shows two segments of code frdimus. post i nst , the post-installation script in thdbus
package. The first segment (lines 1 to 7) detects possiblgimgrdbus processes and sends a reboot
notification to the system if there exists one. The secontheeg(lines 9 to 16) restarts the patchiuus
daemon so that the system begins to use the updated softd@iiesegments depend on a running VM to
work correctly. The simple emulation-based patching vaill ivhen coming across this script.

To address this challenge, we look further into the internépatching scripts. After analyzing patching
scripts in more than one thousand patching instances, we s@de important observations. First, most
commands used in the patching scripts saéeto execute in the emulated environment, in the sense that
they do not generate undesirable side effects on the pemsiite system that would make the patched VM
image different from one patched online except for log filed tmestampsExamples of such commands
include the test commands in lines 2, 9 and &¢&f in line 3,/ usr/ share/ update-notifier/
noti fy-reboot-requiredinline 4, update-rc.din line 10, andwhi ch in line 11. Second,



some command executions have no impact on the offline pat@rd thus can be skipped. For example,
i nvoke-rc. dinline 12 of Figure 1 is supposed to start up a running daerand,its execution has no
impact on the persistent file system. Thus, we can just ski¥é call such codennecessary codd hird,
there are usually more than one way to achieve the same gurpbsis, it is possible to replace an unsafe
command with a safe one to achieve the same effect. For egammginy scripts usananme - mto get

the machine architecture; unfortunatalyjarme - mreturns the architecture of the patching host, which is
not necessarily the architecture for which the VM image fended. We can achieve the same purpose by
looking at the file system data, for example, the architectoformation in the ELF header of a binary file.

Motivated by these observations, in this paper, we propasest@matic approach that combines safety
analysis and script rewriting techniques to address thdectyge posed by scripts. The safety analysis
examines whether it is safe to execute a script in the entliEtgironment, while the rewriting techniques
modify unsafe scripts to either eliminate unsafe and urssg code, or replace unsafe code with safe one
that achieves the same purpose. Our experience in thigcbsedicates that the majority of unsafe scripts
can be rewritten into safe ones, and thus enable patchesajgptied to offline VM images in the emulated
environment.

However, not all script can be handled successfully in trag.WVe find some patching instances, after
safety analysis and rewriting, still fail in the emulatibased environment. Some patches have requirements
that can only be handled in a running environment. For exantpk post-installation script in a patch for
MySQL may need to start a transaction to update the admatiigirtables of the patched server. As another
examplemono, the open source implementation of C# and the Common LamgRagtime, depends on a
running environment to apply the update to itself.

Given the above discussion, we adopt a hybrid
approach in the development of NOowa. Figure 2
shows an overview of the Nuwa approach. When
presented with a patch, Niuwa first performs safety
analysis on the patching scripts included in the orig-
inal patch. If all scripts are safe, Nuwa uses sim-
ple emulation-based patching directly to perform of-
fline patching. If some scripts are unsafe, Nuwa ap-
plies various rewriting techniques, which will be dis-
cussed in detail in Section 4, to these scripts, and
performs safety analysis on the rewritten scripts. If
these rewriting techniques can successfully conv
the unsafe scripts to safe ones, Nuwa will use sim
emulation-based patching with the rewritten patch
finish offline patching. However, in the worst case,
Niwa may fail to derive safe scripts through rewrit-
ing, and will resort to online patching. In reality, we
have found such cases to be rare — our results show that g4 % of the packages tested in our experi-
ments fall into this category (Section 6.1).

The online patching may take different forms. For perforoganeasons, Niuwa takes an automated
online patching approach. Specifically, Niwa inserts titelpdata into the VM image through the emulated
environment and then schedules a patching process at beobti modifying the booting script in the VM
image. The idea is to have the VM run the patching procesgédfdas a chance to interact with other
systems (that is, before any networking capability is éistiadd during the boot process). Niwa then boots
the VM, performs online patching, and shuts down the VM auwtically once the patching is complete.
Note that similar techniques have been proposed beforg [£1g25]).

In addition to patching individual VM images, Nuwa alsodezges VM image manipulation technolo-

scripts

Safety Analysis
Emulation based
\ offline patching

D nline
patching

ﬁ

Figure 2: Overview of the Nilwa approach
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gies to further improve scalability. In particular, NUwses features of the Mirage image library [23] to
enable scalable patching of a large number of VM images ichbat

To distinguish between the two variations of Niwa, we rébethe former astandalone Mwa, and the
latter, which leverages Mirage, Birage-based Mwa. In the remainder of this paper, we describe the novel
techniques developed for offline patching in the contextathlstandalone Niuwa and Mirage-based Nuwa.

4 Safety Analysis and Script Rewriting

This section explains how safe patch scripts are identiinel @hen possible, unsafe scripts are transformed
into safe scripts. The analysis is based on three conceptapadct, dependence, and command classifica-
tion, which are defined in Section 4.1. Section 4.2 presemisgting techniques that, using information from
safety analyses, convert many unsafe scripts into safptscitection 4.3 describes how these techniques
are put together to develop standalone Nuwa.

In our implementation, safety analysis and script-rewgitrun immediately beforedpkg executes a
patch script. As a result, analyses and transformatione hawess to the script's actual environment and
arguments and to the image’s filesystem state.

Patch scripts in Debian are SUSv3 Shell Command Languaigessfi8] with three additional features
mandated by the Debian Policy Manual [8]. Shell scripts aszeted by a interpreter that repeatedly reads
a command line, expands it according to a number of exparaidnquoting rules into a command and
arguments, executes the command on the arguments, ancttile execution’s output and exit status. The
language is very dynamic (for example, command-lines arstoaocted and parsed dynamically), which
forces our analyses and transformations to be conservativaetheless, simple, syntax-directed analyses
and rewritings suffice to convert unsafe scripts to safei@essfor 99% of the packages we considered.

4.1 Impact, Dependence, and Command Classification

The goal of command classification is to divide a script’s owand lines into three categories: (1) safe to
execute offline, (2) unsafe to execute offline, and (3) unssary to execute offline. To classify command
lines, we divide a running system into a “memory” part and ksfrstem” part, and determine which parts
may influence or be influenced by a given command line. Thatioituis that the “filesystem” part is
available offline but the “memory” part requires a runningtéamce of the image that is being patched.

We say that a command-line executidepends on the filesystafmt reads data from the filesystem or
if any of its arguments or inputs flow from executions thatetapon the filesystem. An executignpacts
the filesystenif it writes data to the filesystem or if its output or exit statflow to executions that impact
the filesystem.

Table 1 lists some commands whose executions impact thesfiéea:

Table 1: Commands with FS-only impacts
Command Type Example Commands
File attribute modification chown, chnod, chgrp, touch
Explicit file content modification cp, nv, nknode, nktenp
Implicit file content modification| adduser, addgrp, renove-shell

We say that a command-line executidapends on memoif it inspects any of a number of volatile
components of the system’s state (perhaps by listing rgnpincesses, opening a device, connecting to a
daemon or network service, or reading a file under oc that exposes kernel state) or any of its arguments
or inputs flow from executions that depend on memory. An e@cimpacts memorif it makes a change



to a volatile component of the system’s state that outliheseixecution itself, or if its output or exit status
flow to executions that impact the filesystem.

Note that all executions have transient effects on volatidge: they allocate memory, create processes,
cause the operating system to buffer filesystem data, amafto for the purposes of classification, we do
not consider these effects to be impacts on memory; we asthanether command-line executions do not
depend on these sorts of effects.

Table 2 lists some commands that impact or depend on memory.

Table 2: Commands with memory impact or dependence

Command Type Example Commands

Daemon start/stop i nvoke-rc.d, /etc/init.d/
Process status ps, pidof, pgrep, Isof, kill
System information inquiry uname, | spci, | aptop-detect
Kernel module | snrod, nodprobe

Others Database update, mono gac-install

The definitions for command-line executions are extendediefmitions for static command lines. A
command line depends on memory (or the filesystem) if anysofxtcutions depend on memory (or the
filesystem). A command line impacts memory (or the filesy$témny of its executions impact memory
(or the filesystem).

To seed impact and dependence analysis, we manually iespalttcommands used in patch scripts
to determine their intrinsic memory and filesystem impacid dependences. This might seem to be an
overwhelming task but, in practice, scripts use very fewis commands; we found only about 200 distinct
commands used by more than 1,000 packages. It may be passildeve this information by instrumenting
command executions. In practice, we expect that it wouldrbeiged by package maintainers.

Our analysis concludes that a static command-line depemdsemory if one of the following holds:

The command is unknown.

The command has an intrinsic memory dependence.

One or more of the arguments is a variable substitution.

The input is piped from a command that depends on memory.

The input is redirected from a device, afile unél@r oc, or from a variable substitution.

The rules for filesystem dependences and for impacts arésirNiote that the analysis errs on the side
of finding spurious dependences and impacts. That is, thedgsas are simple “may-depend/may-impact”
analyses, which are both flow and context insensitive.

Table 3: Command classification

Dependence Dependence Impact Impact | Safety
onFS on Memory | on Memory| on FS
Yes/No No No Yes/No | Safe
Yes/No No Yes Yes | Unsafe
Yes/No Yes No Yes | Unsafe
Yes/No Yes Yes Yes | Unsafe
Yes/No No Yes No Unnecessary
Yes/No Yes No No Unnecessary
Yes/No Yes Yes No Unnecessary




Impact,dependenc & safety
knowledge base

Command
Classification

Dead Unnecessary Unnecessary
assignment command elimination control Structure
elimination &command replacment Elimination

Final Safety
Analysis

Figure 3: Flow of script analysis and rewriting

Table 3 shows how each command line’s classification as saiafe, or unnecessary is determined
from its filesystem and memory impacts and dependences.c8afimand lines do not depend on or impact
memory. These are the commands that can and should be ekexffliee. Script rewriting preserves
these commands. Unnecessary command lines have no impd#ue diresystem. There is no reason to
execute them offline because they do not change the imagectniffithey depend on or impact memory,
then they must be removed because they might fail withounaing instance. Script rewriting removes
these commands. Unsafe command lines may execute indpmoéfthe because they depend on or impact
memory and also impact the filesystem. In some cases, sewpiting cannot remove these command lines
because their filesystem impacts are required. If any urgafemand line cannot be removed, then the
patch cannot be executed offline.

4.2 Rewriting Techniques

Figure 3 shows the rewriting techniques that Niwa appléefere executing each patch script. Rewriting
a script can change the results of safety analysis, so Néwas safety analysis after applying these tech-
niques. If safety analysis proves that all command linehéndcript are safe, then the rewritten script is
executed offline. Otherwise, Niuwa resorts to online patghi
Nuwa currently applies five rewriting techniques, whick de-
scribed below. For clarity, the presentation does not Voltbe or- | / €tc/init.d/ acpid
der in which the techniques are applied (that order is showfig- | / €t ¢/init.d/ cupsys
ure 3). The first two techniques consider command-linesptaited killall CONSTANT
by safety analysis, in isolation; the last three analyzgelascopes.
Unnecessary Command Elimination: This technique removesFigure 4: Examples of command
unnecessary commands, which, by definition, have neitmectdor lines that are removed by unneces-
indirect impact on the filesystem. Figure 4 shows examplesdan Sary command elimination
actual patch scripts.
Command Replacement:Some command lines that de-
pend on memory can be replaced with command lines thdfiame -m . .
depend only on the filesystem. This often happens with cgm- ~> dPkg --print-architecture
mands that need information about the system, in particiiat
when the information is available both in the filesystem a o“,nage f‘ vl .
if there is a running instance, in memory. T echo TEinuX
For example, theiname command prints system infor-
mation; depending on its arguments, it will print the hodFigure 5 Memory-dependent command
name, the machine hardware name, the operating systgfs and their replacements
name, or other fieldsunane gets its information from the
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kernel through theiname system call. Without a running instance, information frdra kernel cannot be
trusted. However, certain fields are statically known camist or available through commands that depend
only on the filesystem; Figure 5 shows two examples.

Note that command replacement not only removes memoryrdiegmé commands but also ensures that
the offline script uses values appropriate to the imageadsté values from the host. Niwa'’s implemen-
tation of command replacement consults a manually cortstiuable of command lines and their known
replacements.

Unnecessary Control-structure Elimina-
tion: This technique, a gengrallzanon of uUn-gefore rewriting:
necessary command elimination, removes com-
pound commands liké f and case state- |1 if [ -x "*which invoke-rc.d"" ]; then
ments. g | i nvoke-rc.d dbus start
Figure 6 shows an example. Both the true> €' ¢
branch and the false branch of the-statement g fetclinit.dfdbus start
are unnecessary and would be eliminated by un-
necessary command elimination. The condiafter rewriting:
tional would not be eliminated because safety
analysis conservatively assumes that all cgn®l | €l imnated
ditionals impact both memory and the filesys-
tem through control-flow. By contrast, unnedFigure 6: Example of control structure analysis (from
essary control-structure elimination eliminatedbus. posti nst)
the entire f -statement because, after eliminat-
ing both branches of thef -statement, the conditional is unnecessary: It clearlynwaglesystem impact
through control-flow or any other means.

fi

+ All branches

Command Remove
level eliminatable
Analysis branches

cond-test

statement all Branes eliminatble &

cond-test no FS impact

Remove cond-test
statement

(b) Botomm-up control structure analysis

Other
Handling

(a) Generalized control structure

Figure 7: Unnecessary control-structure elimination

Unnecessary control-structure elimination proceedsohetip as shown in Figure 7. For each control
structure, we first try to eliminate all statements in eadnbh of the structure. If all statements in every
branch can be eliminated, we consider the conditionalfitdét no longer impacts the filesystem, the entire
control structure is removed.

Note that Niiwa applies unnecessary control-structuréysisgo many kinds of compound commands
and command lists, including tlease construct and command lists built from the short-circigjtstate-
ments (| and&&).

Script Specialization: This technique removes command lines and control structina cannot exe-
cute, given the script’s actual environment and argumemdsttze VM image’s filesystem state. Recall that
this context is available because safety analysis andtsesigiting run immediately befordpk g executes
a patch script.
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Figure 8 shows an example, Wh_imBefore rewriting:
was extracted from the post-installation
script for the acpi d package. Ex-| 1 HAL_NEEDS_RESTARTI NG=no
cept during error recoverydpkg calls | 2 case "$1" in
post-installation scripts withonfi gure |3~ configure) o
as the first positional parameter (that s> it [ -x/etc/init.d/hal ] && = -
$1). Therefore, thecase statement > [ -f fvar/run/hal d/ h?' d.pid ] then

_ _ 6 HAL_NEEDS_RESTARTI NG=yes
can be replaced with the first branch.; i nvoke-rc.d hal stop
Next, because the rest of the scriptg fi
changes neithdret c/init. d/ hal nor | 9 -
/var/run/ hal d/ hal d. pi d,thecon- | 10  reconfigure)
ditional can be evaluated at rewriting time; 11 e
in this case, the conditional is false and thet2 €Sac
false branch is empty so the entire if stat
ment is removed.

The current implementation of script HAL_NEEDS_RESTARTI NG=no
specialization is a collection of ad hoc
rewriting passes, which Niwa applies bg=igyre 8:  Example of script specialization (from
fore applying any other rewriting tech-cpj d. post i nst)
nigues. One pass replaces positional pa-
rameters with actual parameters. Another evaluates d¢ondis built from filesystem tests, when
the tests depend only on the initial filesystem state. A thléwdluates the command lingpkg
- - conpar e- ver si ons, which is used frequently and whose result can be deternfireed the VM
image’s package database.

All passes are conservative and err on the side of missingtirgvopportunities. For example, positional-
parameter replacement leaves the script unchanged if th gses theshi f t statement, which renames
the positional parameters.

Dead-assignment Elimination: This tech-
nique removes assignments to unused variable8efore rewriting:
Some dead assignments come from the origingl \ptop=+

scripts; others are created by script specializa-f [ -n "$(which | aptop-detect)" ]; then

" After rewriting:

tion, which can convert conditionally dead as- i f |aptop-detect >/dev/null; then
signments to dead assignments. LAPTOP=t r ue
Figure 9 shows an example of dead as- fi

signment from an original script, namel fi
xfont s-scal abl e. postinst. In this
script, thel apt op- det ect command is in-
trinsically memory-dependent. If its result Al | el im nated
flows to a command line that impacts the
filesystem, the script would be unsafe. Fortysig re 9: Example of dead-assignment elimination (from
nately, theLAP'_I'OP varlable_ is gnused_ln thexf ont s- scal abl e. posti nst)
rest of the script. Removing its assignment
leaves the body of the innéf statement empty, which makes the conditional unnecessdigh in turn
allows the entire inner f statement to be removed. The ouitdr statement is then removed in a similar
fashion.

The first assignment in Figure 8, which is conditionally deathe original script, could be transformed
into a dead assignment by script specialization.

Dead-assignment elimination depends on a syntax-diretdaeflow analysis of the main body of the

After rewriting:

11



script. An assignment ideadif the assigned value cannot reachsebefore reaching the end of the script
or another assignment; the analysis conservatively judgesssignment to be dead if it it does not occur
in a loop and is followed by another assignment in the sam&asiia scope, with no intervening uses in
any syntactic scope, or if no uses follow at all. Functionibsdre not considered, except that any use of
a variable within a function body is considered reachaldenfany assignment to that variable in the entire
program.

4.3 Implementation of Standalone Niwa

The implementation of standalone Niwa is composed of theets: (1) setting up the emulated environ-
ment, (2) rewriting scripts and safety analysis, and (3)yapg the patch to a VM image.

As discussed in Section 3, setting up the emulated envirohmechieved through a chroot jail [19].
In this emulated environment, we use the Advanced PackaglgABT) [5] to download patches, using the
patching host’s connection to the network. APT also helpslve package dependences, but the real job of
applying patches is done ldpkg [7], which gets input from the package file, extracts the fdatent and
hook scripts, and performs the patch. In genatpkg will fork a new process to execute each hook script.
We extenddpkg by inserting a script rewriter before the execution of eambkscript.

The implementation of the script rewriter is based on themoode of the Debian AlImquist Shell (i.e.,
dash) [6], the default shell interpreter for system tasks in @Rebliike environments. The script rewriter
applies the rewriting techniques discussed in Sectionodeath script through multiple passes of the script.
The classification of known commands and related informatieed in these rewriting techniques are pre-
configured in a file, which can be updated as needed.

The safety analysis is performed by scanning a (rewritteniptsto decide if unsafe commands remain.
If the answer is “no” for all the (rewritten) scripts involdén a patch, NUwa considers the (rewritten) patch
to be safe and applies it in the emulated environment. Horve\adter script rewriting there are still unsafe
commands in any of the scripts in a patch, Niwa considerpdbeh not applicable offline, and resorts to
automated online patching, as discussed in Section 3.

Though our current implementation is based on the Debiakgggcmanager, it should be possible to
port this implementation to other Linux distributions, Buss RPM-based Linux systems. Our initial investi-
gation into porting our tools to RPM-based Linux systemsdatks that, when it comes to executing scripts,
RPM is very similar to dpkg. One difference is where the hoatlipss are located. Another difference is
that the two kinds of distributions use different shellge.(idash andbash). We plan to port our tools to
support RPM in the near future.

5 Scalable Batch Patching

A motivating assumption of this work is that, as cloud conmmitoecomes more widely adopted, image
libraries will grow to contain thousands or perhaps evefiong of images, many of which must be patched
as new vulnerabilities are discovered. Even with the offfiaéching techniques presented in Section 4,
patching this many images individually would take a sigaificamount of time.

This section explains an approach to batch patching a largear of images offline that exploits an
observation and a conjecture about patching images. The@ion is that, if the same patch is applied to
two similar images, then any given patch-application sseikely to have the same effect on both images.
For example, the same files will be extracted from the patth times. The conjecture is that the images
that must be patched are likely to be similar to one anotlies; donjecture seems particularly reasonable
for clouds (such as Amazon’s EC2 [2]) that encourage usealsiise new images from a small set of base
images.
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Niwa’s batch patching implementation exploits the Mirageage library, which exposes image simi-
larity by storing images in a special format called the Me@dmage Format (MIF) [23]. The rest of this
section first gives a brief overview of Mirage and then démsiNUwa’s approach to and implementation of
batch patching.

5.1 Overview of Mirage

The Mirage image library maintains a collection of virtuakchine images and provides an image-management
interface to users: users can import images into the libfestyexisting images in the library, check out a
particular image, and check in updates of the image to cedtlier a new image or a new version of the
original image. A separate interface allows system admnatisrs to perform system-wide operations, such
as backup, virus scan, and integrity verification of all imagntent.

A design goal of Mirage is to support operations on imagesrastared data. To this end, Mirage does
not store images as simple disk images. Instead, when areirmagported into the library, Mirage iterates
over the image’s files, storing each file’s contents as a agp@éem in a content-addressable store (CAS);
the image as a whole is represented by a manifest that refdile-content items and serves as a recipe
for rebuilding the image when it is checked out. An earligpgr23] described this format and explained
how it allows certain operations on images to be expresséasasperations on the image’s manifest. For
example, creating a file, assuming that the desired conteatslready in the CAS, reduces to adding a few
hundred bytes to the manifest.

Mirage’s newwmountfeature, which was not described in the earlier paper, allesers to mount library
images without rebuilding them. Vmount is implemented asJ&E [24] daemon and fetches data from
the CAS as it is demanded; by contrast, checking out an imegqgres fetching every file’s contents from
the CAS. Vmount also implements a new extended filesystenibgt that allows direct manipulation of
the MIF manifest. For each regular file, the value of thisilaite is a short, unique identifier of the file’'s
contents. Setting the attribute atomically replaces teésfdontents with new contents.

After modifying an image through Vmount, the user can chedke changes as a new image or a new
version of the original image. The original image is notuaised, and the time to check in is proportional
to the amount of new data instead of to the size of the image.

Vmount has three benefits for batch patching. First, ther®iseed to rebuild each image. Arguably,
this is merely a workaround for a problem created by the dati® store images in MIF.

Second, if two images share data in the CAS and are patchedrsglly through Vmount, then reading
the shared data the second time is likely to be fast, bectiesgata will be in the host’s buffer cache. By
contrast, if two disk images are patched sequentially, therfact that they share data is effectively hidden
from the host’s operating systetn

The largest benefit is that Vmount allows batch patching &raig on manifests without major modi-
fications of system tools likdpkg. Time-critical patching steps can be changed to use the hesydiem
attribute, without creating a dependence on the manifestdt while less profitable steps continue to use
the normal filesystem interface.

5.2 Batch Patching via Mirage

A straightforward way to patch a batch of images is to itethéepatching process for individual images.
For images stored in Mirage, each iteration mounts an imatieWmount, applies the patch as shown in
Figure 2%, and checks in the modified image.

3Another, albeit unwieldy, solution to this problem is to quuse images carefully from differencing disks.
“If the patch must be applied online, then the image must hglteb
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Phase 1  Patch data File extraction conten ID of

and import imported file
Phase 2 IDs of images
to be patched
__________________________________________________
Virtual mount Pre-installation File Replacement Post- |nsta|lat|on Checkin
each erage Scrlpt rewriting through content Script rewriting modified
VM image and Execution attribute setting and Execution : VM Image

Figure 10: Batch patching VM images via Mirage

Our approach begins with this straightforward method artdropes it by moving invariant operations
out of the loop that visits each image. Currently, Niwamopes one source of invariant operations: un-
packing the patch, which copies the patch’s files to the imegk ultimately, adds their contents to the
Mirage CAS. These copies and CAS additions are good opesatmmove out of the loop because they
consume most of the time of applying most patches; in futwekywe plan to hoist more invariants out of
the loop.

Figure 10 shows the two phases of batch patching via Miragesé 1 performs the loop-invariant
operation: NUwa extracts the patch’s files and imports tivdm Mirage. The result is a list of content
identifiers, one for each file.

In phase 2, Nuwa iterates over the images. For each imageaN"

1. mounts the image with Vmount;
2. rewrites and executes the pre-installation scripts;

3. emulates the “unpack” step dpkg, using the Mirage filesystem attribute to set the contenthef
patch’s files;

4. rewrites and executes the post-installation scriptd; an
5. checks in the modified VM image.

Of course, if script rewriting ever fails to produce a safe@cthen Niwa resorts to online patching.

The program that emulates the “unpack” steplpkg is approximately 100 lines of Python code. There
are somalpkg features that it does not handle correctly yet, includingidiions and the “Replaces” field.
The lack of support for these features did not affect the exmnts in Section 6.

6 Experimental Evaluation

We have implemented both standalone Niwa and Mirage-bd§@d. Our implementations assume a
Linux host system. We have tested the standalone Niwa ahipgthosts running CentOS 5.2, Ubuntu
9.0.4 and OpenSuSE 11.1. However, Mirage-based Niuwantlyrenly works on patching host running
SuSE Linux, due to its dependence on Mirage, which only runS©SE Linux systems right now. Our
implementations currently support VM images of any Linugtdbutions based on Debian package man-
agement tools, such as Debian, Ubuntu, and Knoppix. Pootingools to handle other Linux distributions
(e.g., Redhat Package Manager (RPM)-based Linux) is tealyistraightforward, but requires additional
implementation effort.

We performed two sets of experiments to evaluate the pedoce of Niiwa, one for patching individual
VM images offline, and the other for Mirage-based offline patg in batch. Both sets of experiments were
performed on a DELL OptiPlex 960 PC, with a 3GHz Intel Core 2iPU and 4GB DDR2 memory. In
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our evaluation, we used the x86-64 version of OpenSuSE Jrdion as the host OS. For compatibility
reasons, we updated its kernel to verstoré. 31. 11- 0. 0. 0. 2. 9¢60380- def aul t .

Since our focus is to evaluate the new techniques proposeaafffime patching, in this section, we use
Niwa to only refer to its offline portion, and treat its austted online patching separately.

6.1 Patching Individual VM Images

The objective of this set of experiments is two-fold: Fimgg would like to evaluate the correctness of our
offline patching approach used in Niwa (i.e., whether tfigmefpatching approach has the same effect on
the VM images as online patching). Second, we would like ®tbe efficiency of our offline patching
approach in Nuwa compared with the online patching apgroac

In this set of experiments, we used the Linux Kernel-baseti®i Machine (KVM) [9] to start instances
of VM images for online patching. For offline patching, we disee VMware disk library to mount the VM
images in the host environment. Our tool can be logicallyodgmosed into two parts: the script rewriter and
the patch applier. We copied both components into the mdwiltéimage, with the patch applier replacing
the original package installer inside the target VM image.

To perform the evaluation, we first created an empty disk enagthe flat VMDK disk format with
thekvm i ng image creation tool. We then brought this disk image onlireugh KVM and installed a
default configured 64-bit Ubuntu-8.04 inside. This was uaedhe base VM image for both offline and
online patching in our experiments.

We gathered all 406 patches available for the base VM imagiit@Jbuntu-8.04) on October 26, 2009.
The correctness of offline patching is verified by comparimg result of the offline patching with that of
online patching: If two VM images, which are obtained throygatching the base VM image online and
offline, respectively, differ only in log files and timestaspave consider the offline patching to be correct. To
further evaluate the effectiveness of the rewriting teghes, we used the simple emulation-based patching
mentioned in Section 3 as a reference.

Table 4 shows the experimental results i i i
for evaluating the correctness of our tech- Table 4: Comparison of the two off_llne patching methc_>ds
niques. Niiwa can successfully apply 402_ _ # successes # failures | success ratig
out of the 406 patches offline, achieving aS'_mple emulatiors 369 37 90.9%
99.0% success ratio. The results also sh yuwa 402 4 99.0%
that the rewriting techniques contributed
significantly to the success; they helped improve the sgccat®o by about 10%. Note that the failure
cases are failures of offline patching, not of Niwa; NUuwebauatically detects all of these failures and can
cope with them through automatic online patching, as dssdisn Section 3.

The four failure cases are th@no- gac package and three other packages that dependwmmno- gac.
Through further analysis, we found thabno- gac failed because the installer of Mono needed to ac-
cess some kernel information (e.gpr oc/ cpui nf o,/ proc/ sys/fs/ binfm m sc, and/ proc/
sel f/ map)in order to work correctly. This information cannot be i®ied in the emulated environment.

To compare the efficiency of NUwa’s offline patching teclueis| with that of online patching, we per-
formed another set of experiments. We assumed the moseeffitrm of online patch, automated online
patching. This is in fact our fall-back solution in case offlipatching is unsafe. We believe this is the most
efficient form of online patching, since it automates all $teps required in online patching.

We collected two sets of data from these experiments. Theditise time (in seconds) required to apply
each applicable patch to the base VM image through the offlibehing approach in Niwa, and the second
is the time needed to apply the same set of patches througmated online patching.

mono- gac is a utility to maintain the global assembly cache of monoppen source implementation 6% and the CLR
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Figure 11: Time used by offline and online patching (“Averageomputed over 402 applicable packages)

Figure 11 shows the time (in seconds) required to apply s@pkcable patches to the base VM image
through the Niwa offline patching and the automated onlatetpng, respectively. Due to the limited space,
we only show the timing results for eight selected patchektha average for all 402 applicable patches.
On average, the Niiwa offline approach takes @8l9% of the time required by automated online patching
(a factor of 4 speedup). This improvement, combined withféoe that Niwa needs much less human
intervention and physical resources, show that it bringsiicant benefits to patching VM images.

This set of experiments demonstrates that Nuwa’s offlinehiiag techniques, particularly the rewriting
techniques, are effective and that offline patching usiog/&l¢an significantly reduce the overhead involved
in patching.

6.2 Batch Patching via Mirage

The primary objective of this set

of experiments is to measure the Table 5: Basic Ubuntu tasks

scalability offered by Mirage-based No. | Task Name No. | Task Name

Niowa by comparing the perfor-| 1 lamp-server 2 mail-server

mance of Mirage-based batch patch-3 dns-server 4 openssh-server

ing with that of one-by-one patch-| 5 print-server 6 samba-server

ing. 7 postgresql-server 8 ubuntustudio-audio
We generated 100 VM images 9 ubuntustudio-audio-pluging 10 | ubuntustudio-graphics

using 32-bit Ubuntu 8.04 as the basg11l | ubuntustudio-video 12 | ubuntu-desktop

operating system for this set of ex-

periments. The Ubuntu installer can install a support foumiper of basic, predefined tasks; some of these
tasks are for running specific servers, while others aredskip use. We generated test VM images from
100 randomly selected combinations of 12 of these taskedlis Table 5).

We retrieved 154 security updates (i.e., security patctoesd2-bit Ubuntu 8.04 from Ubuntu Security
Notices [26]. We also retrieved the ranking of Ubuntu paésagiven by Ubuntu’s popularity contest [10],
and sorted the 154 security patches accordingly. For odonpeance evalution, we selected the security
updates corresponding to the eight most popular packagesf (mnuary 18th, 2010). These packages are
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Figure 12: Scalability Evaluation of Mirage-based Nuwa

dash, libdbus, libglib-2.0, libfreetype, udev, libpng, |ibxm 2,anddbus.

For each of the eight patches, we measured the time to agppatich to the test VM images one-by-one
and the time to apply the patch to the test VM images as batahiesreasing sizes. Figure 12 shows that
for all eight security patches, Mirage-NUwa achieves mmrable speedup over one-by-one patching. The
speedup also increases as the number of images patchedtrharmaeases, and plateaus between 80 and
100 images.

For seven of the eight security patcheslév is the exception), the average speedup over one-by-one
patching increases from 5.1 times to 8.5 times as the nunfleages in a batch increases from 10 to 100.
Note that this speedup is on top of the factor of 4 speedupeaetiiover traditional online patching, thus
bringing the total speedup over traditional online patghimabout 30 when patching 100 images in a batch.

However, the speedup fardev is much smaller, compared with the other seven patches. chy fa
the speedup foudev is only around 2. Further investigation showed that tidev patch spends more
time in pre-installation and post-installation scriptarifdo the others; thus, the file replacement operations
constitute a smaller portion of the entire patching process

This set of experiments demonstrates that Mirage-basedaNgiscalable and can further improve the
performance of offline patching significantly. Overall, W&ioffline patching is an order of magnitude more
efficient than online patching.

7 Related work

Several available commercial tools [11, 25, 27] can apptghEs to dormant VM images. But that does not
mean the patches are applied indfline manner. As a matter of fact, all of them require the image to be
running when the patches are actually installed. Micrés@ftfline VM Servicing Tool [11] first “wakes” up
the virtual machine (deploys it to a host and starts it), tiigigers the appropriate software update cycle to
apply the patches, and finally shuts down the updated vinizahine and returns it to the image library. In
the cases of VMware Update Manager [27] and Shavlik NetClokelet [25], patches are first inserted into
image at some specified locations, then applied when thedrisggowered up. We resort to this approach
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when Niwa identifies patches that contain unsafe commands.

In some cases, it is preferable to apply patches online. hergd systems that tend to stay online for
a long period of time, such as highly available servers,ifa this category. In those cases, “dynamic
update” techniques [1,3,15,17] are used to apply patchietimrget software without shutting them down.
In contrast, NUwa targets VM images that have already bbeahdown and may stay in dormant state for
an extended period of time. Thus, these approaches are iocoempary to Niwa.

8 Conclusion

In this paper, we developed a novel tool named Niwa to ergffitdent patching of offline VM images.
Niwa uses safety analysis and script rewriting techniqaenvert patches, or more specifically the in-
stallation scripts contained in patches, which were oaliyndeveloped for online updating, into a form
that can be applied to VM images offline. Niiwa also leveragesvM image manipulation technologies
offered by the Mirage image library [23] to provide an effiti@nd scalable way to patch VM images in
batch. We implemented Nuwa based on the Debian packagegera7d, including both a standalone ver-
sion and a Mirage-based version. We evaluated Niwa withrigg@atches and VM images configured
with popular packages according to Ubuntu popularity cemt®ur experimental results demonstrate that
1) Nuwa’s safety analysis and script rewrting techniguesedfective — Niiwa is able to convert more than
99% of the patches to safe versions that can then be appflettdbd VM images and; 2) the combination of
offline patching with additional optimization made possilthrough Mirage’s efficent image manipulation
capabilities allows Nuwa to be an order of magnitude mdiieieft than online patching.

A limitation of Nuwa is that it currently does not supporfliofe patching of suspended VM images,
which also includes a snapshot of the system memory statiditian to the file system.

In our future research, we will investigate techniques tlpauspended VM images. We also plan to
port Niwa to support other popular package managers suBPiks Finally, we will look into new issues
that arise when applying Nuwa in cloud computing environtegsuch as efficient testing of patched VM
images.
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