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Abstract

Patching is a critical security service to keep computer systems up to date and to defend against se-
curity threats. Existing patching systems all require running systems. With the increasing adoption of
virtualization, there is a growing number of dormant virtual machine (VM) images. Such VM images
cannot benefit from existing patching systems, and thus are often left vulnerable to emerging security
threats. It is possible to bring VM images online, apply patches, and capture the VMs back to dor-
mant images. However, such approaches suffer from performance challenges and high operation costs,
particularly in large-scale compute clouds where there could be thousands of dormant VM images.

This paper presents a novel tool namedNüwa that enables efficient and scalable offline patching
of dormant VM images. Nüwa analyzes patches and, when possible, converts them into patches that
can be applied offline by removing operations that require a runnning system. Nüwa also leverages
the VM image manipulation technologies offered by the Mirage image library to provide an efficient
and scalable way to patch VM images in batch. Nüwa has been evaluated with real-world patches
and on VM images configured with popular packages according to the Ubuntu popularity contest. Our
implementation of Nüwa is based on the Debian package manager and our evaluation applies 406 patches
to a fresh installation of Ubuntu-8.04. Nüwa successfullyapplies 402 out of the 406 patches, and speeds
up the patching process by more than 4 times compared to the online approach. This can be further sped
up by another 2–10 times when the tool is integrated with Mirage, making Nüwa an order of magnitude
more efficient than the online approach.

1 Introduction

Patching is a basic and effective mechanism for computer systems to defend against most, although not
all, security threats, such as viruses, rootkits, and worms[14, 21, 22]. Failing to promptly patch physical
machines can subject the systems to huge risks, such as loss of confidential data, compromise of system
integrity, and failure to provide regular system services.Unfortunately, applying security patches is a noto-
riously tedious task, due to the sheer large number of patches and the high rate at which they are released –
It is estimated that, in the average week, vendors and security organizations release about one hundred and
fifty vulnerabilities and associated patching information[16]. As a result, most software runs with outdated
patches [12,13].

The problem is exacerbated by the IT industry’s recent shiftto virtualization. Virtualization allows a
complete system state to be conveniently encapsulated in a virtual machine (VM) image, which can be run
on any compatible hypervisor. Because VM images are normal files, they can be easily copied to create
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new VM images. This has led to a new “VM image sprawl” problem.A direct result of the VM image
sprawl problem is the significantly increased management cost to maintain these VM images. Because each
VM image is a logical computer, it needs to be maintained likeits physical counterpart, including regularly
applying security patches. This is true even for dormant VM images that are not being actively used – they
resemble physical machines that are powered down.

We argue that existing patching utilities, originally designed for running systems, are a poor fit for VM
images. Because they require the VM images to be online before the patch can be applied, they do not scale
to a large number of images – it takes on the order of minutes just to power up and shut down a VM image.

Current approaches to VM image patching are based on the traditional model where a VM image must
be running in order for the patch to be applied. Thus they share the same scalability limitations as the
traditional patching approach. One example is the Microsoft Offline Virtual Machine Servicing Tool [11],
which adopts a method to bring the VM image online, apply the patches, and capture the VM back to a
dormant image.

Realizing that not all VM images are needed immediately by their users, some solutions [25] use a clever
optimization where patches are applied lazily. The patch installer and patch data are injected into the VM
image in such a way that the patch process is triggered at the next booting time. This optimization can yield
significant savings in the total time spent in patching in thecase where only a small percentage of dormant
images will ever be used. However, the tradeoff is that userswill now see a significant delay in their image
startup time, especially for images that have accumulated along list of yet-to-be-applied patches.

Another weakness shared by all online patching approaches is that it assumes that the vulnerable versions
of software on the target VM image will not be attacked duringthe time period between when the image
boots up and when the patch finishes. That is not the case for the Windows Blast worm [4], where a machine
could get infected immediately after it boots up and before it could get a chance to apply the patch. It is also
possible for an already infected machine to constantly reboot itself such that the patching process never has
a chance to complete.

We propose an approach that is fundamentally different fromthe traditional online model. We argue
that the only way to make the patching process scalable in a cloud environment where the number of images
can potentially reach millions1 is to do it offline. A closer look into the patching process reveals that it can
be decomposed into a sequence of actions, not all of which require a running system. In fact, most of the
patching actions only depend on and have impact on file systemobjects, which are already encapsulated in
the VM image itself. Among the actions that do depend on or have impacts on a running system, we find that
many are unnecessary to execute when patching offline, and some can be safely replaced by other actions
that do not need the running system. Based on these findings, we design and implement Nüwa2, a scalable
offline patching tool for VM images. By performing the patching offline, Nüwa avoids the expensive VM
start and stop time, and ensures that for the majority cases,when a VM image is ready to be started, it always
has the latest patches installed.

Because Nüwa is an offline patching tool, it can leverage novel VM image manipulation technologies
to further improve scalability. In particular, Nüwa is integrated with the Mirage image library [23] which
provides a rich set of tools and APIs for efficient offline image manipulation.

Our implementation of Nüwa is based on the Debian package manager [7]. We evaluated Nüwa with
406 patches for a freshly installed Ubuntu-8.04. Our evaluation results show that Nüwa can successfully
apply 402 out of the 406 patches, and speeds up the patching process by more than 4 times compared to
the online approach. This can be further improved by another2–10 times when the tool is integrated with
Mirage, making Nüwa an order of magnitude more efficient than the online approach.

1Amazon EC2 already contains over 6,000 public VM images. This number does not include private images that users choose
not to share with others [20].

2Named after the Chinese Goddess who patches the sky.
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We summarize our contributions below:

1. We designed a scalable offline patching tool for VM images that is backward compatible with an
existing patch format. To the best of our knowledge, this is the first tool of its kind in the academic
literature.

2. We implemented and evaluated the tool based ondpkg, a popular package installation system for
Debian-based Linux distributions, and demonstrated its superior scalability – it sped up patching time
by 8–40 times compared to the traditional online based approach.

This paper is organized as follows. Section 2 gives some background information on patching and
describes our design choices and technical challenges. Section 3 presents an overview of our approach. Sec-
tion 4 describes the mechanisms we use to convert an online patch into one that can be safely applied offline.
Section 5 describes how we leverage efficient image manipulation mechanisms to further improve scalabil-
ity. Section 6 presents our experimental evaluation results. Section 7 discusses related work. Section 8
concludes this paper with an outlook to the future.

2 Problem Statement

2.1 Background

Software patches, or simply patches, are often distributedin the form of software update packages (e.g.,
.debor .rpmfiles), which are installed using a package installer, such asrpm anddpkg. In this section, we
give background information on the format of software packages and the package installation process. We
use the Debian package management tooldpkg as an example. Most software package management tools
follow the same general style with only slight differences (e.g., a different shell to interpret the installation
scripts).

Packages are distribution units of specific software. A package usually includes files for different pur-
poses and associated metadata, such as the name, version, dependence, description and concrete instructions
on how to install and uninstall this specific software. Different platforms may use different package formats
to distribute software to their users. But the contents included inside are mostly the same. A Debian pack-
age, for example, is a standard Unixar archive, composed of two compressed tar archives, one for the
filesystem tree data and the other for associated metadata for controlling purposes. Inside the metadata,
a Debian package includes a list of configuration files, md5 sums for each file in the first archive, name
and version information, and shell scripts that the packageinstaller runs at specific points in the package
lifecycle.

The main action in patching is to replace the old buggy filesystem data with the updated counterparts.
Beside this, the package installer also needs to perform some other operations to ensure the updated software
will work well in the target environment. For example, a dependence or conflict must be resolved, a new
user or group might have to be added, configuration modifications by the user should be kept, other software
packages dependent on this one may need to be notified of this update, and running instances of this software
may need to be stopped and restarted. Most of these actions are specified in the shell scripts provided by the
package developers. Because these scripts are intended to be invoked at certain points during the installation
process, they are calledhook scripts. The hook scripts that are invoked before (or after) file replacement
operations are calledpre-installation(or post-installation) scripts. There are also scripts that are intended to
be invoked when relevant packages (e.g., dependent software, conflicting software) are installed or removed.

More details about Debian package management tools can be found in the Debian Policy Manual [8].
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2.2 Design Choices and Technical Challenges

Our goal is to build a patching tool that can takeexistingpatches intended for online systems and apply
themoffline to a large collection of dormant VM images in a manner that issafeandscalable. By safety
we mean that applying the patch offline achieves the same effect on the persistent file systems in the images
as applying it online. By scalability we mean that the tool has to scale to thousands, if not millions of
VM images. We would like to point out that in this paper we onlyconsider dormant VM images that are
completely shutdown; VM images that contain suspended VMs are out of the scope of this paper.

We made a conscious design decision to be backward compatible with an existing patch format. It
is tempting to go with a “clean slate” approach, where we define a new VM-friendly patch format and
associated tools that do not make the assumption of a runningsystem at the time of patch application. While
this is indeed our long-term research goal, we think its adoption will likely take a long time, given the
long history of the traditional online patching model and the fact that it is an entrenched part of today’s IT
practices, ranging from software development and distribution to system administration. Thus, we believe
that an interim solution that is backward compatible with existing patch format, and yet works in an offline
manner and provides much improved scalability, would be desirable.

Several technical challenges arise in implementing such a scalable offline patching tool. The most
outstanding challenges come from the fact that all current patching solutions are designed for running sys-
tems. These patching solutions require the system to be running to execute many transactions, such as
related component discovery and notification, environmentspecific customization, and application or ser-
vice restart. Another challenge is to scale the patching tool to an extent that it can be routinely run in a
cloud environment where the image collection is expected tobe huge. We next elaborate these challenges
in detail.

Identifying Runtime Dependences:The current software industry is centered around running systems
and so are the available patching solutions. A running system provides a convenient environment to execute
the installation scripts in the patch. The installation scripts query the configuration of the running system in
order to customize the patch appropriately for the system. Some scripts also restart the patched software at
the end of the patching process to make sure its effect takes place. Some patches require running daemons.
For example, some software stores configuration data in a database. A patch that changes the configuration
requires the database server to be running in order to perform schema updates.

The challenge is to separate runtime dependences that can besafely emulated (such as information dis-
covery that only depends on the file system state) or removed (such as restarting the patched software) from
the ones that cannot (such as starting a database server to doschema updates). We address this challenge by
a combination of manual inspection of commands commonly used in scripts (performed only once before
any offline patching) and static analysis of the scripts.

Removing Runtime Dependencies:Once we identify runtime dependences that can be safely emulated
or removed, the next challenge is to safely remove these runtime dependences so that the patch can be applied
to a VM image offline and in a manner that does not break backward compatibility. Our solution uses a script
rewriting approach that preserves the patch format and allows a patch intended for an online system to be
applied safely offline in an emulated environment.

Patching at a Massive Scale:As the adoption of virtualization and cloud computing accelerates, it is
a matter of time before a cloud administrator is confronted with a collection of thousands, if not millions
of VM images. Just moving from online to offline patching is not sufficient to scale to image libraries
of that magnitude. We address this challenge by leveraging Mirage’s capabilities in efficient storage and
manipulation of VM images [23].
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1 if [ "$1" = "configure" ]; then
2 if [ -e /var/run/dbus/pid ] &&
3 ps -p $(cat /var/run/dbus/pid); then
4 /usr/share/update-notifier/notify-reboot-required
5 ...
6 fi
7 fi
8 ...
9 if [ -x "/etc/init.d/dbus" ]; then
10 update-rc.d dbus start 12 2 3 4 5 . stop 88 1 .
11 if [ -x "‘which invoke-rc.d‘" ]; then
12 invoke-rc.d dbus start
13 else
14 /etc/init.d/dbus start
15 fi
16 fi

Figure 1: Excerpts of thedbus.postinst script

3 Approach

It seems plausible that patching VM images offline would work, given the fact that the goal of patching is
mainly to replace old software components, represented as files in the file system, with new ones. Indeed, to
patch an offline VM image, we only care about the changes made to the file system in the VM image; many
changes intended for a running system do not contribute to the VM image directly.

One straightforward approach is to perform the file replacement actions from another host, referred to
as thepatching host. Specifically, the patching host can mount and access an offline VM image as a part of
its own file system. Using thechroot system call to change the root file system to the mount point, the
patching host can emulate an environment required by the patching process on a running VM and perform
the file system actions originally developed for patching a running VM. For the sake of presentation, we call
this approachsimple emulation-based patchingand call the environment set up by mounting the VM image
and changing the root file system to the mount point theemulated environment.

Unfortunately, our investigation shows that the installation scripts used by the patching process pose a
great challenge to simple emulation-based patching. Many patches use scripts to perform pre-installation
and post-installation configurations, such as detecting system environment to perform conditional actions,
restarting a patched daemon, and notifying relevant software components or the system about the updates
so that they can take extra actions.

Figure 1 shows two segments of code fromdbus.postinst, the post-installation script in thedbus
package. The first segment (lines 1 to 7) detects possibly running dbus processes and sends a reboot
notification to the system if there exists one. The second segment (lines 9 to 16) restarts the patcheddbus
daemon so that the system begins to use the updated software.Both segments depend on a running VM to
work correctly. The simple emulation-based patching will fail when coming across this script.

To address this challenge, we look further into the internals of patching scripts. After analyzing patching
scripts in more than one thousand patching instances, we made some important observations. First, most
commands used in the patching scripts aresafeto execute in the emulated environment, in the sense that
they do not generate undesirable side effects on the persistent file system that would make the patched VM
image different from one patched online except for log files and timestamps. Examples of such commands
include the test commands in lines 2, 9 and 11,cat in line 3, /usr/share/update-notifier/
notify-reboot-required in line 4, update-rc.d in line 10, andwhich in line 11. Second,
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some command executions have no impact on the offline patching and thus can be skipped. For example,
invoke-rc.d in line 12 of Figure 1 is supposed to start up a running daemon,and its execution has no
impact on the persistent file system. Thus, we can just skip it. We call such codeunnecessary code. Third,
there are usually more than one way to achieve the same purpose. Thus, it is possible to replace an unsafe
command with a safe one to achieve the same effect. For example, many scripts useuname -m to get
the machine architecture; unfortunately,uname -m returns the architecture of the patching host, which is
not necessarily the architecture for which the VM image is intended. We can achieve the same purpose by
looking at the file system data, for example, the architecture information in the ELF header of a binary file.

Motivated by these observations, in this paper, we propose asystematic approach that combines safety
analysis and script rewriting techniques to address the challenge posed by scripts. The safety analysis
examines whether it is safe to execute a script in the emulated environment, while the rewriting techniques
modify unsafe scripts to either eliminate unsafe and unnecessary code, or replace unsafe code with safe one
that achieves the same purpose. Our experience in this research indicates that the majority of unsafe scripts
can be rewritten into safe ones, and thus enable patches to beapplied to offline VM images in the emulated
environment.

However, not all script can be handled successfully in this way. We find some patching instances, after
safety analysis and rewriting, still fail in the emulation-based environment. Some patches have requirements
that can only be handled in a running environment. For example, the post-installation script in a patch for
MySQL may need to start a transaction to update the administrative tables of the patched server. As another
example,mono, the open source implementation of C# and the Common Language Runtime, depends on a
running environment to apply the update to itself.

Figure 2: Overview of the Nüwa approach

Given the above discussion, we adopt a hybrid
approach in the development of Nüwa. Figure 2
shows an overview of the Nüwa approach. When
presented with a patch, Nüwa first performs safety
analysis on the patching scripts included in the orig-
inal patch. If all scripts are safe, Nüwa uses sim-
ple emulation-based patching directly to perform of-
fline patching. If some scripts are unsafe, Nüwa ap-
plies various rewriting techniques, which will be dis-
cussed in detail in Section 4, to these scripts, and
performs safety analysis on the rewritten scripts. If
these rewriting techniques can successfully convert
the unsafe scripts to safe ones, Nüwa will use simple
emulation-based patching with the rewritten patch to
finish offline patching. However, in the worst case,
Nüwa may fail to derive safe scripts through rewrit-
ing, and will resort to online patching. In reality, we
have found such cases to be rare – our results show that less than 1% of the packages tested in our experi-
ments fall into this category (Section 6.1).

The online patching may take different forms. For performance reasons, Nüwa takes an automated
online patching approach. Specifically, Nüwa inserts the patch data into the VM image through the emulated
environment and then schedules a patching process at boot time by modifying the booting script in the VM
image. The idea is to have the VM run the patching process before it has a chance to interact with other
systems (that is, before any networking capability is established during the boot process). Nüwa then boots
the VM, performs online patching, and shuts down the VM automatically once the patching is complete.
Note that similar techniques have been proposed before (e.g., [11,25]).

In addition to patching individual VM images, Nüwa also leverages VM image manipulation technolo-
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gies to further improve scalability. In particular, Nüwa uses features of the Mirage image library [23] to
enable scalable patching of a large number of VM images in batch.

To distinguish between the two variations of Nüwa, we referto the former asstandalone N̈uwa, and the
latter, which leverages Mirage, asMirage-based N̈uwa. In the remainder of this paper, we describe the novel
techniques developed for offline patching in the context of both standalone Nüwa and Mirage-based Nüwa.

4 Safety Analysis and Script Rewriting

This section explains how safe patch scripts are identified and, when possible, unsafe scripts are transformed
into safe scripts. The analysis is based on three concepts — impact, dependence, and command classifica-
tion, which are defined in Section 4.1. Section 4.2 presents rewriting techniques that, using information from
safety analyses, convert many unsafe scripts into safe scripts. Section 4.3 describes how these techniques
are put together to develop standalone Nüwa.

In our implementation, safety analysis and script-rewriting run immediately beforedpkg executes a
patch script. As a result, analyses and transformations have access to the script’s actual environment and
arguments and to the image’s filesystem state.

Patch scripts in Debian are SUSv3 Shell Command Language scripts [18] with three additional features
mandated by the Debian Policy Manual [8]. Shell scripts are executed by a interpreter that repeatedly reads
a command line, expands it according to a number of expansionand quoting rules into a command and
arguments, executes the command on the arguments, and collects the execution’s output and exit status. The
language is very dynamic (for example, command-lines are constructed and parsed dynamically), which
forces our analyses and transformations to be conservative. Nonetheless, simple, syntax-directed analyses
and rewritings suffice to convert unsafe scripts to safe versions for 99% of the packages we considered.

4.1 Impact, Dependence, and Command Classification

The goal of command classification is to divide a script’s command lines into three categories: (1) safe to
execute offline, (2) unsafe to execute offline, and (3) unnecessary to execute offline. To classify command
lines, we divide a running system into a “memory” part and a “filesystem” part, and determine which parts
may influence or be influenced by a given command line. The intuition is that the “filesystem” part is
available offline but the “memory” part requires a running instance of the image that is being patched.

We say that a command-line executiondepends on the filesystemif it reads data from the filesystem or
if any of its arguments or inputs flow from executions that depend on the filesystem. An executionimpacts
the filesystemif it writes data to the filesystem or if its output or exit status flow to executions that impact
the filesystem.

Table 1 lists some commands whose executions impact the filesystem:

Table 1: Commands with FS-only impacts
Command Type Example Commands
File attribute modification chown, chmod, chgrp, touch
Explicit file content modification cp, mv, mknode, mktemp
Implicit file content modification adduser, addgrp, remove-shell

We say that a command-line executiondepends on memoryif it inspects any of a number of volatile
components of the system’s state (perhaps by listing running processes, opening a device, connecting to a
daemon or network service, or reading a file under/proc that exposes kernel state) or any of its arguments
or inputs flow from executions that depend on memory. An execution impacts memoryif it makes a change
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to a volatile component of the system’s state that outlives the execution itself, or if its output or exit status
flow to executions that impact the filesystem.

Note that all executions have transient effects on volatilestate: they allocate memory, create processes,
cause the operating system to buffer filesystem data, and so forth. For the purposes of classification, we do
not consider these effects to be impacts on memory; we assumethat other command-line executions do not
depend on these sorts of effects.

Table 2 lists some commands that impact or depend on memory.

Table 2: Commands with memory impact or dependence
Command Type Example Commands
Daemon start/stop invoke-rc.d, /etc/init.d/
Process status ps, pidof, pgrep, lsof, kill
System information inquiry uname, lspci, laptop-detect
Kernel module lsmod, modprobe
Others Database update, mono gac-install

The definitions for command-line executions are extended todefinitions for static command lines. A
command line depends on memory (or the filesystem) if any of its executions depend on memory (or the
filesystem). A command line impacts memory (or the filesystem) if any of its executions impact memory
(or the filesystem).

To seed impact and dependence analysis, we manually inspected all commands used in patch scripts
to determine their intrinsic memory and filesystem impacts and dependences. This might seem to be an
overwhelming task but, in practice, scripts use very few distinct commands; we found only about 200 distinct
commands used by more than 1,000 packages. It may be possibleto derive this information by instrumenting
command executions. In practice, we expect that it would be provided by package maintainers.

Our analysis concludes that a static command-line depends on memory if one of the following holds:

• The command is unknown.

• The command has an intrinsic memory dependence.

• One or more of the arguments is a variable substitution.

• The input is piped from a command that depends on memory.

• The input is redirected from a device, a file under/proc, or from a variable substitution.

The rules for filesystem dependences and for impacts are similar. Note that the analysis errs on the side
of finding spurious dependences and impacts. That is, these analyses are simple “may-depend/may-impact”
analyses, which are both flow and context insensitive.

Table 3: Command classification
Dependence Dependence Impact Impact Safety

on FS on Memory on Memory on FS
Yes/No No No Yes/No Safe
Yes/No No Yes Yes Unsafe
Yes/No Yes No Yes Unsafe
Yes/No Yes Yes Yes Unsafe
Yes/No No Yes No Unnecessary
Yes/No Yes No No Unnecessary
Yes/No Yes Yes No Unnecessary
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Figure 3: Flow of script analysis and rewriting

Table 3 shows how each command line’s classification as safe,unsafe, or unnecessary is determined
from its filesystem and memory impacts and dependences. Safecommand lines do not depend on or impact
memory. These are the commands that can and should be executed offline. Script rewriting preserves
these commands. Unnecessary command lines have no impact onthe filesystem. There is no reason to
execute them offline because they do not change the image. In fact, if they depend on or impact memory,
then they must be removed because they might fail without a running instance. Script rewriting removes
these commands. Unsafe command lines may execute incorrectly offline because they depend on or impact
memory and also impact the filesystem. In some cases, script rewriting cannot remove these command lines
because their filesystem impacts are required. If any unsafecommand line cannot be removed, then the
patch cannot be executed offline.

4.2 Rewriting Techniques

Figure 3 shows the rewriting techniques that Nüwa applies before executing each patch script. Rewriting
a script can change the results of safety analysis, so Nüwa reruns safety analysis after applying these tech-
niques. If safety analysis proves that all command lines in the script are safe, then the rewritten script is
executed offline. Otherwise, Nüwa resorts to online patching.

/etc/init.d/acpid
/etc/init.d/cupsys
killall CONSTANT

Figure 4: Examples of command
lines that are removed by unneces-
sary command elimination

Nüwa currently applies five rewriting techniques, which are de-
scribed below. For clarity, the presentation does not follow the or-
der in which the techniques are applied (that order is shown in Fig-
ure 3). The first two techniques consider command-lines, annotated
by safety analysis, in isolation; the last three analyze larger scopes.

Unnecessary Command Elimination:This technique removes
unnecessary commands, which, by definition, have neither direct nor
indirect impact on the filesystem. Figure 4 shows examples found in
actual patch scripts.

uname -m
-> dpkg --print-architecture

uname -s
-> echo "Linux"

Figure 5: Memory-dependent command
lines and their replacements

Command Replacement:Some command lines that de-
pend on memory can be replaced with command lines that
depend only on the filesystem. This often happens with com-
mands that need information about the system, in particular
when the information is available both in the filesystem and,
if there is a running instance, in memory.

For example, theuname command prints system infor-
mation; depending on its arguments, it will print the host-
name, the machine hardware name, the operating system
name, or other fields.uname gets its information from the
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kernel through theuname system call. Without a running instance, information from the kernel cannot be
trusted. However, certain fields are statically known constants or available through commands that depend
only on the filesystem; Figure 5 shows two examples.

Note that command replacement not only removes memory-dependent commands but also ensures that
the offline script uses values appropriate to the image instead of values from the host. Nüwa’s implemen-
tation of command replacement consults a manually constructed table of command lines and their known
replacements.

Before rewriting:

1 if [ -x "‘which invoke-rc.d‘" ]; then
2 invoke-rc.d dbus start
3 else
4 /etc/init.d/dbus start
5 fi

After rewriting:

All eliminated

Figure 6: Example of control structure analysis (from
dbus.postinst)

Unnecessary Control-structure Elimina-
tion: This technique, a generalization of un-
necessary command elimination, removes com-
pound commands likeif and case state-
ments.

Figure 6 shows an example. Both the true
branch and the false branch of theif-statement
are unnecessary and would be eliminated by un-
necessary command elimination. The condi-
tional would not be eliminated because safety
analysis conservatively assumes that all con-
ditionals impact both memory and the filesys-
tem through control-flow. By contrast, unnec-
essary control-structure elimination eliminates
the entireif-statement because, after eliminat-
ing both branches of theif-statement, the conditional is unnecessary: It clearly hasno filesystem impact
through control-flow or any other means.

Figure 7: Unnecessary control-structure elimination

Unnecessary control-structure elimination proceeds bottom-up as shown in Figure 7. For each control
structure, we first try to eliminate all statements in each branch of the structure. If all statements in every
branch can be eliminated, we consider the conditional itself: If it no longer impacts the filesystem, the entire
control structure is removed.

Note that Nüwa applies unnecessary control-structure analysis to many kinds of compound commands
and command lists, including thecase construct and command lists built from the short-circuiting state-
ments (‖ and&&).

Script Specialization: This technique removes command lines and control structures that cannot exe-
cute, given the script’s actual environment and arguments and the VM image’s filesystem state. Recall that
this context is available because safety analysis and script-rewriting run immediately beforedpkg executes
a patch script.
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Before rewriting:

1 HAL_NEEDS_RESTARTING=no
2 case "$1" in
3 configure)
4 if [ -x /etc/init.d/hal ] &&
5 [ -f /var/run/hald/hald.pid ]; then
6 HAL_NEEDS_RESTARTING=yes
7 invoke-rc.d hal stop
8 fi
9 ;;
10 reconfigure)
11 ...
12 esac

After rewriting:

HAL_NEEDS_RESTARTING=no

Figure 8: Example of script specialization (from
acpid.postinst)

Figure 8 shows an example, which
was extracted from the post-installation
script for the acpid package. Ex-
cept during error recovery,dpkg calls
post-installation scripts withconfigure
as the first positional parameter (that is,
$1). Therefore, thecase statement
can be replaced with the first branch.
Next, because the rest of the script
changes neither/etc/init.d/halnor
/var/run/hald/hald.pid, the con-
ditional can be evaluated at rewriting time;
in this case, the conditional is false and the
false branch is empty so the entire if state-
ment is removed.

The current implementation of script
specialization is a collection of ad hoc
rewriting passes, which Nüwa applies be-
fore applying any other rewriting tech-
niques. One pass replaces positional pa-
rameters with actual parameters. Another evaluates conditionals built from filesystem tests, when
the tests depend only on the initial filesystem state. A thirdevaluates the command linedpkg
--compare-versions, which is used frequently and whose result can be determinedfrom the VM
image’s package database.

All passes are conservative and err on the side of missing rewriting opportunities. For example, positional-
parameter replacement leaves the script unchanged if the script uses theshift statement, which renames
the positional parameters.

Before rewriting:

LAPTOP=""
if [ -n "$(which laptop-detect)" ]; then

if laptop-detect >/dev/null; then
LAPTOP=true

fi
fi

After rewriting:

All eliminated

Figure 9: Example of dead-assignment elimination (from
xfonts-scalable.postinst)

Dead-assignment Elimination:This tech-
nique removes assignments to unused variables.
Some dead assignments come from the original
scripts; others are created by script specializa-
tion, which can convert conditionally dead as-
signments to dead assignments.

Figure 9 shows an example of dead as-
signment from an original script, namely
xfonts-scalable.postinst. In this
script, thelaptop-detect command is in-
trinsically memory-dependent. If its result
flows to a command line that impacts the
filesystem, the script would be unsafe. Fortu-
nately, theLAPTOP variable is unused in the
rest of the script. Removing its assignment
leaves the body of the innerif statement empty, which makes the conditional unnecessary,which in turn
allows the entire innerif statement to be removed. The outerif statement is then removed in a similar
fashion.

The first assignment in Figure 8, which is conditionally deadin the original script, could be transformed
into a dead assignment by script specialization.

Dead-assignment elimination depends on a syntax-directeddata-flow analysis of the main body of the
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script. An assignment isdeadif the assigned value cannot reach ausebefore reaching the end of the script
or another assignment; the analysis conservatively judgesan assignment to be dead if it it does not occur
in a loop and is followed by another assignment in the same syntactic scope, with no intervening uses in
any syntactic scope, or if no uses follow at all. Function bodies are not considered, except that any use of
a variable within a function body is considered reachable from any assignment to that variable in the entire
program.

4.3 Implementation of Standalone N̈uwa

The implementation of standalone Nüwa is composed of threeparts: (1) setting up the emulated environ-
ment, (2) rewriting scripts and safety analysis, and (3) applying the patch to a VM image.

As discussed in Section 3, setting up the emulated environment is achieved through a chroot jail [19].
In this emulated environment, we use the Advanced Package Tool (APT) [5] to download patches, using the
patching host’s connection to the network. APT also helps resolve package dependences, but the real job of
applying patches is done bydpkg [7], which gets input from the package file, extracts the file content and
hook scripts, and performs the patch. In general,dpkg will fork a new process to execute each hook script.
We extenddpkg by inserting a script rewriter before the execution of each hook script.

The implementation of the script rewriter is based on the source code of the Debian Almquist Shell (i.e.,
dash) [6], the default shell interpreter for system tasks in Debian-like environments. The script rewriter
applies the rewriting techniques discussed in Section 4.2 to each script through multiple passes of the script.
The classification of known commands and related information used in these rewriting techniques are pre-
configured in a file, which can be updated as needed.

The safety analysis is performed by scanning a (rewritten) script to decide if unsafe commands remain.
If the answer is “no” for all the (rewritten) scripts involved in a patch, Nüwa considers the (rewritten) patch
to be safe and applies it in the emulated environment. However, if after script rewriting there are still unsafe
commands in any of the scripts in a patch, Nüwa considers thepatch not applicable offline, and resorts to
automated online patching, as discussed in Section 3.

Though our current implementation is based on the Debian package manager, it should be possible to
port this implementation to other Linux distributions, such as RPM-based Linux systems. Our initial investi-
gation into porting our tools to RPM-based Linux systems indicates that, when it comes to executing scripts,
RPM is very similar to dpkg. One difference is where the hook scripts are located. Another difference is
that the two kinds of distributions use different shells (i.e.,dash andbash). We plan to port our tools to
support RPM in the near future.

5 Scalable Batch Patching

A motivating assumption of this work is that, as cloud computing becomes more widely adopted, image
libraries will grow to contain thousands or perhaps even millions of images, many of which must be patched
as new vulnerabilities are discovered. Even with the offlinepatching techniques presented in Section 4,
patching this many images individually would take a significant amount of time.

This section explains an approach to batch patching a large number of images offline that exploits an
observation and a conjecture about patching images. The observation is that, if the same patch is applied to
two similar images, then any given patch-application step is likely to have the same effect on both images.
For example, the same files will be extracted from the patch both times. The conjecture is that the images
that must be patched are likely to be similar to one another; this conjecture seems particularly reasonable
for clouds (such as Amazon’s EC2 [2]) that encourage users toderive new images from a small set of base
images.
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Nüwa’s batch patching implementation exploits the Mirageimage library, which exposes image simi-
larity by storing images in a special format called the Mirage Image Format (MIF) [23]. The rest of this
section first gives a brief overview of Mirage and then describes Nüwa’s approach to and implementation of
batch patching.

5.1 Overview of Mirage

The Mirage image library maintains a collection of virtual-machine images and provides an image-management
interface to users: users can import images into the library, list existing images in the library, check out a
particular image, and check in updates of the image to createeither a new image or a new version of the
original image. A separate interface allows system administrators to perform system-wide operations, such
as backup, virus scan, and integrity verification of all image content.

A design goal of Mirage is to support operations on images as structured data. To this end, Mirage does
not store images as simple disk images. Instead, when an image is imported into the library, Mirage iterates
over the image’s files, storing each file’s contents as a separate item in a content-addressable store (CAS);
the image as a whole is represented by a manifest that refers to file-content items and serves as a recipe
for rebuilding the image when it is checked out. An earlier paper [23] described this format and explained
how it allows certain operations on images to be expressed asfast operations on the image’s manifest. For
example, creating a file, assuming that the desired contentsare already in the CAS, reduces to adding a few
hundred bytes to the manifest.

Mirage’s newvmountfeature, which was not described in the earlier paper, allows users to mount library
images without rebuilding them. Vmount is implemented as a FUSE [24] daemon and fetches data from
the CAS as it is demanded; by contrast, checking out an image requires fetching every file’s contents from
the CAS. Vmount also implements a new extended filesystem attribute that allows direct manipulation of
the MIF manifest. For each regular file, the value of this attribute is a short, unique identifier of the file’s
contents. Setting the attribute atomically replaces the file’s contents with new contents.

After modifying an image through Vmount, the user can check in the changes as a new image or a new
version of the original image. The original image is not disturbed, and the time to check in is proportional
to the amount of new data instead of to the size of the image.

Vmount has three benefits for batch patching. First, there isno need to rebuild each image. Arguably,
this is merely a workaround for a problem created by the decision to store images in MIF.

Second, if two images share data in the CAS and are patched sequentially through Vmount, then reading
the shared data the second time is likely to be fast, because the data will be in the host’s buffer cache. By
contrast, if two disk images are patched sequentially, thenthe fact that they share data is effectively hidden
from the host’s operating system3.

The largest benefit is that Vmount allows batch patching to operate on manifests without major modi-
fications of system tools likedpkg. Time-critical patching steps can be changed to use the new filesystem
attribute, without creating a dependence on the manifest format, while less profitable steps continue to use
the normal filesystem interface.

5.2 Batch Patching via Mirage

A straightforward way to patch a batch of images is to iteratethe patching process for individual images.
For images stored in Mirage, each iteration mounts an image with Vmount, applies the patch as shown in
Figure 24, and checks in the modified image.

3Another, albeit unwieldy, solution to this problem is to compose images carefully from differencing disks.
4If the patch must be applied online, then the image must be rebuilt.
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Figure 10: Batch patching VM images via Mirage

Our approach begins with this straightforward method and optimizes it by moving invariant operations
out of the loop that visits each image. Currently, Nüwa optimizes one source of invariant operations: un-
packing the patch, which copies the patch’s files to the imageand, ultimately, adds their contents to the
Mirage CAS. These copies and CAS additions are good operations to move out of the loop because they
consume most of the time of applying most patches; in future work, we plan to hoist more invariants out of
the loop.

Figure 10 shows the two phases of batch patching via Mirage. Phase 1 performs the loop-invariant
operation: Nüwa extracts the patch’s files and imports theminto Mirage. The result is a list of content
identifiers, one for each file.

In phase 2, Nüwa iterates over the images. For each image, N¨uwa

1. mounts the image with Vmount;

2. rewrites and executes the pre-installation scripts;

3. emulates the “unpack” step ofdpkg, using the Mirage filesystem attribute to set the contents ofthe
patch’s files;

4. rewrites and executes the post-installation scripts; and

5. checks in the modified VM image.

Of course, if script rewriting ever fails to produce a safe script, then Nüwa resorts to online patching.
The program that emulates the “unpack” step ofdpkg is approximately 100 lines of Python code. There

are somedpkg features that it does not handle correctly yet, including diversions and the “Replaces” field.
The lack of support for these features did not affect the experiments in Section 6.

6 Experimental Evaluation

We have implemented both standalone Nüwa and Mirage-basedNüwa. Our implementations assume a
Linux host system. We have tested the standalone Nüwa on patching hosts running CentOS 5.2, Ubuntu
9.0.4 and OpenSuSE 11.1. However, Mirage-based Nüwa currently only works on patching host running
SuSE Linux, due to its dependence on Mirage, which only runs on SuSE Linux systems right now. Our
implementations currently support VM images of any Linux distributions based on Debian package man-
agement tools, such as Debian, Ubuntu, and Knoppix. Portingour tools to handle other Linux distributions
(e.g., Redhat Package Manager (RPM)-based Linux) is technically straightforward, but requires additional
implementation effort.

We performed two sets of experiments to evaluate the performance of Nüwa, one for patching individual
VM images offline, and the other for Mirage-based offline patching in batch. Both sets of experiments were
performed on a DELL OptiPlex 960 PC, with a 3GHz Intel Core 2 Duo CPU and 4GB DDR2 memory. In
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our evaluation, we used the x86-64 version of OpenSuSE 11.1 version as the host OS. For compatibility
reasons, we updated its kernel to version2.6.31.11-0.0.0.2.9c60380-default.

Since our focus is to evaluate the new techniques proposed for offline patching, in this section, we use
Nüwa to only refer to its offline portion, and treat its automated online patching separately.

6.1 Patching Individual VM Images

The objective of this set of experiments is two-fold: First,we would like to evaluate the correctness of our
offline patching approach used in Nüwa (i.e., whether the offline patching approach has the same effect on
the VM images as online patching). Second, we would like to see the efficiency of our offline patching
approach in Nüwa compared with the online patching approach.

In this set of experiments, we used the Linux Kernel-based Virtual Machine (KVM) [9] to start instances
of VM images for online patching. For offline patching, we used the VMware disk library to mount the VM
images in the host environment. Our tool can be logically decomposed into two parts: the script rewriter and
the patch applier. We copied both components into the mounted VM image, with the patch applier replacing
the original package installer inside the target VM image.

To perform the evaluation, we first created an empty disk image in the flat VMDK disk format with
thekvm-img image creation tool. We then brought this disk image online through KVM and installed a
default configured 64-bit Ubuntu-8.04 inside. This was usedas the base VM image for both offline and
online patching in our experiments.

We gathered all 406 patches available for the base VM image (64-bit Ubuntu-8.04) on October 26, 2009.
The correctness of offline patching is verified by comparing the result of the offline patching with that of
online patching: If two VM images, which are obtained through patching the base VM image online and
offline, respectively, differ only in log files and timestamps, we consider the offline patching to be correct. To
further evaluate the effectiveness of the rewriting techniques, we used the simple emulation-based patching
mentioned in Section 3 as a reference.

Table 4: Comparison of the two offline patching methods
# successes # failures success ratio

Simple emulation 369 37 90.9%
Nüwa 402 4 99.0%

Table 4 shows the experimental results
for evaluating the correctness of our tech-
niques. Nüwa can successfully apply 402
out of the 406 patches offline, achieving a
99.0% success ratio. The results also show
that the rewriting techniques contributed
significantly to the success; they helped improve the success ratio by about 10%. Note that the failure
cases are failures of offline patching, not of Nüwa; Nüwa automatically detects all of these failures and can
cope with them through automatic online patching, as discussed in Section 3.

The four failure cases are themono-gacpackage5 and three other packages that depend onmono-gac.
Through further analysis, we found thatmono-gac failed because the installer of Mono needed to ac-
cess some kernel information (e.g.,/proc/cpuinfo, /proc/sys/fs/binfmt misc, and/proc/
self/map) in order to work correctly. This information cannot be retrieved in the emulated environment.

To compare the efficiency of Nüwa’s offline patching techniques with that of online patching, we per-
formed another set of experiments. We assumed the most efficient form of online patch, automated online
patching. This is in fact our fall-back solution in case offline patching is unsafe. We believe this is the most
efficient form of online patching, since it automates all thesteps required in online patching.

We collected two sets of data from these experiments. The first is the time (in seconds) required to apply
each applicable patch to the base VM image through the offlinepatching approach in Nüwa, and the second
is the time needed to apply the same set of patches through automated online patching.

5mono-gac is a utility to maintain the global assembly cache of mono, anopen source implementation ofC♯ and the CLR
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Figure 11: Time used by offline and online patching (“Average” is computed over 402 applicable packages)

Figure 11 shows the time (in seconds) required to apply some applicable patches to the base VM image
through the Nüwa offline patching and the automated online patching, respectively. Due to the limited space,
we only show the timing results for eight selected patches and the average for all 402 applicable patches.
On average, the Nüwa offline approach takes only23.9% of the time required by automated online patching
(a factor of 4 speedup). This improvement, combined with thefact that Nüwa needs much less human
intervention and physical resources, show that it brings significant benefits to patching VM images.

This set of experiments demonstrates that Nüwa’s offline patching techniques, particularly the rewriting
techniques, are effective and that offline patching using N¨uwa can significantly reduce the overhead involved
in patching.

6.2 Batch Patching via Mirage

Table 5: Basic Ubuntu tasks
No. Task Name No. Task Name
1 lamp-server 2 mail-server
3 dns-server 4 openssh-server
5 print-server 6 samba-server
7 postgresql-server 8 ubuntustudio-audio
9 ubuntustudio-audio-plugins 10 ubuntustudio-graphics
11 ubuntustudio-video 12 ubuntu-desktop

The primary objective of this set
of experiments is to measure the
scalability offered by Mirage-based
Nüwa by comparing the perfor-
mance of Mirage-based batch patch-
ing with that of one-by-one patch-
ing.

We generated 100 VM images
using 32-bit Ubuntu 8.04 as the base
operating system for this set of ex-
periments. The Ubuntu installer can install a support for a number of basic, predefined tasks; some of these
tasks are for running specific servers, while others are for desktop use. We generated test VM images from
100 randomly selected combinations of 12 of these tasks (listed in Table 5).

We retrieved 154 security updates (i.e., security patches)for 32-bit Ubuntu 8.04 from Ubuntu Security
Notices [26]. We also retrieved the ranking of Ubuntu packages given by Ubuntu’s popularity contest [10],
and sorted the 154 security patches accordingly. For our performance evalution, we selected the security
updates corresponding to the eight most popular packages (as of January 18th, 2010). These packages are
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Figure 12: Scalability Evaluation of Mirage-based Nüwa

dash, libdbus, libglib-2.0, libfreetype, udev, libpng, libxml2, anddbus.
For each of the eight patches, we measured the time to apply the patch to the test VM images one-by-one

and the time to apply the patch to the test VM images as batchesof increasing sizes. Figure 12 shows that
for all eight security patches, Mirage-Nüwa achieves considerable speedup over one-by-one patching. The
speedup also increases as the number of images patched in a batch increases, and plateaus between 80 and
100 images.

For seven of the eight security patches (udev is the exception), the average speedup over one-by-one
patching increases from 5.1 times to 8.5 times as the number of images in a batch increases from 10 to 100.
Note that this speedup is on top of the factor of 4 speedup achieved over traditional online patching, thus
bringing the total speedup over traditional online patching to about 30 when patching 100 images in a batch.

However, the speedup forudev is much smaller, compared with the other seven patches. In fact,
the speedup forudev is only around 2. Further investigation showed that theudev patch spends more
time in pre-installation and post-installation scripts than do the others; thus, the file replacement operations
constitute a smaller portion of the entire patching process.

This set of experiments demonstrates that Mirage-based Nüwa is scalable and can further improve the
performance of offline patching significantly. Overall, Nüwa offline patching is an order of magnitude more
efficient than online patching.

7 Related work

Several available commercial tools [11,25,27] can apply patches to dormant VM images. But that does not
mean the patches are applied in anoffline manner. As a matter of fact, all of them require the image to be
running when the patches are actually installed. Microsoft’s Offline VM Servicing Tool [11] first “wakes” up
the virtual machine (deploys it to a host and starts it), thentriggers the appropriate software update cycle to
apply the patches, and finally shuts down the updated virtualmachine and returns it to the image library. In
the cases of VMware Update Manager [27] and Shavlik NetChk Protect [25], patches are first inserted into
image at some specified locations, then applied when the image is powered up. We resort to this approach
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when Nüwa identifies patches that contain unsafe commands.
In some cases, it is preferable to apply patches online. In general, systems that tend to stay online for

a long period of time, such as highly available servers, fallinto this category. In those cases, “dynamic
update” techniques [1,3,15,17] are used to apply patches tothe target software without shutting them down.
In contrast, Nüwa targets VM images that have already been shut down and may stay in dormant state for
an extended period of time. Thus, these approaches are complimentary to Nüwa.

8 Conclusion

In this paper, we developed a novel tool named Nüwa to enableefficient patching of offline VM images.
Nüwa uses safety analysis and script rewriting techniquesto convert patches, or more specifically the in-
stallation scripts contained in patches, which were originally developed for online updating, into a form
that can be applied to VM images offline. Nüwa also leveragesthe VM image manipulation technologies
offered by the Mirage image library [23] to provide an efficient and scalable way to patch VM images in
batch. We implemented Nüwa based on the Debian package manager [7], including both a standalone ver-
sion and a Mirage-based version. We evaluated Nüwa with security patches and VM images configured
with popular packages according to Ubuntu popularity contest. Our experimental results demonstrate that
1) Nüwa’s safety analysis and script rewrting techniques are effective – Nüwa is able to convert more than
99% of the patches to safe versions that can then be applied offline to VM images and; 2) the combination of
offline patching with additional optimization made possible through Mirage’s efficent image manipulation
capabilities allows Nüwa to be an order of magnitude more efficient than online patching.

A limitation of Nüwa is that it currently does not support offline patching of suspended VM images,
which also includes a snapshot of the system memory state in addition to the file system.

In our future research, we will investigate techniques to patch suspended VM images. We also plan to
port Nüwa to support other popular package managers such asRPM. Finally, we will look into new issues
that arise when applying Nüwa in cloud computing environments, such as efficient testing of patched VM
images.
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