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Abstract 
 

We present a highly available system for 

environments such as stock trading, where high 

request rates and low latency requirements dictate that 

service disruption on the order of seconds in length 

can be unacceptable. After a node failure, our system 

avoids delays in processing due to detecting the failure 

or transferring control to a back-up node. We achieve 

this by using multiple primary nodes which process 

transactions concurrently as peers. If a primary node 

fails, the remaining primaries continue executing 

without being delayed at all by the failed primary. 

Nodes agree on a total ordering for processing 

requests with a novel low overhead algorithm that 

utilizes a small amount of shared memory accessible to 

the nodes and a simple compare-and-swap protocol 

which allows the system to progress at the speed of the 

fastest node. We have implemented our system on an 

IBM z990 zSeries eServer mainframe and show 

experimentally that our system can transparently 

handle node failures without causing delays to 

transaction processing. 

 

 

1. Introduction 
 

Transaction-processing systems such as those for 

stock exchanges need to be highly available. 

Continuous operation in the event of failures is 

critically important. Failures for any length of time can 

cause lost business resulting in both revenue losses and 

a decrease in reputation. In the event that a component 

fails, the systems must be able to continue operating 

with minimal disruption. 

This paper presents a highly available system for 

environments such as stock trading, where high request 

rates and low latency requirements dictate that service 

disruptions on the order of seconds in length can be 

unacceptable. A key aspect of our system is that 

processor failures are handled transparently without 

interruptions to normal service. There are no delays for 

failure detection or having a back-up processor take 

over for the failed processor because our architecture 

eliminates the need for both of these steps.  

A standard method for making transaction 

processing systems highly available is to provide a 

primary node and at least one secondary node which 

can handle requests. In the event that the primary node 

fails, requests can be directed to a secondary node 

which is still functioning. This approach, which we 

refer to as the primary-secondary approach, has at least 

two drawbacks for environments such as stock trading. 

The first is that stock trading requests must be directed 

to specific nodes due to the fact that the nodes have 

local in-memory state information typically not shared 

between the primary and secondary for handling 

specific transactions. For example, a primary node 

handling trades for IBM stocks would have 

information in memory specifically related to IBM 

stocks. If a buy or sell order for IBM stock is directed 

to a secondary node, the secondary node would not 

have the proper state information to efficiently process 

the order. The primary node should store enough 

information persistently to allow stock trading for IBM 

to continue on another node should it fail. However, 

the overhead for the secondary node to obtain the 

necessary state information from persistent storage 

would cause delays in processing trades for IBM stock 

which are not acceptable. The second problem with the 

primary-secondary approach is that there can be delays 

of several seconds for detecting node failures during 

which no requests are being processed. For systems 

which need to be continuously responsive under high 

transaction rates, these delays are a significant 

problem. Therefore, other methods are desirable for 

maintaining high availability in transaction processing 

systems which handle high request rates and need to be 

continuously responsive in the presence of failures. 

Our system handles failures transparently without 

disruptions in service. A key feature of our system is 

that we achieve redundancy in processing by having 

multiple nodes executing transactions as peers 

concurrently. If one node fails, the remaining ones 

simply continue executing. There is no need to transfer 



control to a secondary node after a failure because all 

of the nodes are already primaries. A key advantage to 

our approach is that after a primary failure, there is no 

lost time waiting for the system to recover from the 

failure. Other primaries simply continue executing 

without being slowed down by the failure of one of the 

primaries. 

One of the complications with our approach is that 

the primaries can receive requests in different orders. A 

key component of our system is a method for the 

primaries to agree upon a common order for executing 

transactions, known as the total ordering, without 

incurring significant synchronization overhead. We do 

this by means of a limited amount of shared memory 

which our system has access to between the nodes, and 

a simple but efficient synchronization protocol. 

The key contributions of this paper include the 

following: 

 

• We have developed a new architecture for highly 

available transaction processing system which 

does not incur delays when a node fails. 

• We have implemented our system on an IBM 

z990 zSeries. Experimental results show that our 

system achieves fast recovery from failures and 

good performance. 

• We have developed a new algorithm for nodes in 

a distributed environment receiving messages in 

different orders to agree on a total ordering for 

those messages. This algorithm is used by our 

system to determine the order for all nodes to 

execute transactions and makes use of a small 

amount of shared memory between the nodes. 

The total ordering algorithm imposes little 

overhead and proceeds at the rate of the fastest 

node; it is not slowed down by slow or 

unresponsive nodes. 

 

2. System Architecture 
 

Our system makes use of multiple nodes for high 

availability. Each node contains one or more 

processors. Nodes have some degree of isolation so 

that a failure of one node would not cause a second 

node to fail. For example, they run different operating 

systems and generally do not share memory to any 

significant degree. In our implementation, nodes can 

communicate and synchronize via a small amount of 

shared memory known as a coupling facility. 

For environments such as stock trading, response 

times have to be extremely fast. Therefore, state 

information needed to perform transaction processing 

is cached in the main memories of nodes handling 

transactions. A key drawback of the primary-secondary 

approach of having a back-up node take over in case 

the primary node fails is that the back-up node will not 

have the necessary state information in memory in 

order to restart processing right away. There are also 

delays in detecting failures. A common method for 

detecting failures is to periodically exchange heart beat 

messages between nodes and listen for failed 

responses. It is generally not feasible to set the timeout 

period before a node is declared failed to too small an 

interval (e.g. less than several seconds) due to the risk 

of erroneously declaring a functioning node down. 

This means that it often takes several seconds to detect 

a failure. The delays that would be incurred in 

detecting the failure of a primary node and getting a 

secondary node up and running by obtaining the 

necessary state information from persistent storage are 

thus often too high using this conventional high 

availability approach. 

For this reason, it is essential to have at least two 

nodes with updated in-memory data structures for 

handling orders for the stock. That way, if one of the 

nodes fails, the other node will still be functioning and 

can continue handling trades for the stock. 

One way to achieve high availability would be to 

have a primary node handling requests for a stock in a 

certain order and to have the primary node send the 

ordered sequence of requests that it is processing to a 

secondary node. The secondary node then executes the 

transactions in the same order as the primary node but 

a step or two behind the primary node. The secondary 

node would avoid performing many updates to 

persistent storage already performed by the primary 

processor since the whole reason for the secondary 

processor executing transactions is to keep its main 

memory updated. 

While this approach eliminates some of the 

overhead of simply having a cold standby taking over 

for the primary, it still incurs some overhead for both 

detecting the failed primary node and handling the 

failover from the primary node to the secondary node. 

As we mentioned previously, detecting the failed 

primary node can take several seconds. The secondary 

node also needs to figure out exactly where the primary 

node failed in order to continue processing at exactly 

the right place. If the failover procedure is not carefully 

implemented, the secondary node could either repeat 

processing the primary node has already done or leave 

out some of the processing the primary node performed 

before failing; either of these two scenarios results in 

incorrect behavior. 

Our system avoids the problems of both detecting 

failures and transferring control from a failed node to a 

back-up node by having multiple primary nodes 

executing the same sequence of transactions as peers 

concurrently. Normally, two primary nodes would be 



sufficient. If failure of more than one node within a 

short time period is a concern, more than two primaries 

can be used. In the event that a primary node fails, the 

remaining primaries keep executing without being 

hindered by the failed primary. We now describe our 

architecture in more detail. 

 

2.1 Primary-Primary Architecture 
 

We depict the overall primary-primary stock 

exchange trading architecture in the diagram below. 

 

 

Primary-Primary Architecture 

An electronic stock exchange, as illustrated by the 

shaded ellipse area in the diagram, typically consists of 

3 tiers,  

 

• Gateways (GW) collect buy/sell requests from 

clients (e.g., traders and brokers) and perform 

preprocessing such as validation. 

• Execution Venues (EV) are the heart of the stock 

exchange. They carry out the actual trading by 

matching incoming requests against an in-

memory list of outstanding requests, which is 

called an order book. Each EV is implemented by 

a node. 

• History Recorder (HR) is used for persistently 

storing the result of every trade carried out by the 

EVs. It is typically implemented by a file system 

or database management system (DBMS). It is 

essential to store the result of computations 

persistently so that information is not lost in the 

event of a system failure.  

 

A typical stock trading transaction involves the 

following steps: 

 

• GWs receive trade requests from clients, 

persistently store the requests, and send the 

requests to EVs. Different EVs may receive 

requests GWs in different orders. Therefore, there 

is the need to agree on a total ordering for the 

requests. 

• EVs agree on a total ordering for the requests by 

communicating with the sequencer. In our 

implementation, the sequencer includes a limited 

amount of shared memory that EVs can use for 

communication. 

• EVs process the requests by matching them 

against in-memory state known as the order 

books, and send the results to HRs. 

• HRs persistently store the results and notify EVs. 

• Upon receiving acknowledgements from HRs, 

EVs notify GWs of trade completion. 

• Upon receiving acknowledgements from EVs, 

GWs notify the clients of trade completion. 

 

Each of the tiers sports its own recovery mechanism 

and working together, they make the entire system 

fault tolerant. We first briefly describe the recovery 

mechanism of GW and HR, and then in more detail the 

recovery mechanism of EV since that is one of the 

main focus areas of this paper. 

GWs must persistently store every incoming trade 

request before they can notify clients of the reception 

of their requests and send the requests to the EVs. If a 

GW fails before persistently storing a request, it can 

simply ask the client to resend it. GWs typically 

employ DBMS in order to take advantage of DBMS 

fault tolerant features. File systems can also be used 

and may offer better performance but fewer features. 

HRs, like GWs, typically also employ DBMS. In 

order to improve performance, HRs may use “group 

commit” instead of committing every single trade 

individually. However, this raises the possibility that a 

group of trade results can be lost if a HR fails. This 

danger is guarded against by requiring that: (1) a HR 

cannot notify an EV of trade completion until all trade 

results in the group have been committed; and (2) an 

EV cannot notify a GW of trade completion until it has 

been notified by the HR. So in the event that a HR 

fails, the three tiers can coordinate to have the GWs 

replay those trades for which a trade completion was 

not received. 

Let’s now turn our attention to the fault tolerance of 

EVs. Today’s stock exchanges typically employ a 

primary-secondary architecture (not what’s depicted in 

the diagram) that, at a high level, works as follows: 

 

• All incoming trade requests are sent to a primary 

EV, which also acts as the sequencer. 

• A secondary EV “eavesdrops” on the traffic 

between the EV and the HR in order to learn the 

ordering of trade requests and duplicate the 

primary EV’s processing. 



• In the event that the primary EV fails, the 

secondary EV initiates a recovery protocol to 

coordinate with the GWs and HRs and takes over 

as the primary. 

 

It is evident that with a primary-secondary 

architecture, from the time the primary EV fails until 

the time the secondary EV takes over, no trade request 

is being processed therefore causing disruption. Due to 

the fact that the secondary EV needs to first detect the 

failure of the primary EV, plus the time it takes to 

complete the recovery protocol, the disruption can be 

on the order of seconds. In today’s electronic stock 

exchange, EVs are typically processing trade requests 

at a rate of tens of thousands per second for one 

symbol and hundreds of thousands per second 

aggregated across all symbols. Thus, it is extremely 

costly for a stock exchange to have seconds of 

disruption. In fact, primary EV failure is one of the 

main causes of disruption in stock exchanges today. 

Our primary-primary architecture avoids this problem 

by transparently handling an EV failure without delays 

in normal processing. 

As illustrated in the architecture diagram, the 

overall system, at a high level, works as follows: 

 

• Multiple primary EVs exist. We describe how 

our system works for two primary EVs. It can 

easily be extended to handle more EVs.  

• All incoming trade requests are sent to both 

primary EVs. 

• Both primary EVs process trade requests 

concurrently, using a sequencer to negotiate an 

ordering of trade requests agreed upon by both. 

• In the event that one of the primary EV fails, the 

other simply continues as if nothing happened. 

 

With the primary-primary architecture, one primary 

EV need not detect the failure of the other; neither 

need it carry out a recovery protocol. The only 

“disruption” when one primary EV fails is that it may 

be processing several trade requests ahead of the other 

so the live EV will first “catch up” in processing those 

trade requests before new trade requests will be 

processed. 

Keen readers will point out that in our primary-

primary architecture, the sequencer can potentially be a 

single point of failure. Key to our design is to handle 

failover of the sequencer transparently from the EVs. 

We achieve this by using a fault tolerant system for the 

sequencer. Our implementation uses fault-tolerant IBM 

hardware; it is also possible to use highly fault-tolerant 

hardware such as HP NonStop (formerly Tandem) [1]. 

This “single reliable sequencer” view to EVs is 

important. If we had exposed multiple sequencers to 

the EVs, the EVs would have to explicitly manage the 

failover of the sequencers resulting in a more complex 

protocol. Handling sequencer failover transparently 

from the EVs allows us to design a total ordering 

algorithm that requires simple logic in the sequencer. 

As a result, the sequencer is well-suited to be 

efficiently implemented with a highly reliable system. 

 

3. The Total Ordering Algorithm 
 

In the primary-primary architecture, all peer EVs 

must process incoming trade requests in exactly the 

same order. However, when multiple GWs multicast 

trade requests to multiple EVs, there is no guarantee 

that all EVs will receive the trade requests in the same 

order. Therefore, there must be a mechanism to work 

out a total ordering amongst all peer EVs. 

Our total ordering algorithm is applicable not just to 

our stock trading system but also to other scenarios in 

which multiple nodes which may receive messages in 

different orders need to agree on a total ordering for 

the messages; such algorithms have been referred to as 

total order broadcast and multicast algorithms [2]. Our 

total ordering algorithm employs a centralized 

sequencer as a rendezvous point for peer EVs to 

negotiate a total ordering for processing trade requests, 

regardless of how each individual EV sees its local 

ordering of incoming trade requests. The main 

difference between our algorithm and the traditional 

unicast-broadcast and broadcast-broadcast [2] variants 

of fixed sequencer algorithms is that, as shown in the 

figure below, our algorithm involves no 

communication between the senders and the sequencer, 

only communication between the receivers and the 

sequencer. In an environment such as stock exchanges 

where the number of senders far exceeds the number of 

receivers, our algorithm is advantageous in terms of 

reducing the load on the sequencer. 

 

 

 

 

 

 

 

 

Another advantage of our algorithm is that the logic 

of generating the next sequence number is in the 

receivers rather than in the sequencer. As we can see in 

the detailed description of the algorithm below, the 

sequencer in our algorithm is essentially a shared-

memory like passive entity that implements a compare-

and-swap like protocol. This further reduces the 

complexity of the sequencer, which lends itself well to 

sender 

sequencer sequencer sequencer 

sender sender 

unicast-broadcast broadcast-broadcast our algorithm 



a very efficient and fault-tolerant implementation of 

the sequencer. 

A third advantage of our algorithm, compared to 

past algorithms in which the receiving nodes agree on a 

total ordering, is that our algorithm allows the system 

to progress at the speed of the fastest receiver and can 

proceed rapidly even in the presence of slow receivers. 

In many previous algorithms, multiple receivers must 

provide input before an ordering decision can be made 

[2]. While this may have advantages in some 

environments, the delays that these algorithms 

introduce are problematic for transaction processing 

systems with low latency requirements. We avoid these 

delays in our algorithm by immediately assigning a 

sequence number to the first correct request by a node 

asking for the sequence number. 

The use of a small amount of shared memory for 

communication between the nodes results in a 

considerably faster sequencer than algorithms which 

exchange messages between nodes such as those 

described in [2]. We quantify the overhead imposed by 

our sequencer in Section 6. 

The basic idea of our algorithm is simple: each EV 

competes to propose to the sequencer its own local 

ordering as the total ordering, and whichever gets to 

the sequencer first (the leader) wins. The losers (the 

followers) must shuffle their local ordering to conform 

to the leader. We use an example to illustrate the idea. 

Assume two gateways, GW1 and GW2, are 

multicasting trade requests to two peer execution 

venues, EV1 and EV2. GW1 multicasts trade requests 

p0, p1, p2; and GW2 multicasts trade requests q0, q1, q2. 

Let’s further assume that EV1 sees the incoming trade 

requests as q0, q1, p0, p1, q2, p2 and EV2 sees the 

incoming trade requests as p0, p1, q0, p2, q1, q2. So 

initially, the local ordering at EV1 and EV2, and the 

total ordering at the sequencer are as follows (dashed 

box indicates received but not yet processed trade 

requests): 

 

 

 

 

 

 

 

 

We now show how EV1 and EV2 compete to 

negotiate a total ordering through the sequencer. At 

each step of the example, we will give the state of the 

local ordering at EV1 and EV2, and the total ordering at 

the sequencer. 

 

1. When EV1 receives q0, it proposes to the sequencer 

that it would like q0 to be processed at the 1
st
 

position of the total ordering. Similarly, when EV2 

receives p0, it proposes to the sequencer that it 

would like p0 to be processed at the 1
st
 position of 

the total ordering. Assume EV1 gets to the 

sequencer first and wins (indicated by the arrowed 

line from EV1 to the sequencer). So the sequencer 

takes q0 at its 1
st
 position and, when EV2 comes to 

propose p0, tells EV2 that its proposal is rejected 

and it should process q0 instead. So EV2 shuffles q0 

in front of p0, p1 (shown in bold font) to conform to 

EV1 (solid box indicates processed trade requests): 

 

 

 

 

 

 

 

 

2. After both EV1 and EV2 process q0, EV1 proposes 

q1 and EV2 proposes p0. Assume this time EV2 wins 

and the sequencer takes p0 at its 2
nd

 position and 

tells EV1 to process p0 instead of q1. So EV1 

shuffles p0 in front of q1 to conform to EV2: 

 

 

 

 

 

 

 

 

3. Assume that, after processing p0, EV2 wins in 

proposing both p1 and p2 for the 3
rd

 and 4
th

 position 

of the total ordering. So when EV1 proposes q1, it is 

told to process p1 instead and has to shuffle p1 in 

front of q1 to conform to EV2: 

 

 

 

 

 

 

 

 

4. When EV1 proposes q1 after processing p1, it is told 

to process p2 instead and has to shuffle p2 in front 

of q1, q2 to conform to EV2: 
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We can see that at this point, the local ordering on 

EV1 and EV2 are exactly the same. For processing q1 

and q2, it doesn’t really matter which EV wins the 

proposal. So the total ordering negotiated through the 

sequencer is: q0, p0, p1, p2, q1, q2. 

Because our algorithm allows the system to 

progress at the speed of the fastest EV, one EV may 

fall behind the leader by a significant amount. We must 

bound this “distance” between the leader and other 

EVs. Otherwise, if the leader dies, it will take too long 

for the followers to “catch up”, thus effectively causing 

a disruption. We solve this problem by limiting the 

amount of memory the sequencer uses to store total 

ordering numbers assigned. Instead of storing the 

entire history of total ordering numbers assigned such 

as [0, ], the sequencer will only store a fix-sized 

sliding window such as [n, n+100]. This means that 

when n+100 has been assigned to the leader, request n-

1 will be removed. If the follower is behind the leader 

by more than 100 requests and tries to propose a 

request for n-1, the sequencer will notify the follower 

that it is too far behind and some action should be 

taken (e.g., kill the follower and restart a new one). 

 

4. Non-Disruptive Failover 
 

There are two ways an EV can fail. One is what we 

call hard failure, where the EV completely stops 

processing trade requests due to hardware or software 

failure. The other is what we call soft failure, where the 

EV continues to process trade requests but, due to 

system load, etc., is falling behind the leader EV 

further and further. 

Regardless of how an EV fails, by the nature of our 

primary-primary architecture, other peer EVs continue 

unaffected. The only effect is that there is one fewer 

EV competing for the total ordering via the sequencer. 

Therefore, as long as there is still one working EV left, 

failure of one or more peer EVs causes no disruption at 

all to the processing of trade requests. 

However, this is only half of the high-availability 

story. When an EV fails, a new one must be started and 

synchronized with the working ones in order to 

maintain the level of availability. This process must 

also be done without any disruption to the working 

EVs. We now describe how this is accomplished. To 

keep the description simple and without loss of 

generality, our system consists of one GW, two EVs 

(EV1 and EV2), and one HR. Assume EV2 failed at 

some point and we start a new one. 

 

 

 

 

(1) Assume, as shown in the figure above, when 

EV2 starts, EV1 has received trade requests up to k, and 

has processed trade requests up to j. Therefore, EV2 

can receive all trade requests after k, but needs to 

recover all trade requests up to k. 

 

 

 

 

 

 

(2) Periodically, EV1 takes a checkpoint of its entire 

order book and sends it to the HR. Assume the last 

checkpoint EV1 took included trade requests up to i, as 

shown in the figure above. By asking HR for the latest 

checkpoint, EV2 can immediately recover all trades up 

to i. Now it needs to recover trade requests between i 

and k. 

 

 

 

 

 

 

(3) For each trade request after j processed by EV1, 

a persistent storage request is sent to HR. The reply 

from HR, which includes a copy of the original trade 

request, is multicasted to both EV1 and EV2. Therefore, 

by “listening to” the reply from HR, EV2 can recover 

trade requests between j and k, as shown in the figure 

above. The only missing trade requests now are those 

between i and j. 

 

 

 

 

 

 

(4) By asking HR for the persistently stored trade 

requests between i and j, EV2 can finally recover all 

missing trade requests, as shown in the figure above. 

It’s not difficult to see that the entire process causes no 

disruption to EV1. 

Note that the four steps above are how missing 

trades are recovered in parts and “stitched together”. 

They are not the order in which the missing trades are 

processed. All four steps actually happen concurrently. 

EV2 can start processing trades from i once it receives 

the checkpointed information. Recovered missing 

trades that are out of sequence are queued. 

 

5. Prototype Design and Implementation 
 

To verify the feasibility of our architecture, we have 

EV1 

EV2 

k j 

1 

EV1 

EV2 

k j i 

1 2 

EV1 

EV2 

k j i 

1 2 3 

EV1 

EV2 

k j i 

1 2 3 4 



designed and implemented a prototype on the IBM 

zSeries eServer mainframe [3]. The reason for 

choosing the zSeries eServer is that the function of our 

sequencer is readily available with a special hardware 

called Cross-System Coupling Facility (XCF) [4], 

which allows high performance data sharing across 

different logical partitions (LPARs) of a single eServer 

or across multiple eServers. 

The prototype consists of the following three 

functional components needed for a stock exchange: 

 

• GW, which generates trade requests for one or 

more stock symbols; 

• EV, which executes stock trading by maintaining 

in-memory state known as an order book for each 

stock symbol and matching incoming trade 

requests against the order book; 

• HR, which persistently stores information for all 

trades to a file system. 

 

Communications among GW, EV, and HR are 

through LLM (Low Latency Messaging) [5], which is 

an IBM product that provides reliable and ordered 

multicast and unicast messaging services. The message 

flow is depicted in the figure below (thin dashed lines 

indicate unicast messages, and thick dashed lines 

indicate multicast messages). 

 

 

 

 

 

 

 

(1) Trade request from GW to EV, multicast 

(2) Persistent storage request from EV to HR, 

unicast 

(3) Persistent storage ack from HR to EV, 

multicast 

(4) Trade completion from EV to GW, unicast 

(5) Completion ack from GW to EV, multicast 

 

The functions of our sequencer are implemented 

through the list services provided by XCF, which allow 

applications to share data organized in a list structure. 

List entries can have ID, key, etc., and be kept in sorted 

order by certain attributes. For an EV to propose a total 

ordering number for a trade request, it simply asks 

XCF to create a list entry with [ID=total ordering 

number, key=trade request]. Using the sample example 

in section 3, 

 

• EV1 attempts to create an entry [ID=0, key=q0] 

• EV2 attempts to create an entry [ID=0, key=p0] 

• EV1 gets to XCF first so entry [ID=0, key=q0] is 

created successfully 

• EV2 gets to XCF next and is informed an entry 

with ID=0 already exist and its current key=q0 

 

Essentially, the list services allow peer EVs to 

implement a “compare-and-swap” protocol to support 

the total ordering algorithm. The protocol is simple and 

only requires one trip to XCF. 

In the next section, we will present the experimental 

results of our prototype. 

 

6. Experimental Results 
 

Our experiments are conducted on an IBM zSeries 

eServer mainframe model z990 [3] with a total of 32 

1.2GHz CPUs and 256GB memory. Each GW, EV, 

and HR runs in its own LPAR with dedicated CPUs 

and memory. LPAR is a way to virtualize hardware 

resources such that each partition functions as if it were 

an independent physical machine while transparently 

sharing hardware resources. In our experiments, each 

GW and HR has 2 CPUs and 2GB memory, and each 

EV has 4 CPUs and 4GB memory. All the LPARs are 

running z/OS version 1.8, IBM’s proprietary 

mainframe OS. Connectivity among the tiers is through 

HiperSockets [6], which is a direct memory-to-memory 

copy between two LPARs that involves no actual 

network interface and provides much better 

performance than Gigabit Ethernet. The link between 

EV and XCF is a special fiber optic link called 

Integrated Cluster Bus (ICB) with speed up to 2GB per 

second [3]. Our testbed is depicted in the diagram 

below. Note that in our experiments, without loss of 

generality, we did not use separate clients but rather 

have the GWs generate trades directly. 

 

 

Prototype Testbed 

We first present the non-disruptive availability 

results that show the strength of our primary-primary 

architecture. A checkpoint of EV in-memory state 

information is sent to the HR periodically. The 
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3 4 
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checkpoint interval is controllable via a tunable 

parameter. In these experiments, the EVs take a 

checkpoint after every 1024 requests are processed. 

 

Figure 6-1 Non-disruptive availability 

Figure 6-1 shows one GW sending trade requests to 

two EVs at a throughput of roughly 5000 requests per 

second. Each request is to either buy or sell a certain 

number of shares of a stock symbol. Half of the 

requests are buy orders, while the other half are sell 

orders. After about 30,000 requests, EV2 fails. After 

about 50,000 requests, EV2 is restarted; it then 

synchronizes with EV1 and resumes processing as 

before. We can see that during the entire period, EV1 

continues to process the trade requests at roughly 5000 

requests per second as if nothing happened. 

We now show how long it takes for a newly started 

EV to synchronize with a live EV non-disruptively in 

the middle of trade processing. Figure 6-2 shows the 

synchronization time of a GW sending trade requests 

of a single stock symbol to two EVs at different 

throughput. We can see that the synchronization times 

for all the cases are under 5 milliseconds. 

 

Figure 6-2 Sync time, 1 symbol  

Figure 6-3(a) and 6-3(b) show the synchronization 

time of a GW sending trade requests of 10 stock 

symbols to two EVs at throughputs of 1000 and 9000 

requests per second. For a throughput of 1000 requests 

per second, synchronization times for each of the 10 

symbols are under 30 milliseconds; the total 

synchronization time for all 10 symbols is under 35 

milliseconds. For a throughput of 9000 requests per 

second case, synchronization times for each of the 10 

symbols are under 700 milliseconds; the total 

synchronization time for all 10 symbols is about 800 

milliseconds. 

 

Figure 6-3(a) Sync Time, 10 symbols, 1 GW, 1000 rqsts/s 

 

Figure 6-3(b) Sync time, 10 symbols, 1 GW, 9000 rqsts/s 

 

Figure 6-3(c) Sync time, 10 symbols, 4 GWs, 1000 rqsts/s 



Figure 6-3(c) shows the synchronization time of 4 

GWs sending trade requests of 10 symbols to two EVs 

at a throughput of 1000 messages per second. We see 

that there is much more variation in the 

synchronization time from symbol to symbol, ranging 

from 30 to 121 milliseconds. The total synchronization 

time for all 10 symbols is about 150 milliseconds. We 

remind the readers that for all the cases, there is no 

disruption to the live EV during the synchronization. 

 

Figure 6-4(a) Latency w/o persistent storage, 1 symbol 

 

Figure 6-4(b) Latency with persistent storage, 1 symbol 

Since end-to-end latency within the system (simply 

referred to as latency hereafter), which is from the time 

when a GW sends a trade request to the EVs to the 

time when the GW receives a trade completion 

notification from the EV, is one of the key 

performance measurements, we also present a variety 

of latency related measurements which show that our 

prototype can meet performance standards required by 

stock exchanges. Typically, today’s stock exchanges 

require that the latency to be single-digit milliseconds. 

We first measure the overhead of our total ordering 

algorithm (sequencer) which uses the XCF. We 

compare the latency at different throughput with 1 

symbol, 1 GW, and 2 EVs. In our implementation, 

messages from a single GW will be sent to EVs in the 

same order (although our architecture is capable of 

handling situations when this is not the case). Thus, 

with only one GW, agreeing on a total ordering is not 

necessary so we can turn off the sequencer 

(implemented by the XCF) to make the comparison. In 

Figure 6-4(a) we make the comparison without 

persistently storing the trade results by HR to further 

isolate the XCF overhead. In Figure 6-4(b) we make 

the comparison while persistently storing the trade 

results by HR to show that this does not affect the XCF 

overhead. We can see that in both figures, our total 

ordering algorithm going through XCF adds very little 

overhead, at most 0.35 milliseconds (at 9000 requests 

per second with persistent storage). 

A single EV can handle throughputs up to 9000 

requests per second before the response time becomes 

unacceptably high. z/OS has a component call USS 

(Unix System Services) which implements a certified 

UNIX (XPG4 UNIX95) environment that makes 

porting programs written for UNIX to z/OS much 

easier. In fact, the reliable multicast messaging service 

LLM we used in our prototype is written for UNIX and 

not supported by z/OS. So we have ported it to USS, 

and our prototype runs on top of LLM in the USS 

environment. This convenience, however, comes at a 

performance cost. Due to context switching overhead 

resulting from LLM, 9000 requests per second is the 

highest throughput we can achieve. It is possible to add 

more processors to an EV in order to get higher 

throughput rates. 

We then measure the scaling behavior of our total 

ordering algorithm in terms of the number of stock 

symbols. We repeat the same measurements in Figure 

6-4(a) and 6-4(b) with 10 symbols, one GW, and two 

EVs; the results are shown in Figure 6-5(a) and 6-5(b). 

As shown in the figures, the XCF overhead increased 

marginally (typically fewer than 100 microseconds) for 

all throughputs except 9000, at which point the 

overhead is 1.23 milliseconds without persistent 

storage and 1.38 milliseconds with persistent storage.  

 

Figure 6-5(a) Latency w/o persistent storage, 10 symbols 



 

Figure 6-5(b) Latency with persistent storage, 10 symbols 

 

Figure 6-6(a) Latency histogram, 1 symbol 

 

Figure 6-6(b) Latency histogram, 10 symbols  

Next we plot the latency distribution for one 

particular configuration to check and make sure that 

the average latency numbers in figures 6-4(a) through 

6-5(b) are indeed representative. A latency histogram 

over 20,000 requests for 1 GW sending trade requests 

for one symbol to two EVs at 1000 requests per second 

is shown in Figure 6-6(a), and the same measurement 

for 10 symbols is shown in Figure 6-6(b). Note that in 

Figure 6-6(b), we only show a histogram for one of the 

10 symbols as the others are quite similar. For both 

cases, the majority of the latency numbers are 1.0 and 

1.1 milliseconds with an average between 1.25 and 

1.28 milliseconds (not shown).  

Finally, we measure the latency with 2 GWs 

sending trade requests for one or ten symbols at 

different throughputs. Note that with two GWs, total 

ordering must be turned on so there are no 

measurements for “no XCF”. The results are shown in 

Figure 6-7(a) and 6-7(b). The bars marked “harden” 

correspond to storing the results persistently. 

 

Figure 6-7(a) Latency with 2 GWs, 1 symbol 

 

Figure 6-7(b) Latency with 2 GWs, 10 symbols 

The latency numbers with two GWs are fairly 

similar to those with one GW, except at the throughput 

9000 requests per second. At this throughput and one 

symbol, latency increased from 2.77 to 3.51 

milliseconds without persistent storage (27% increase), 

and from 3.73 to 5.01 milliseconds with persistent 

storage (34% increase); with 10 symbols, latency 

increased from 5.36 to 11.02 milliseconds without 

persistent storage (106% increase), and from 6.44 to 

13.02 milliseconds with persistent storage (102% 

increase). These numbers reflect the fact that with 

increasing throughput and number of symbols, the 



chance of the two EVs receiving messages from the 

two GWs in a different order increases; therefore, 

processing time increases due to the need for the EVs 

to shuffle their queues. 

 

7. Related Work 
 

Several high availability cluster solutions exist in 

which a back-up node can take over for a primary node 

after the primary node has been determined to have 

failed. Examples include HACMP from IBM [7], the 

Microsoft Cluster Service [8], and HA-Linux [9]. 

There can be considerable delays in processing 

resulting from both detecting the node failure and 

transferring control to the back-up node. Our primary-

primary architecture avoids these delays. 

The Swiss Exchange system in the 1996-98 

timeframe is discussed in [10]. This exchange uses a 

primary-secondary architecture unlike our primary-

primary architecture. 

Considerable work has been done in the area of 

Byzantine fault tolerance [11, 12]. Our system is not 

prone to the same types of failures that Byzantine fault-

tolerant systems are prone to. As a result, our system 

incurs significantly less overhead. 

There have been several algorithms proposed for 

agreeing on a total ordering of messages received by 

different nodes in a distributed environment. A 

comprehensive survey of these algorithms is contained 

in [2]. Our approach has conceptual similarity to the 

“Destinations Agreement Algorithms” summarized in 

this paper [13, 14, 15, 16]. A key difference of our 

sequencing algorithm is that nodes communicate using 

a small amount of shared memory resulting in faster 

communication than the previous algorithms which use 

message passing. Another key difference is that our 

sequencing algorithm can progress at the speed of the 

fastest receiving node. The previous algorithms 

generally require a consensus to be formed among 

multiple nodes which means that slow nodes can delay 

the process. 

A Web-based financial trading system designed to 

handle bundle orders is described in [17]. The paper 

does not address how to handle high availability and 

recover from failures. 
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