
RC24960 (W1003-054) March 17, 2010
Computer Science

IBM Research Report

A Highly Available Transaction Processing System with
Non-Disruptive Failure Handling

Gong Su, Arun Iyengar
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

A Highly Available Transaction Processing System with Non-Disruptive

Failure Handling

Gong Su Arun Iyengar

IBM T.J. Watson Research Center IBM T.J. Watson Research Center

gongsu@us.ibm.com aruni@us.ibm.com

Abstract

We present a highly available system for

environments such as stock trading, where high

request rates and low latency requirements dictate that

service disruption on the order of seconds in length

can be unacceptable. After a node failure, our system

avoids delays in processing due to detecting the failure

or transferring control to a back-up node. We achieve

this by using multiple primary nodes which process

transactions concurrently as peers. If a primary node

fails, the remaining primaries continue executing

without being delayed at all by the failed primary.

Nodes agree on a total ordering for processing

requests with a novel low overhead algorithm that

utilizes a small amount of shared memory accessible to

the nodes and a simple compare-and-swap protocol

which allows the system to progress at the speed of the

fastest node. We have implemented our system on an

IBM z990 zSeries eServer mainframe and show

experimentally that our system can transparently

handle node failures without causing delays to

transaction processing.

1. Introduction

Transaction-processing systems such as those for

stock exchanges need to be highly available.

Continuous operation in the event of failures is

critically important. Failures for any length of time can

cause lost business resulting in both revenue losses and

a decrease in reputation. In the event that a component

fails, the systems must be able to continue operating

with minimal disruption.

This paper presents a highly available system for

environments such as stock trading, where high request

rates and low latency requirements dictate that service

disruptions on the order of seconds in length can be

unacceptable. A key aspect of our system is that

processor failures are handled transparently without

interruptions to normal service. There are no delays for

failure detection or having a back-up processor take

over for the failed processor because our architecture

eliminates the need for both of these steps.

A standard method for making transaction

processing systems highly available is to provide a

primary node and at least one secondary node which

can handle requests. In the event that the primary node

fails, requests can be directed to a secondary node

which is still functioning. This approach, which we

refer to as the primary-secondary approach, has at least

two drawbacks for environments such as stock trading.

The first is that stock trading requests must be directed

to specific nodes due to the fact that the nodes have

local in-memory state information typically not shared

between the primary and secondary for handling

specific transactions. For example, a primary node

handling trades for IBM stocks would have

information in memory specifically related to IBM

stocks. If a buy or sell order for IBM stock is directed

to a secondary node, the secondary node would not

have the proper state information to efficiently process

the order. The primary node should store enough

information persistently to allow stock trading for IBM

to continue on another node should it fail. However,

the overhead for the secondary node to obtain the

necessary state information from persistent storage

would cause delays in processing trades for IBM stock

which are not acceptable. The second problem with the

primary-secondary approach is that there can be delays

of several seconds for detecting node failures during

which no requests are being processed. For systems

which need to be continuously responsive under high

transaction rates, these delays are a significant

problem. Therefore, other methods are desirable for

maintaining high availability in transaction processing

systems which handle high request rates and need to be

continuously responsive in the presence of failures.

Our system handles failures transparently without

disruptions in service. A key feature of our system is

that we achieve redundancy in processing by having

multiple nodes executing transactions as peers

concurrently. If one node fails, the remaining ones

simply continue executing. There is no need to transfer

control to a secondary node after a failure because all

of the nodes are already primaries. A key advantage to

our approach is that after a primary failure, there is no

lost time waiting for the system to recover from the

failure. Other primaries simply continue executing

without being slowed down by the failure of one of the

primaries.

One of the complications with our approach is that

the primaries can receive requests in different orders. A

key component of our system is a method for the

primaries to agree upon a common order for executing

transactions, known as the total ordering, without

incurring significant synchronization overhead. We do

this by means of a limited amount of shared memory

which our system has access to between the nodes, and

a simple but efficient synchronization protocol.

The key contributions of this paper include the

following:

• We have developed a new architecture for highly

available transaction processing system which

does not incur delays when a node fails.

• We have implemented our system on an IBM

z990 zSeries. Experimental results show that our

system achieves fast recovery from failures and

good performance.

• We have developed a new algorithm for nodes in

a distributed environment receiving messages in

different orders to agree on a total ordering for

those messages. This algorithm is used by our

system to determine the order for all nodes to

execute transactions and makes use of a small

amount of shared memory between the nodes.

The total ordering algorithm imposes little

overhead and proceeds at the rate of the fastest

node; it is not slowed down by slow or

unresponsive nodes.

2. System Architecture

Our system makes use of multiple nodes for high

availability. Each node contains one or more

processors. Nodes have some degree of isolation so

that a failure of one node would not cause a second

node to fail. For example, they run different operating

systems and generally do not share memory to any

significant degree. In our implementation, nodes can

communicate and synchronize via a small amount of

shared memory known as a coupling facility.

For environments such as stock trading, response

times have to be extremely fast. Therefore, state

information needed to perform transaction processing

is cached in the main memories of nodes handling

transactions. A key drawback of the primary-secondary

approach of having a back-up node take over in case

the primary node fails is that the back-up node will not

have the necessary state information in memory in

order to restart processing right away. There are also

delays in detecting failures. A common method for

detecting failures is to periodically exchange heart beat

messages between nodes and listen for failed

responses. It is generally not feasible to set the timeout

period before a node is declared failed to too small an

interval (e.g. less than several seconds) due to the risk

of erroneously declaring a functioning node down.

This means that it often takes several seconds to detect

a failure. The delays that would be incurred in

detecting the failure of a primary node and getting a

secondary node up and running by obtaining the

necessary state information from persistent storage are

thus often too high using this conventional high

availability approach.

For this reason, it is essential to have at least two

nodes with updated in-memory data structures for

handling orders for the stock. That way, if one of the

nodes fails, the other node will still be functioning and

can continue handling trades for the stock.

One way to achieve high availability would be to

have a primary node handling requests for a stock in a

certain order and to have the primary node send the

ordered sequence of requests that it is processing to a

secondary node. The secondary node then executes the

transactions in the same order as the primary node but

a step or two behind the primary node. The secondary

node would avoid performing many updates to

persistent storage already performed by the primary

processor since the whole reason for the secondary

processor executing transactions is to keep its main

memory updated.

While this approach eliminates some of the

overhead of simply having a cold standby taking over

for the primary, it still incurs some overhead for both

detecting the failed primary node and handling the

failover from the primary node to the secondary node.

As we mentioned previously, detecting the failed

primary node can take several seconds. The secondary

node also needs to figure out exactly where the primary

node failed in order to continue processing at exactly

the right place. If the failover procedure is not carefully

implemented, the secondary node could either repeat

processing the primary node has already done or leave

out some of the processing the primary node performed

before failing; either of these two scenarios results in

incorrect behavior.

Our system avoids the problems of both detecting

failures and transferring control from a failed node to a

back-up node by having multiple primary nodes

executing the same sequence of transactions as peers

concurrently. Normally, two primary nodes would be

sufficient. If failure of more than one node within a

short time period is a concern, more than two primaries

can be used. In the event that a primary node fails, the

remaining primaries keep executing without being

hindered by the failed primary. We now describe our

architecture in more detail.

2.1 Primary-Primary Architecture

We depict the overall primary-primary stock

exchange trading architecture in the diagram below.

Primary-Primary Architecture

An electronic stock exchange, as illustrated by the

shaded ellipse area in the diagram, typically consists of

3 tiers,

• Gateways (GW) collect buy/sell requests from

clients (e.g., traders and brokers) and perform

preprocessing such as validation.

• Execution Venues (EV) are the heart of the stock

exchange. They carry out the actual trading by

matching incoming requests against an in-

memory list of outstanding requests, which is

called an order book. Each EV is implemented by

a node.

• History Recorder (HR) is used for persistently

storing the result of every trade carried out by the

EVs. It is typically implemented by a file system

or database management system (DBMS). It is

essential to store the result of computations

persistently so that information is not lost in the

event of a system failure.

A typical stock trading transaction involves the

following steps:

• GWs receive trade requests from clients,

persistently store the requests, and send the

requests to EVs. Different EVs may receive

requests GWs in different orders. Therefore, there

is the need to agree on a total ordering for the

requests.

• EVs agree on a total ordering for the requests by

communicating with the sequencer. In our

implementation, the sequencer includes a limited

amount of shared memory that EVs can use for

communication.

• EVs process the requests by matching them

against in-memory state known as the order

books, and send the results to HRs.

• HRs persistently store the results and notify EVs.

• Upon receiving acknowledgements from HRs,

EVs notify GWs of trade completion.

• Upon receiving acknowledgements from EVs,

GWs notify the clients of trade completion.

Each of the tiers sports its own recovery mechanism

and working together, they make the entire system

fault tolerant. We first briefly describe the recovery

mechanism of GW and HR, and then in more detail the

recovery mechanism of EV since that is one of the

main focus areas of this paper.

GWs must persistently store every incoming trade

request before they can notify clients of the reception

of their requests and send the requests to the EVs. If a

GW fails before persistently storing a request, it can

simply ask the client to resend it. GWs typically

employ DBMS in order to take advantage of DBMS

fault tolerant features. File systems can also be used

and may offer better performance but fewer features.

HRs, like GWs, typically also employ DBMS. In

order to improve performance, HRs may use “group

commit” instead of committing every single trade

individually. However, this raises the possibility that a

group of trade results can be lost if a HR fails. This

danger is guarded against by requiring that: (1) a HR

cannot notify an EV of trade completion until all trade

results in the group have been committed; and (2) an

EV cannot notify a GW of trade completion until it has

been notified by the HR. So in the event that a HR

fails, the three tiers can coordinate to have the GWs

replay those trades for which a trade completion was

not received.

Let’s now turn our attention to the fault tolerance of

EVs. Today’s stock exchanges typically employ a

primary-secondary architecture (not what’s depicted in

the diagram) that, at a high level, works as follows:

• All incoming trade requests are sent to a primary

EV, which also acts as the sequencer.

• A secondary EV “eavesdrops” on the traffic

between the EV and the HR in order to learn the

ordering of trade requests and duplicate the

primary EV’s processing.

• In the event that the primary EV fails, the

secondary EV initiates a recovery protocol to

coordinate with the GWs and HRs and takes over

as the primary.

It is evident that with a primary-secondary

architecture, from the time the primary EV fails until

the time the secondary EV takes over, no trade request

is being processed therefore causing disruption. Due to

the fact that the secondary EV needs to first detect the

failure of the primary EV, plus the time it takes to

complete the recovery protocol, the disruption can be

on the order of seconds. In today’s electronic stock

exchange, EVs are typically processing trade requests

at a rate of tens of thousands per second for one

symbol and hundreds of thousands per second

aggregated across all symbols. Thus, it is extremely

costly for a stock exchange to have seconds of

disruption. In fact, primary EV failure is one of the

main causes of disruption in stock exchanges today.

Our primary-primary architecture avoids this problem

by transparently handling an EV failure without delays

in normal processing.

As illustrated in the architecture diagram, the

overall system, at a high level, works as follows:

• Multiple primary EVs exist. We describe how

our system works for two primary EVs. It can

easily be extended to handle more EVs.

• All incoming trade requests are sent to both

primary EVs.

• Both primary EVs process trade requests

concurrently, using a sequencer to negotiate an

ordering of trade requests agreed upon by both.

• In the event that one of the primary EV fails, the

other simply continues as if nothing happened.

With the primary-primary architecture, one primary

EV need not detect the failure of the other; neither

need it carry out a recovery protocol. The only

“disruption” when one primary EV fails is that it may

be processing several trade requests ahead of the other

so the live EV will first “catch up” in processing those

trade requests before new trade requests will be

processed.

Keen readers will point out that in our primary-

primary architecture, the sequencer can potentially be a

single point of failure. Key to our design is to handle

failover of the sequencer transparently from the EVs.

We achieve this by using a fault tolerant system for the

sequencer. Our implementation uses fault-tolerant IBM

hardware; it is also possible to use highly fault-tolerant

hardware such as HP NonStop (formerly Tandem) [1].

This “single reliable sequencer” view to EVs is

important. If we had exposed multiple sequencers to

the EVs, the EVs would have to explicitly manage the

failover of the sequencers resulting in a more complex

protocol. Handling sequencer failover transparently

from the EVs allows us to design a total ordering

algorithm that requires simple logic in the sequencer.

As a result, the sequencer is well-suited to be

efficiently implemented with a highly reliable system.

3. The Total Ordering Algorithm

In the primary-primary architecture, all peer EVs

must process incoming trade requests in exactly the

same order. However, when multiple GWs multicast

trade requests to multiple EVs, there is no guarantee

that all EVs will receive the trade requests in the same

order. Therefore, there must be a mechanism to work

out a total ordering amongst all peer EVs.

Our total ordering algorithm is applicable not just to

our stock trading system but also to other scenarios in

which multiple nodes which may receive messages in

different orders need to agree on a total ordering for

the messages; such algorithms have been referred to as

total order broadcast and multicast algorithms [2]. Our

total ordering algorithm employs a centralized

sequencer as a rendezvous point for peer EVs to

negotiate a total ordering for processing trade requests,

regardless of how each individual EV sees its local

ordering of incoming trade requests. The main

difference between our algorithm and the traditional

unicast-broadcast and broadcast-broadcast [2] variants

of fixed sequencer algorithms is that, as shown in the

figure below, our algorithm involves no

communication between the senders and the sequencer,

only communication between the receivers and the

sequencer. In an environment such as stock exchanges

where the number of senders far exceeds the number of

receivers, our algorithm is advantageous in terms of

reducing the load on the sequencer.

Another advantage of our algorithm is that the logic

of generating the next sequence number is in the

receivers rather than in the sequencer. As we can see in

the detailed description of the algorithm below, the

sequencer in our algorithm is essentially a shared-

memory like passive entity that implements a compare-

and-swap like protocol. This further reduces the

complexity of the sequencer, which lends itself well to

sender

sequencer sequencer sequencer

sender sender

unicast-broadcast broadcast-broadcast our algorithm

a very efficient and fault-tolerant implementation of

the sequencer.

A third advantage of our algorithm, compared to

past algorithms in which the receiving nodes agree on a

total ordering, is that our algorithm allows the system

to progress at the speed of the fastest receiver and can

proceed rapidly even in the presence of slow receivers.

In many previous algorithms, multiple receivers must

provide input before an ordering decision can be made

[2]. While this may have advantages in some

environments, the delays that these algorithms

introduce are problematic for transaction processing

systems with low latency requirements. We avoid these

delays in our algorithm by immediately assigning a

sequence number to the first correct request by a node

asking for the sequence number.

The use of a small amount of shared memory for

communication between the nodes results in a

considerably faster sequencer than algorithms which

exchange messages between nodes such as those

described in [2]. We quantify the overhead imposed by

our sequencer in Section 6.

The basic idea of our algorithm is simple: each EV

competes to propose to the sequencer its own local

ordering as the total ordering, and whichever gets to

the sequencer first (the leader) wins. The losers (the

followers) must shuffle their local ordering to conform

to the leader. We use an example to illustrate the idea.

Assume two gateways, GW1 and GW2, are

multicasting trade requests to two peer execution

venues, EV1 and EV2. GW1 multicasts trade requests

p0, p1, p2; and GW2 multicasts trade requests q0, q1, q2.

Let’s further assume that EV1 sees the incoming trade

requests as q0, q1, p0, p1, q2, p2 and EV2 sees the

incoming trade requests as p0, p1, q0, p2, q1, q2. So

initially, the local ordering at EV1 and EV2, and the

total ordering at the sequencer are as follows (dashed

box indicates received but not yet processed trade

requests):

We now show how EV1 and EV2 compete to

negotiate a total ordering through the sequencer. At

each step of the example, we will give the state of the

local ordering at EV1 and EV2, and the total ordering at

the sequencer.

1. When EV1 receives q0, it proposes to the sequencer

that it would like q0 to be processed at the 1
st

position of the total ordering. Similarly, when EV2

receives p0, it proposes to the sequencer that it

would like p0 to be processed at the 1
st
 position of

the total ordering. Assume EV1 gets to the

sequencer first and wins (indicated by the arrowed

line from EV1 to the sequencer). So the sequencer

takes q0 at its 1
st
 position and, when EV2 comes to

propose p0, tells EV2 that its proposal is rejected

and it should process q0 instead. So EV2 shuffles q0

in front of p0, p1 (shown in bold font) to conform to

EV1 (solid box indicates processed trade requests):

2. After both EV1 and EV2 process q0, EV1 proposes

q1 and EV2 proposes p0. Assume this time EV2 wins

and the sequencer takes p0 at its 2
nd

 position and

tells EV1 to process p0 instead of q1. So EV1

shuffles p0 in front of q1 to conform to EV2:

3. Assume that, after processing p0, EV2 wins in

proposing both p1 and p2 for the 3
rd

 and 4
th

 position

of the total ordering. So when EV1 proposes q1, it is

told to process p1 instead and has to shuffle p1 in

front of q1 to conform to EV2:

4. When EV1 proposes q1 after processing p1, it is told

to process p2 instead and has to shuffle p2 in front

of q1, q2 to conform to EV2:

q0 q1 p0 p1 q2 p2

q0 p0 p1 p2 q1 q2

q0 sequencer

EV1

EV2

q0 p0 p1 p2 q1 q2

q0 p0 p1 p2 q1 q2

q0 p0 p1 p2 sequencer

EV1

EV2

q0 p0 p1 q1 q2 p2

q0 p0 p1 p2 q1 q2

q0 p0 p1 p2

EV1

EV2

sequencer

q0 p0 q1 p1 q2 p2

q0 p0 p1 p2 q1 q2

q0 p0

EV1

EV2

sequencer

q0 q1 p0 p1 q2 p2

p0 p1 q0 p2 q1 q2

EV1

EV2

sequencer

We can see that at this point, the local ordering on

EV1 and EV2 are exactly the same. For processing q1

and q2, it doesn’t really matter which EV wins the

proposal. So the total ordering negotiated through the

sequencer is: q0, p0, p1, p2, q1, q2.

Because our algorithm allows the system to

progress at the speed of the fastest EV, one EV may

fall behind the leader by a significant amount. We must

bound this “distance” between the leader and other

EVs. Otherwise, if the leader dies, it will take too long

for the followers to “catch up”, thus effectively causing

a disruption. We solve this problem by limiting the

amount of memory the sequencer uses to store total

ordering numbers assigned. Instead of storing the

entire history of total ordering numbers assigned such

as [0,], the sequencer will only store a fix-sized

sliding window such as [n, n+100]. This means that

when n+100 has been assigned to the leader, request n-

1 will be removed. If the follower is behind the leader

by more than 100 requests and tries to propose a

request for n-1, the sequencer will notify the follower

that it is too far behind and some action should be

taken (e.g., kill the follower and restart a new one).

4. Non-Disruptive Failover

There are two ways an EV can fail. One is what we

call hard failure, where the EV completely stops

processing trade requests due to hardware or software

failure. The other is what we call soft failure, where the

EV continues to process trade requests but, due to

system load, etc., is falling behind the leader EV

further and further.

Regardless of how an EV fails, by the nature of our

primary-primary architecture, other peer EVs continue

unaffected. The only effect is that there is one fewer

EV competing for the total ordering via the sequencer.

Therefore, as long as there is still one working EV left,

failure of one or more peer EVs causes no disruption at

all to the processing of trade requests.

However, this is only half of the high-availability

story. When an EV fails, a new one must be started and

synchronized with the working ones in order to

maintain the level of availability. This process must

also be done without any disruption to the working

EVs. We now describe how this is accomplished. To

keep the description simple and without loss of

generality, our system consists of one GW, two EVs

(EV1 and EV2), and one HR. Assume EV2 failed at

some point and we start a new one.

(1) Assume, as shown in the figure above, when

EV2 starts, EV1 has received trade requests up to k, and

has processed trade requests up to j. Therefore, EV2

can receive all trade requests after k, but needs to

recover all trade requests up to k.

(2) Periodically, EV1 takes a checkpoint of its entire

order book and sends it to the HR. Assume the last

checkpoint EV1 took included trade requests up to i, as

shown in the figure above. By asking HR for the latest

checkpoint, EV2 can immediately recover all trades up

to i. Now it needs to recover trade requests between i

and k.

(3) For each trade request after j processed by EV1,

a persistent storage request is sent to HR. The reply

from HR, which includes a copy of the original trade

request, is multicasted to both EV1 and EV2. Therefore,

by “listening to” the reply from HR, EV2 can recover

trade requests between j and k, as shown in the figure

above. The only missing trade requests now are those

between i and j.

(4) By asking HR for the persistently stored trade

requests between i and j, EV2 can finally recover all

missing trade requests, as shown in the figure above.

It’s not difficult to see that the entire process causes no

disruption to EV1.

Note that the four steps above are how missing

trades are recovered in parts and “stitched together”.

They are not the order in which the missing trades are

processed. All four steps actually happen concurrently.

EV2 can start processing trades from i once it receives

the checkpointed information. Recovered missing

trades that are out of sequence are queued.

5. Prototype Design and Implementation

To verify the feasibility of our architecture, we have

EV1

EV2

k j

1

EV1

EV2

k j i

1 2

EV1

EV2

k j i

1 2 3

EV1

EV2

k j i

1 2 3 4

designed and implemented a prototype on the IBM

zSeries eServer mainframe [3]. The reason for

choosing the zSeries eServer is that the function of our

sequencer is readily available with a special hardware

called Cross-System Coupling Facility (XCF) [4],

which allows high performance data sharing across

different logical partitions (LPARs) of a single eServer

or across multiple eServers.

The prototype consists of the following three

functional components needed for a stock exchange:

• GW, which generates trade requests for one or

more stock symbols;

• EV, which executes stock trading by maintaining

in-memory state known as an order book for each

stock symbol and matching incoming trade

requests against the order book;

• HR, which persistently stores information for all

trades to a file system.

Communications among GW, EV, and HR are

through LLM (Low Latency Messaging) [5], which is

an IBM product that provides reliable and ordered

multicast and unicast messaging services. The message

flow is depicted in the figure below (thin dashed lines

indicate unicast messages, and thick dashed lines

indicate multicast messages).

(1) Trade request from GW to EV, multicast

(2) Persistent storage request from EV to HR,

unicast

(3) Persistent storage ack from HR to EV,

multicast

(4) Trade completion from EV to GW, unicast

(5) Completion ack from GW to EV, multicast

The functions of our sequencer are implemented

through the list services provided by XCF, which allow

applications to share data organized in a list structure.

List entries can have ID, key, etc., and be kept in sorted

order by certain attributes. For an EV to propose a total

ordering number for a trade request, it simply asks

XCF to create a list entry with [ID=total ordering

number, key=trade request]. Using the sample example

in section 3,

• EV1 attempts to create an entry [ID=0, key=q0]

• EV2 attempts to create an entry [ID=0, key=p0]

• EV1 gets to XCF first so entry [ID=0, key=q0] is

created successfully

• EV2 gets to XCF next and is informed an entry

with ID=0 already exist and its current key=q0

Essentially, the list services allow peer EVs to

implement a “compare-and-swap” protocol to support

the total ordering algorithm. The protocol is simple and

only requires one trip to XCF.

In the next section, we will present the experimental

results of our prototype.

6. Experimental Results

Our experiments are conducted on an IBM zSeries

eServer mainframe model z990 [3] with a total of 32

1.2GHz CPUs and 256GB memory. Each GW, EV,

and HR runs in its own LPAR with dedicated CPUs

and memory. LPAR is a way to virtualize hardware

resources such that each partition functions as if it were

an independent physical machine while transparently

sharing hardware resources. In our experiments, each

GW and HR has 2 CPUs and 2GB memory, and each

EV has 4 CPUs and 4GB memory. All the LPARs are

running z/OS version 1.8, IBM’s proprietary

mainframe OS. Connectivity among the tiers is through

HiperSockets [6], which is a direct memory-to-memory

copy between two LPARs that involves no actual

network interface and provides much better

performance than Gigabit Ethernet. The link between

EV and XCF is a special fiber optic link called

Integrated Cluster Bus (ICB) with speed up to 2GB per

second [3]. Our testbed is depicted in the diagram

below. Note that in our experiments, without loss of

generality, we did not use separate clients but rather

have the GWs generate trades directly.

Prototype Testbed

We first present the non-disruptive availability

results that show the strength of our primary-primary

architecture. A checkpoint of EV in-memory state

information is sent to the HR periodically. The

GW EV HR

1 2

3 4

5

checkpoint interval is controllable via a tunable

parameter. In these experiments, the EVs take a

checkpoint after every 1024 requests are processed.

Figure 6-1 Non-disruptive availability

Figure 6-1 shows one GW sending trade requests to

two EVs at a throughput of roughly 5000 requests per

second. Each request is to either buy or sell a certain

number of shares of a stock symbol. Half of the

requests are buy orders, while the other half are sell

orders. After about 30,000 requests, EV2 fails. After

about 50,000 requests, EV2 is restarted; it then

synchronizes with EV1 and resumes processing as

before. We can see that during the entire period, EV1

continues to process the trade requests at roughly 5000

requests per second as if nothing happened.

We now show how long it takes for a newly started

EV to synchronize with a live EV non-disruptively in

the middle of trade processing. Figure 6-2 shows the

synchronization time of a GW sending trade requests

of a single stock symbol to two EVs at different

throughput. We can see that the synchronization times

for all the cases are under 5 milliseconds.

Figure 6-2 Sync time, 1 symbol

Figure 6-3(a) and 6-3(b) show the synchronization

time of a GW sending trade requests of 10 stock

symbols to two EVs at throughputs of 1000 and 9000

requests per second. For a throughput of 1000 requests

per second, synchronization times for each of the 10

symbols are under 30 milliseconds; the total

synchronization time for all 10 symbols is under 35

milliseconds. For a throughput of 9000 requests per

second case, synchronization times for each of the 10

symbols are under 700 milliseconds; the total

synchronization time for all 10 symbols is about 800

milliseconds.

Figure 6-3(a) Sync Time, 10 symbols, 1 GW, 1000 rqsts/s

Figure 6-3(b) Sync time, 10 symbols, 1 GW, 9000 rqsts/s

Figure 6-3(c) Sync time, 10 symbols, 4 GWs, 1000 rqsts/s

Figure 6-3(c) shows the synchronization time of 4

GWs sending trade requests of 10 symbols to two EVs

at a throughput of 1000 messages per second. We see

that there is much more variation in the

synchronization time from symbol to symbol, ranging

from 30 to 121 milliseconds. The total synchronization

time for all 10 symbols is about 150 milliseconds. We

remind the readers that for all the cases, there is no

disruption to the live EV during the synchronization.

Figure 6-4(a) Latency w/o persistent storage, 1 symbol

Figure 6-4(b) Latency with persistent storage, 1 symbol

Since end-to-end latency within the system (simply

referred to as latency hereafter), which is from the time

when a GW sends a trade request to the EVs to the

time when the GW receives a trade completion

notification from the EV, is one of the key

performance measurements, we also present a variety

of latency related measurements which show that our

prototype can meet performance standards required by

stock exchanges. Typically, today’s stock exchanges

require that the latency to be single-digit milliseconds.

We first measure the overhead of our total ordering

algorithm (sequencer) which uses the XCF. We

compare the latency at different throughput with 1

symbol, 1 GW, and 2 EVs. In our implementation,

messages from a single GW will be sent to EVs in the

same order (although our architecture is capable of

handling situations when this is not the case). Thus,

with only one GW, agreeing on a total ordering is not

necessary so we can turn off the sequencer

(implemented by the XCF) to make the comparison. In

Figure 6-4(a) we make the comparison without

persistently storing the trade results by HR to further

isolate the XCF overhead. In Figure 6-4(b) we make

the comparison while persistently storing the trade

results by HR to show that this does not affect the XCF

overhead. We can see that in both figures, our total

ordering algorithm going through XCF adds very little

overhead, at most 0.35 milliseconds (at 9000 requests

per second with persistent storage).

A single EV can handle throughputs up to 9000

requests per second before the response time becomes

unacceptably high. z/OS has a component call USS

(Unix System Services) which implements a certified

UNIX (XPG4 UNIX95) environment that makes

porting programs written for UNIX to z/OS much

easier. In fact, the reliable multicast messaging service

LLM we used in our prototype is written for UNIX and

not supported by z/OS. So we have ported it to USS,

and our prototype runs on top of LLM in the USS

environment. This convenience, however, comes at a

performance cost. Due to context switching overhead

resulting from LLM, 9000 requests per second is the

highest throughput we can achieve. It is possible to add

more processors to an EV in order to get higher

throughput rates.

We then measure the scaling behavior of our total

ordering algorithm in terms of the number of stock

symbols. We repeat the same measurements in Figure

6-4(a) and 6-4(b) with 10 symbols, one GW, and two

EVs; the results are shown in Figure 6-5(a) and 6-5(b).

As shown in the figures, the XCF overhead increased

marginally (typically fewer than 100 microseconds) for

all throughputs except 9000, at which point the

overhead is 1.23 milliseconds without persistent

storage and 1.38 milliseconds with persistent storage.

Figure 6-5(a) Latency w/o persistent storage, 10 symbols

Figure 6-5(b) Latency with persistent storage, 10 symbols

Figure 6-6(a) Latency histogram, 1 symbol

Figure 6-6(b) Latency histogram, 10 symbols

Next we plot the latency distribution for one

particular configuration to check and make sure that

the average latency numbers in figures 6-4(a) through

6-5(b) are indeed representative. A latency histogram

over 20,000 requests for 1 GW sending trade requests

for one symbol to two EVs at 1000 requests per second

is shown in Figure 6-6(a), and the same measurement

for 10 symbols is shown in Figure 6-6(b). Note that in

Figure 6-6(b), we only show a histogram for one of the

10 symbols as the others are quite similar. For both

cases, the majority of the latency numbers are 1.0 and

1.1 milliseconds with an average between 1.25 and

1.28 milliseconds (not shown).

Finally, we measure the latency with 2 GWs

sending trade requests for one or ten symbols at

different throughputs. Note that with two GWs, total

ordering must be turned on so there are no

measurements for “no XCF”. The results are shown in

Figure 6-7(a) and 6-7(b). The bars marked “harden”

correspond to storing the results persistently.

Figure 6-7(a) Latency with 2 GWs, 1 symbol

Figure 6-7(b) Latency with 2 GWs, 10 symbols

The latency numbers with two GWs are fairly

similar to those with one GW, except at the throughput

9000 requests per second. At this throughput and one

symbol, latency increased from 2.77 to 3.51

milliseconds without persistent storage (27% increase),

and from 3.73 to 5.01 milliseconds with persistent

storage (34% increase); with 10 symbols, latency

increased from 5.36 to 11.02 milliseconds without

persistent storage (106% increase), and from 6.44 to

13.02 milliseconds with persistent storage (102%

increase). These numbers reflect the fact that with

increasing throughput and number of symbols, the

chance of the two EVs receiving messages from the

two GWs in a different order increases; therefore,

processing time increases due to the need for the EVs

to shuffle their queues.

7. Related Work

Several high availability cluster solutions exist in

which a back-up node can take over for a primary node

after the primary node has been determined to have

failed. Examples include HACMP from IBM [7], the

Microsoft Cluster Service [8], and HA-Linux [9].

There can be considerable delays in processing

resulting from both detecting the node failure and

transferring control to the back-up node. Our primary-

primary architecture avoids these delays.

The Swiss Exchange system in the 1996-98

timeframe is discussed in [10]. This exchange uses a

primary-secondary architecture unlike our primary-

primary architecture.

Considerable work has been done in the area of

Byzantine fault tolerance [11, 12]. Our system is not

prone to the same types of failures that Byzantine fault-

tolerant systems are prone to. As a result, our system

incurs significantly less overhead.

There have been several algorithms proposed for

agreeing on a total ordering of messages received by

different nodes in a distributed environment. A

comprehensive survey of these algorithms is contained

in [2]. Our approach has conceptual similarity to the

“Destinations Agreement Algorithms” summarized in

this paper [13, 14, 15, 16]. A key difference of our

sequencing algorithm is that nodes communicate using

a small amount of shared memory resulting in faster

communication than the previous algorithms which use

message passing. Another key difference is that our

sequencing algorithm can progress at the speed of the

fastest receiving node. The previous algorithms

generally require a consensus to be formed among

multiple nodes which means that slow nodes can delay

the process.

A Web-based financial trading system designed to

handle bundle orders is described in [17]. The paper

does not address how to handle high availability and

recover from failures.

8. Acknowledgement

The authors would like to thank Paul Dantzig and

Francis Parr for their helpful discussions and

constructive comments regarding this work.

9. References

[1] HP Integrity NonStop Computing, Hewlett-Packard,
http://en.wikipedia.org/wiki/Tandem_Computers

[2] X. Defago, A. Schiper, and P. Urban, “Total Order

Broadcast and Multicast Algorithms: Taxonomy and

Survey”, ACM Computing Surveys, Vol. 36, No. 4,

December 2004, pp. 372-421.

[3] IBM Redbook, “IBM eServer zSeries 990 Technical

Guide”, May 2004.
http://www.redbooks.ibm.com/abstracts/sg246947.html?Open

[4] IBM Redbook, “z/OS Parallel Sysplex Configuration

Overview”, September 2006.
http://www.redbooks.ibm.com/abstracts/sg246485.html?Open

[5 LLM] WebSphere MQ Low Latency Messaging,

http://www.ibm.com/software/integration/wmq/llm

[6] IBM Redbook, “HiperSockets Implementation Guide”,

March 2007.
http://www.redbooks.ibm.com/abstracts/sg246816.html?Open

[7] HACMP High Availability Cluster Multiprocessing Best

Practices, IBM Corporation, January 2008,
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/psw03025gben/

PSW03025GBEN.PDF

[8] W. Vogels et al, “The Design and Architecture of the

Microsoft Cluster Service”, Proceedings of the 28
th

 Annual

International Symposium on Fault-Tolerant Computing,

1998.

[9] Linux-HA, http://www.linux-ha.org/

[10] X. Defago, K. Mazouni, A. Schiper, “Highly Available

Trading System: Experiments with CORBA”, Proceedings of

Middleware ’98.

[11] L. Lamport, R. Shostak, M. Pease, "The Byzantine

Generals Problem", ACM Transactions on Programming

Languages and Systems, Vol. 4 no. 3, July 1982.

[12] M. Castro, B. Liskov, "Practical Byzantine Fault

Tolerance", Proceedings of OSDI 1999, New Orleans,

February 1999

[13] K. Birman, T. Joseph, “Reliable communication in the

presence of failures”, ACM Transactions on Computer

Systems, vol. 5 no. 1, February 1987.

[14] S.-W Luan, V. D. Gligor, “A fault-tolerant protocol for

atomic broadcast”, IEEE Transactions on Parallel and

Distributed Systems, vol. 1 no. 3, July 1990.

[15] T. D. Chandra, S. Toueg, “Unreliable failure detectors

for reliable distributed systems”, Journal of the ACM, vol. 43

no. 2.

[16] L. T. Rodrigues, M. Raynal, “Atomic broadcast in

asynchronous crash-recovery distributed systems”,

Proceedings of ICDCS 2000.

[17] M. Fan, J. Stallaert, A. Whinton, “A Web-Based

Financial Trading System”, IEEE Computer, April 1999.

