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A Model for Fusion and Code Motion in an Automatic

Parallelizing Compiler

Abstract

Loop fusion has been studied extensively, but in a manner isolated from other transformations.

This was mainly due to the lack of a powerful intermediate representation for application of composi-

tions of high-level transformations. Fusion presents strong interactions with parallelism and locality.

Currently, there exist no models to determine good fusion structures integrated with all components

of an auto-parallelizing compiler. This is also one of the reasons why all the benefits of optimization

and automatic parallelization of long sequences of loop nests spanning hundreds of lines of code have

never been explored.

We present a fusion model in an integrated auto-parallelization framework that simultaneously

optimizes for hardware prefetch stream buffer utilization, locality, and parallelism. Characterizing

the legal space of fusion structures in the polyhedral compiler framework is not difficult. However,

incorporating useful optimization criteria into such a legal space to pick good fusion structures is very

hard. The model we propose captures utilization of hardware prefetch streams, loss of parallelism,

as well as constraints imposed by privatization and code expansion into a single convex optimization

space. The model scales very well to program sections spanning hundreds of lines of code. It has

been implemented into the polyhedral pass of the IBM XL optimizing compiler. Experimental results

demonstrate its effectiveness in finding good fusion structures for codes including SPEC benchmarks

and large applications. An improvement ranging from 5% to nearly a factor of 2.75× is obtained

over the current production compiler optimizer on these benchmarks.
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1 Introduction

Currently, the trend in microarchitecture design is towards more processing elements on a single

chip. Until the early 2000s, increasing clock frequencies boosted software performance without

additional programming effort, or improvements in compiler and language design. This is well-known

to no longer be true. There is a greater need for effective auto-parallelization in compilers.

Loop nest optimization has been studied extensively for several decades. Before the 2000s, most

works were restricted to very narrow domains, typically perfect nests, with a single nest optimized

at a time. There was less focus on composing a long sequence of transformations, as is necessary

in practice to generate high performance code. As a result, analyses were restricted to small sec-

tions, and a very small subset of transformations were explored. Synergistic effects between various

transformations were also lost. For example, it is known that parallelization on multicores does not

provide good scaling unless single thread locality is simultaneously improved. Similarly, without

privatization of data, parallelization often cannot be achieved. Significant improvement in perfor-

mance can come from movement and fusion of code in large sections with several hundreds of lines

of code. Hence, without a framework that can represent large sections of code to perform a number

of high-level transformations in an integrated manner, the full benefits of automatic parallelization

can neither be seen nor any conclusions be made about its effectiveness.

In the past eight years or so, the polyhedral model [2, 9] has emerged as a robust intermediate

representation to extract from within a compiler for application of nearly all high-level optimizations.

Contrary to common belief, the framework is not restricted to code with affine data accesses or static

control flow. With recent advances, nearly any section of code within a single procedure, that only

makes pure function calls if any, can be handled. This includes code with dynamic control flow [3],

indirect accesses, and while loops. Conservative assumptions are made when necessary and to the

extent needed. With recent advances in automatic transformation [4, 5], it is possible to find good

sequences of transformations for coarse-grained outer parallelism, pipelined parallelism, cache and
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register tiling for locality, and generate very efficient code [19, 16]. However, the lack of a fusion

model is a roadblock in optimizing large applications. In particular, choosing the right outermost

fusion structure has a big impact on how well the code can be transformed. It is this problem that we

address here in a manner integrated with all other optimization components of an auto-parallelizer.

The choice of a fusion structure has trade-offs with parallelism and locality. Fusing maximally

can hinder parallelization as it would typically increase the number of dependences satisfied on

fused loops. Secondly, processors provide a limited number of hardware prefetch stream buffers,

and excessive fusion may not utilize hardware prefetching well. One would like to use a number of

prefetch streams that is as close as possible to the available number. On the other hand, distributing

maximally maximizes parallelization opportunities, but leads to loss of locality as well as possibly

reduced utilization of prefetching.

To the best of our knowledge, the fusion model we propose in this paper is the first one in a generic

automatic transformation framework. It is also the first to capture prefetch stream buffer utilization

as well as parallelization and privatization issues. The framework has been implemented in the

polyhedral pass of the IBM XL compiler for C/C++/Fortran. Past works [9] have shown feasibility

of polyhedral techniques on SPEC benchmarks through manual application of transformations and

for sequential compilation. This work is the first to demonstrate its fully automatic application to

complete benchmarks along with parallelization.

2 Background and Notation

The program or a section of it that has been extracted for optimization is a set of statements, S1,

S2, . . . , Sn. Loops surrounding each statement form its computational domain, and the iterations

of the loops can be represented by integer points in a convex polyhedron.

Data Dependence Graph. The Data Dependence Graph (DDG) G = (V,E) is a directed multi-

graph with each vertex representing a statement. An edge, e ∈ E, from node Si to Sj represents a
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dependence with the source and target conflicting accesses in Si and Sj respectively. The conditions

on when the dependence exists are captured by the dependence polyhedron, P
eSi→Sj , that relates

the dependent source and target iterations through a system of linear constraints. The DDG and

strongly-connected components (SCC) of the DDG are important entities when considering fusion.

Lemma 1 All statements belonging to a strongly-connected component of the data dependence graph

have a common surrounding loop, i.e., they cannot be distributed [11].

Transformations: loop hyperplanes and partitionings: A transformation for a program is a

statement-wise multi-dimensional affine function. Let~iS be an iteration in the domain of a statement

S. Each dimension or level of a statement-wise transformation can be represented as follows:

φS(~i) =
(
c1S c2S . . . cmS

S

)(
~iS

)
+ c0S (1)

Let φ refer to {φS1 , φS2 , . . . , φSn}. φ is a fusion partitioning iff c1S = c2S = · · · = cmS
S = 0, ∀S. In

this case, φ partitions the set of statements in a particular order, c0S being the partition number for

S. φ is a loop hyperplane iff
∑mS

i=1 c
i
S ≥ 1.

Loop hyperplanes specify a fused loop while a partition serves the purpose of distributing state-

ments. Hence, some rows of the multidimensional affine transformation represent loops while the rest

are partitions interspersing them. In the literature, there exist techniques to find loop hyperplanes

that maximize tiling opportunity in order to simultaneously optimize for coarse-grained parallelism

and locality. The focus of this paper is on fusion partitionings, but we will need the following condi-

tion. For a loop hyperplane to not violate an unsatisfied dependence edge e ∈ E, the following must

hold true.

φSj

(
~t
)
− φSi (~s) ≥ 0,

〈
~s,~t
〉
∈ P

eSi→Sj (2)

The above constraint can be cast into a set of linear inequalities just involving φ’s coefficients

with techniques known in the polyhedral literature [4]. In the rest of this paper, we refer to the

constant c0Si
of a particular statement Si as ci whenever φ represents a partitioning as in the context
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of fusion.

3 Fusion Model

In this section, we describe the optimization criteria and cost models to pick a single good fusion

structure from the space of all possible legal choices.

3.1 Legal space of fusion structures

For any two statements, Si and Sj , one of the following can be concluded from data dependences:

(i) Strong fuse: ci = cj

(ii) Weak fuse (forward): ci ≤ cj

(iii) Weak fuse (backward): cj ≤ ci

(iv) Strong distribute (forward): ci ≤ cj + 1

(v) Strong distribute (backward): cj ≤ ci + 1

(vi) Unrestricted: ci, cj unconstrained with respect to each other

Case (i) applies when Si and Sj are in the same SCC; by Lemma 1 they must be fused together.

Case (vi) applies if Si and Sj are unconnected in the DDG. Cases (ii), (iii), (iv), and (v) apply when

Si and Sj are weakly connected in the dependence graph, i.e., either when there exists a path from

Si to Sj , or from Sj to Si: the former would lead to either (ii) or (iv), while the latter will lead to

(iii) or (v). However, distinguishing between (ii) and (iv), or between (iii) and (v), requires more

analysis. Certain dependences do not permit fusion. This analysis can be done using constraint (2),

but by restricting it to dependences that have the concerned statements as their source and target.

Consider the following condition:

φSy

(
~t
)
− φSx (~s) ≥ 0,

〈
~s,~t
〉
∈ PeSx→Sy , ∀e ∈ E such that Sx, Sy ∈ {Si, Sj} (3)
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If valid φ loop hyperplane solutions cannot be found for the above, we infer case (iv) as opposed to

(ii), or (v) as opposed to (iii). Also, if two statements are to be distributed, all statements in the

SCC comprising the first one need to be distributed away from all statements in the SCC comprising

the second; this is obviously implied by case (i). Hence, the above analysis can be done on an SCC

pair-wise basis, as opposed to statement pair-wise. In fact, all six conditions above can be written

on an SCC-basis. We still choose to present on a statement-wise basis for better clarity. Thus, a

system of linear equalities and inequalities can be built by deducing one of the six cases for every

(Si, Sj). This convex space in the cis is the set of all legal fusion choices, and we denote this by L.

Consistency: Pouchet et al. [14] provide detailed properties related to transitivity while construct-

ing the set of all legal distinct fusion structures for the purpose of iterative search. Fusion is not

transitive when permutation and skewing interfere. In such cases, a legal solution to L will need

further distribution in order to represent a partitioning. In practice, we find that such cases arise

in an very small fraction of codes, and we thus stay with the above simple construction. A fallback

solution is easily obtained when such interference exists. If need be, a complete and consistent legal

space can be constructed at a higher cost using [14]. The model proposed in this paper can be used

in such a context as well.

3.2 Optimizing for prefetch stream buffers

The problem now is to augment the legal space of fusion structures with cost models for opti-

mization criteria. One of the desired goals is to ensure that no fused nest consumes more than the

available number of hardware prefetch streams. Other goals are to make sure that fusion is conducive

for parallelization as well as respects constraints imposed by privatization of data. Optimizing for

utilization of prefetch stream buffers is the most challenging of these, and we address it in this section.

Most modern hardware supports prefetching. Data required by accesses to contiguous locations of

the memory can be prefetched instead of being supplied on-demand. Hence, an array access a[i][j]
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with i, j being the loop iterators in that order, can make use a hardware prefetch stream buffer while

accessing along a row. Compilers can insert code to initiate prefetch streams for candidate accesses.

Constant strided accesses are also candidates for prefetching. Fusion of statements that access the

same data would allow data reuse as well as reuse or sharing of a prefetch stream. Hence, the number

of prefetch streams that will be used is not simply the sum of those used individually by each of the

statements in the same partition.

It is difficult to determine a priori the requirements of each statement since the inner loop structure

of the fused program itself would not be known while determining the outermost distribution. We

go with a worst-case estimation, i.e., by assuming that for the fusion structure that will be chosen,

the rest of the transformation framework that finds inner loop hyperplanes would maximize spatial

reuse thereby increasing the number of accesses that would require prefetch streams.

From the linear constraints in Section 3.1, the set of legal fusion/distributions is a convex space

in the cis, i.e., partition numbers. A challenge in constructing an objective is the hardness of

encapsulating optimization criteria involving just cis, i.e., partition numbers the statements belong

to. This problem is addressed by introducing a set of binary decision variables that provide greater

power in capturing statements comprising a partition. Let xij be a binary decision variable such

that

xij =


1, if Si is in partition j

0, if Si is not in partition j

Due to Lemma 1, the number of partitions can never be greater than the number of SCCs. Let the

number of partitions be N . N is a variable and will only be known when a solution is found.

Let T be the following constant table, i.e., its values are known at compile-time: rows correspond

to statements and columns correspond to prefetch stream requirements of statements. Let M be

the number of columns of the table. In some cases, a single data space may need multiple prefetch

streams. For example, in C code, accesses a[i][j], a[i+1][j], with loop iterators, i and j would require

separate prefetch streams, and so they will have distinct columns in T . M is thus roughly of the
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Stmts/Data spaces D1 D2 . . . DM

S1 1 1 . . . 0
S2 0 1 . . . 0
...

...
...

...
...

Sn 1 0 . . . 1

Table 1. Statement / prefetch stream requirement table: T

order of the number of distinct data spaces (arrays/matrices) accessed across all statements. Based

on prefetch stream requirements of each statement, one can populate T as follows. Table 1 shows a

sample table.

Tik =


1, if Si requires a stream for array k

0, if Si does not require a stream for array k

Let zkj be a binary decision variable such that

zkj =


1, if a stream is needed for array k in partition j

0, if no stream is needed for array k in partition j

With these variables, it is now possible to add constraints that capture prefetch stream requirement.

We can express the relation between the z and x variables as follows:

zkj =
∨

i|Tik=1

xij (4)

Since zkj ∈ {0, 1}, xij ∈ {0, 1}, the above in turn can be written as:

zkj ≥ xij , ∀i such that Tik = 1 (5)

One can express the partition number as:

ci =
N∑

j=1

j ∗ xij (6)

Now, the number of prefetch streams for partition j is just
∑

k zkj , and can be enforced, for a

processor with 7 prefetch streams, as:
M∑

k=1

zkj ≤ 7, 1 ≤ j ≤ N (7)
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The number on the RHS is known at compile-time based on the target processor and on whether

the compiler has been asked to auto-parallelize. Streams are shared equally among all threads on a

chip. Seven to twelve streams are common for example.

The objective that now really fits well is one that minimizes the number of partitions subject to

above constraints. We now combine all the above constraints and specify the Integer Programming

formulation. All constraints in L, as defined in Section 3.1, fall into one of the following three sets.

P=
i = {k | ci − ck = 0} (8)

P+
i = {k | ci − ck ≥ 0} (9)

P++
i = {k | ci − ck ≥ 1} (10)

Therefore, the minimum number of partitions can be obtained by solving the following integer pro-

gram (IP):

minimize cmax (11)
N∑

j=1

xij = 1 ∀i (12)

ci =
N∑

j=1

j ∗ xij ∀i (13)

ci = ck ∀i, k such that k ∈ P=
i (14)

ci ≥ ck ∀i, k such that k ∈ P+
i (15)

ci ≥ ck + 1 ∀i, k such that k ∈ P++
i (16)

cmax ≥ ci ∀i (17)

zkj ≥ xij , ∀i, j, k such that Tik = 1 (18)
M∑

k=1

zkj ≤ 7 ∀j (19)

xij ∈ {0, 1}, zkj ∈ {0, 1} (20)
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where the number of variables and constraints linearly depend on N . Clearly, from a computational

point of view, it is desirable to obtain a formulation with fewer variables and constraints and therefore

it is desirable to choose the number N as small as possible. Notice that N can be chosen to be as

small as cmax which is not known in advance. Instead, we use heuristics to obtain an upper bound

on cmax and use the resulting bound as the number N .

3.3 A greedy heuristic

The first heuristic we use to find an upper bound on cmax is a very fast and simple greedy heuristic.

In this heuristic, we construct partitions sequentially by simply picking the first feasible statement

and assigning it to the current partition. A statement is considered feasible if it does not have

any fusion/distribution restrictions (modulo current partial solution) and if its data streams can be

prefetched without violating the limit. Statements that must be fused with the current statement

in consideration (i.e. the set P=
i if the current statement is i) are assigned to the same partition

simultaneously. If no more statements can be assigned to the current batch, we simply start a new

batch.

Any solution found by this simple procedure is clearly an upper bound on cmax and therefore

can be used as N in the formulation. But if the above procedure fails to find a solution (due to

fusion/distribution restrictions), this does not necessarily mean that no feasible solution exists. More

precisely, if the precedence graph has directed cycles formed by pairs of statements that can be fused,

for example, let ci ≥ cj , cj ≥ ck, ck ≥ ci, then the above procedure will get stuck as all statements in

this example, namely, i, j and k can be assigned to a batch only after their predecessors are already

assigned. To solve this problem, one needs to identify the strongly connected components in the

precedence graph to identify collections of statements that need to be fused. Consequently, if the

heuristic fails to find a solution, we perform an extra step and find all directed cycles to identify

the implied fusion requirements. With this extra information, the heuristic can now find a feasible

solution if one exists.
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3.4 Dealing with infeasibility

There are two possible reasons for the IP in Section 3.2 to be infeasible. The first reason is that

any feasible solution satisfying the fusion/distribution restrictions requires more hardware prefetch

streams than specified by constraint (19). In this case, one needs to increase the number of prefetch

streams to make the problem feasible. If we define the minimum “spill” to be the minimum increase

in this number, what we do in this case is to find a solution which first minimizes the spill and then

minimizes the number of partitions with that spill. We do this in two steps.

To find the minimum “spill” we simply use binary search on the size of the spill and check if

the resulting relaxed IP is feasible using the heuristic described above. Once we find the minimum

“spill”, we increase the right hand side of constraint (19) in the IP by this number. Now that the

relaxed problem is feasible, the second step is to first apply the heuristic to find the number N and

then solve the IP to obtain the minimum number of partitions. We note that it is also possible to

find the minimum spill using integer programming by formulating a different model.

Note that IP can also be infeasible due to inconsistent fusion/distribution restrictions. More

precisely, there might be a collection of distribution restrictions forming a directed cycle. For example,

if one has the following restrictions ci ≥ cj , cj ≥ ck, ck ≥ ci + 1, then there is no feasible solution

to the problem. To identify this type of infeasibility, we check if having as many prefetch streams

as there are data streams in the problem has a feasible solution. If there is, we can be sure that by

increasing the spill, we can obtain a feasible problem. If not, we conclude that the infeasibility is

due to inconsistent fusion/distribution restrictions. Clearly, this should never be the case.

3.5 Solving the IP

We use the Coin-Cbc [6] code to solve the integer program formulated with N defined as the upper

bound found by the heuristic minus 1. If the resulting IP is feasible, we obtain a solution that is

strictly better than the solution found by the heuristic. If, on the other hand, the IP is infeasible,

11



we conclude that the solution found by the heuristic is already optimal. This simple idea in practice

speeds up the IP solution time noticeably.

3.6 Interaction with parallelization

Modeling fusion while also enabling good parallelization is known to be notoriously hard. In this

section, we propose an approach that is computationally efficient, but makes some practical trade-

offs. It can be described in terms of additional constraints that can be added to L, the legal fusion

space constructed in Section 3.1.

/∗ Center the column vectors. ∗/
for ( i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
data[ i ][ j ] −= mean[j];

/∗ Calculate m∗m covariance matrix. ∗/
for (j1 = 1; j1 <= m; j1++) {
for (j2 = j1; j2 <= m; j2++) {

symmat[j1][j2] = 0.0;
for ( i = 1; i <= n; i++) {
symmat[j1][j2] += data[i][j1 ]∗data[ i ][ j2 ];
}
symmat[j2][j1] = symmat[j1][j2];
}
}

(a) Covcol

for ( i=0; i<N; i++)
for (j=0; j<N; j++)
B[i ][ j ] = A[i][ j]+u1[i]∗v1[j]+u2[i]∗v2[j ]; //S1

for ( i=0; i<N; i++)
for (j=0; j<N; j++)
x[ i ] = x[i ] + beta∗ B[j][ i ]∗y[ j ]; //S2

for ( i=0; i<N; i++)
x[ i ] = x[i ] + z[i ]; //S3

for ( i=0; i<N; i++)
for (j=0; j<N; j++)
w[i ] = w[i] + alpha∗ B[i][ j ]∗x[ j ]; //S4

(b) GEMVER

Figure 1. Fusion parallelization issues

Examples: Note the way variable data is used in the second nest in Figure 1(a). Fusing the first

with the second will result in a nest that has no outer parallelism. No permutation or any other

affine transformation of the fused nest will yield an outer loop that can be parallelized. We show we

are able to capture such interaction in the fusion model directly.

An SCC Ci has outer parallelism iff there exists loop hyperplane φ satisfying

φSy

(
~t
)
− φSx (~s) = 0,

〈
~s,~t
〉
∈ PeSx→Sy , ∀e ∈ E such that Sx, Sy ∈ Ci (21)
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Outer parallelism is preserved by fusion of SCC Ci and SCC Cj iff

φSy

(
~t
)
− φSx (~s) = 0,

〈
~s,~t
〉
∈ PeSx→Sy , ∀e ∈ E such that Sx, Sy ∈ {Ci ∪ Cj} (22)

1. Check each SCC individually for outer parallelism by checking (21)

2. For every pair of SCCs in the dependence graph that are (weakly) connected and with at least

one of them parallel, check for loss of outer parallelism using (22). If parallelism is lost, add a

constraint to L for strong distribution of this pair of SCCs.

Due to Step 2, any loss in outer parallelism that is by itself due to fusion of the two SCCs is detected.

Except for the caveat mentioned in Section 3.1, the resulting constraints completely capture any loss

in parallelism due to fusion choice. These constraints by themselves do not add any inconsistency

since they merely convert “weak fuse” (Section 3.1) to “strong distribute”. For the code in Fig. 1(b),

the above leads to a constraint that separates S3 and S4, i.e., c4−c3 ≥ 1. The partitioning we finally

end up with is {S1, S2}, {S3}, {S4} – with all four fused nests exhibiting outer parallelism as well as

improved reuse within the first partition.

3.7 Interaction with privatization

When developing a sequential application, a programmer usually reuses the same storage repeat-

edly in every loop iteration. This introduces unnecessary false dependences that can be eliminated

by privatizing or expanding the variable. Such variables or temporaries can also be generated by

other passes of the compiler itself. Two choices arise when handling these expanded variables after

transformation.

1. The variable can be left expanded and a buffer be created for it

2. If transformations permit, the variable can be marked as local to a transformed loop. If the

loop is parallelized, it will be made OpenMP private.
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If Option 1 is chosen and loop trip counts are not known at compile time or when they are large, one

could either end up with large buffers or buffers of unknown size that have to be allocated dynamically.

This is a scenario we would always like to avoid in generated compiler code: the allocated buffer may

cause cache pollution. With Option 2, one would end up with exactly as many copies as the number

for (r=0; r< N; r++) {
for (q=0; q< N; q++) {

for (p=0; p< N; p++) {
sum[p] = 0.0; // S1
for ( s = 0; s< N; s++) {

sum[p] = sum[p] + A[r][q][s]∗C4[s ][p ]; // S2
}
}
for (p=0; p< N; p++) {

A[r ][ q ][ p] = sum[p]; // S3
}

}
}

Figure 2. Fusion privatization issues

of processors if the loop is parallelized. However, for this to be achieved, transformations should not

distribute statements accessing a privatized variable along its expanded dimensions. Distribution

would necessitate expansion. To prevent such distribution, additional constraints can be added to

L. These constraints keep necessary statements together on all levels at which the variable had been

privatized. For the example below in Figure 2, we end up adding c1 − c2 = 0, c2 − c3 = 0. In some

cases, though tiling can necessitate creation of buffers for these expanded variables, they are of a

fixed size proportional to tile sizes and do not pose a problem.

4 Putting it all together

Once L is constructed as per Section 3.1, constraints imposed by privatization (Section 3.7) are

added followed by constraints for parallelization (Section 3.7). We also have a heuristic to prevent

fusion that would result in code expansion. Code expansion can occur due to fusion of statements

with iteration spaces bounded by different symbols. Again, constraints to distribute them can be

added.
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Conflicts in precedence constraints: Since constraints enforced to prevent loss of parallelism

would separate particular SCCs while privatization would try to keep a set of statements together,

there could be an inherent conflict between the two. This is easy to check by verifying feasibility

of the space before parallelization constraints are added: if the resulting space becomes infeasible,

parallelization constraints are discarded in favor of privatization constraints. A conflict due to code

expansion constraints are dealt with similarly.

Once the above space is built, it is provided to the LP/IP-based model described in Section 3.2.

Since the solution provided by it minimizes the number of partitions, locality optimization is au-

tomatically achieved subject to those constraints. Improvement in locality due to fusion is further

exploited by both tiling and register tiling of the fused nests. The fusion model is used to first

determine the outermost fusion structure, and maximal fusion is employed for all subsequent inner

levels.

Compilation time The fusion model implementation runs very fast and has negligible impact

on the overall compilation time. For the codes evaluated in the next section, which we believe are

substantial, in no case does the fusion model take more than one second to provide a solution. In

any case, we also use a time bound on the IP formulation, i.e., if it were to take more than a certain

number of seconds, the best of the heuristic solution and the IP solution found till then, if any, is

taken not worrying about provable optimality.

5 Experimental evaluation

Setup and comparison The machine used for experiments is an IBM Power5 4-way SMP system,

with each Power5 processor being a 1.65 GHz dual-core with a 32 KB L1 D cache, a 1.9 MB

shared L2 cache, and a 36 MB off-chip L3 cache. SMT functionality was not used. The IBM XL

compiler v11.1 for C/C++ and v13.1 for Fortran was used with optimization flags: -O3 -qhot -

qtune=pwr5 -qarch=pwr5 with -qsmp -qthreaded added to enable auto-parallelization. At -O3 -qhot
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-qsmp, the existing optimizer in XL performs significant loop and high-level optimizations of its

own, including a heuristic to perform fusion based on similar optimization criteria; it is referred to

as xl-seq and xl-smp, depending on sequential or parallelized code. The polyhedral pass is enabled

by providing additional flags. xl-poly-smartfuse refers to our new fusion model. We compare with

simple fusion choices of “maximal fusion” as well as “no fusion”, referred to as xl-poly-maxfuse and

xl-poly-nofuse in the graphs respectively. A solution that minimizes the number of partitions at

each level is a (greedy) maximal fusion solution. Completely distributing all strongly-connected

components is also a valid solution and this would lead to no fusion. Both maxfuse and nofuse,

like smartfuse, get all benefits of the polyhedral pass. Results in all cases show the combined

benefit from complementary transformations which include all affine transformations, cache tiling,

and register tiling. The polyhedral pass of the compiler incorporates state-of-the-art techniques for

these orthogonal components – to find loop hyperplanes [4, 5], to perform register tiling [17, 16] with

efficient code generation.

Benchmarks We consider benchmarks that are expected to be sensitive to fusion. Gemver is a

linear algebra routine used in householder transformations, in matrix bidiagonalization and tridi-

agonalization. ls3df-cg is the Conjugate Gradient routine from ls3df, a program used for electronic

structure calculations. covcol and corcol are from the Principal Component Analysis (PCA) bench-

mark suite. eon is a SPEC2000INT benchmark while wupwise and facerec are from SPEC2000FP.

hmmer, milc, astar, and cactus are from SPEC2006, that nearly all major hardware vendors publish

results for. Advect3D is an weather modeling application also reported in [15]. Parallelization results

presented are on up to four cores, except in some cases where we see a different trend with more

cores.
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Figure 3. Performance improvement for all benchmarks

5.1 Analysis

Fig. 3 shows a summary of improvement over the existing compiler while running all codes on

4 cores. The fusion model is able to find the best performing fusion structure in nearly all cases.

Though in some cases nofuse or maxfuse itself might be a good solution, the model’s ability to capture

the one that is the best is particularly interesting and important to note. In several cases, smartfuse

provides a structure that is significantly better than nofuse and maxfuse, being different from either

of those. For the three SPEC2000 benchmarks – eon, facerec, and wupwise, improvements of 5%,

6%, and 30% respectively, are obtained over the existing compiler. For the SPEC2006 benchmarks

– hmmer, milc, astar, and cactusADM, improvements of 2%, 5.5%, 2.5%, and 16% respectively, are

obtained.

For covcol and corcol, smartfuse partitions statements into two groups even though all of them are

fusable and distributable. For Gemver (Fig. 1(b)), the first two statements are fused with the first

one being permuted: this improves locality, while the third and fourth statements are distributed.

This solution preserves outer parallelism in all three fused nests, and the resulting code scales almost
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Figure 4. Improvement with new fusion model
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linearly with the number of cores. Maximal fusion destroys pure outer parallelism in this case,

and only wavefront pipelined parallelization can be performed. nofuse leads to a complete loss of

locality and hence performs poorly. The solution obtained by existing compiler optimizer (without

the polyhedral pass) is closer to nofuse. Figures 4(a) and 4(b) show exact GFLOPs performances.

covcol shows similar trends as well. maxfuse leads to a loss of outer parallelism. nofuse performance

for covcol does not show any improvement with parallelization due to an unknown interaction with

later compiler passes.

smartfuse provides a different fusion structure depending on whether the compiler is asked to auto-

parallelize (Section 3.2). Hence, code generated for the sequential case with just locality optimization

will typically use fewer partitions. In Figure 4(a) and Figure 4(b), note that the performance of poly-

smartfuse-seq is significantly better. For ls3df-cg in Fig. 4(d), a solution closer to maxfuse is the

best one, and there is a small improvement over nofuse. In this case, improvement with polyhedral

techniques irrespective of the fusion structure is obtained as a result of an interchange on the key

imperfect nest making a parallel loop outermost. All fusion structures get this benefit, and the

benefits of inner loop fusion can be seen with smartfuse and maxfuse when running on fewer cores

when the data set accessed by each thread is larger. Figure 4(e) shows smartfuse achieving nearly

linear speedup for cactus-ADM. The improvement is seen with any number of threads due to improved

single thread locality.

6 Related Work

Traditional works on loop fusion [10, 12, 18, 15] are restricted in their ability to find complex fusion

structures. This is mainly due to the lack of a powerful representation for dependences and transfor-

mations. Hence, non-polyhedral approaches typically study fusion in an manner isolated with other

transformations. Darte et al. [8, 7] study fusion with parallelization, but only in combination with

shifting. Our work on the other hand enables fusion in the presence of all polyhedral transformations

which include those that make tiling legal and enable better parallelization and locality optimization.
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Megiddo and Sarkar [12] proposed a way to perform fusion for an existing parallel program by

grouping components in a way that parallelism is not disturbed. Decoupling parallelization and

fusion clearly misses several interesting solutions that would have been captured if both were treated

together. Examples in Section 3.6 demonstrate this.

Lim et al.’s [11] affine partitioning algorithm treats each SCC independently. Hence, no choice

of fusion structures across SCCs is considered. Bondhugula et al [4, 5]’s framework implemented in

Pluto [13] performs transformations to enable coarse-grained parallelization and locality optimization

through tiling and maximal fusion; it subsumes previous works based on affine partitioning [11, 1].

The tool can also perform complete distribution separating all SCCs if needed. However, no model

exists to choose a good fusion structure based on any criteria.

Pouchet et al. [14] provide properties and techniques to build a convex space comprising the set

of all legal and distinct fusion structures. The space is built in order to allow iterative empirical

search through systematic enumeration. The space they construct can be used in place of the simpler

one that we proposed in Section 3.1. Though it would incur higher cost, all optimization metrics

developed in this paper would apply to it.

7 Conclusions

We presented a fusion model for an integrated auto-parallelization framework that simultaneously

optimizes for hardware prefetch stream buffer utilization, locality, and parallelism. The proposed

model also captures constraints imposed by privatization and code expansion. A single convex

optimization space with an objective function is built incorporating all these. Results show that it

scales very well to large applications including SPEC benchmarks. It has been fully implemented

into the polyhedral pass of the IBM XL compiler’s optimizer. Experimental results demonstrate its

effectiveness in finding good fusion structures. An improvement ranging from 5% to nearly a factor

of 2.75× is obtained over a highly tuned optimizing production compiler over a range of selected

benchmarks on a multicore. To the best of our knowledge, this is the first fusion model to incorporate
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such concrete optimization criteria as well as demonstrate improvement on large applications with

the polyhedral framework.
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