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Abstract – Alignment score distributions have become very important for computing p-values of 

alignments built on database searches based on adjustable measures of similarity.  Such scores 

provide a level of flexibility allowing for different measures of similarity, as well as for seeking 

candidates for RNA binding sites.  However, computation of the probability distribution over its 

full range has proven complex, with a great deal of interest focusing on the scaling dependence of 

probabilities on alignment sequence lengths.  This paper presents a distribution function derived 

from first principles that describes the sequence-length dependence and extreme-value behavior 

of an arbitrary matrix of alignment scores given their alignment species frequencies.   The 

derivation is based on the asymptotic Sterling’s formula applied in the continuum limit.  The 

results are compared to simulation results for alignment sequence lengths ranging from 10 to 

10,000, with observed binned frequencies down to the order of 

€ 

10−7 , and seen to produce good 

approximations for probabilities of practical sequence alignment lengths.  This distribution 

function provides a practical and fairly easy to compute baseline against which the behavior of 

real and simulated data may be measured. 

 

Background 

 

Sequence alignment algorithms have made it possible to identify and measure meaningful 

comparisons between protein or nucleotide sequences, as well as enabling wide-ranging database 

searching[1] which has ultimately driven the usefulness and demand for the large databases, and 

the laboratory technology to produce the data.  Among these alignment techniques are scoring-

matrix based algorithms, such as BLAST.[2]  Such scoring-matrix based algorithms permit the 

interchange of scoring functions to handle different types of data, such as genetic vs. protein, as 

well as different features of scoring matrices, such as BLOSUM[3] or PAM[4] matrices, or of 

combinations of such methods.[5]  Further, alignments may easily be formed to identify RNA 

binding candidates, for example in application to miRNA candidate searches, by appropriately 

adjusting the scoring matrices to represent binding energies.[6]   



Assignment of probabilities to scores representing alignment candidates has been 

developed[7-9] showing that a Gumbel extreme value distribution is expected to describe this 

type of distribution.  However, computational methods to estimate the Gumbel prefactor and 

scale factor have driven significant efforts to find faster or easier methods of computation for the 

better part of two decades.[10-13]  Even then, there is some evidence and argument that the 

Gumbel distribution may not be entirely the best description of the probability distribution 

governing the probabilities of the highest scores.[14-16]  One feature of these scoring approaches 

is the use of “gap penalties” to penalize the proliferation of gaps that searching algorithms would 

otherwise generate.  However, assignment of probabilities to scores carrying these gap penalties 

highlights the fact that these probabilities measure the chances that the search algorithm would 

find such alignments among random sequences by chance. 

An interesting feature of these approaches is the dependence, or independence, of the 

scoring distribution on the alignment length 

€ 

L .[16]  One interesting path followed involves 

exploration of the alignment as a percolation transition.[17, 18]  Heretofore, analytical 

expressions that capture the dependence of the entire distribution on alignment sequence length, 

even in restricted conditions or limiting cases, has not been obtained from first principles. 

This paper presents a closed-form expression for the continuum asymptotic 

approximation to the distribution of scores at larger sequence lengths without gap penalties or 

indels, with the concomitant issues of excluding ambiguous combinations (multiple ways to 

represent the same alignment).  Results are compared to Monte-Carlo simulations of randomly 

generated sequence alignments over a range of length scales, and with a Markov Chain Monte 

Carlo (MCMC) simulation of multinomially weighted alignment scores in the rare-event regime.   

In the first case, the test made no assumption about the multinomial character of alignment 

probabilities, while the second tested the ability of the asymptotic approximation to represent a 

distribution of scores generated by an MCMC simulation of multinomially weighted scores. 

Connections are developed relating these results to Carlin-Altschul distribution functions.  

Sequence-length invariant scaling forms are derived.  Extreme-value distribution functions are 

derived. 

 

Methods 

Consider alignments between a query string and entries in a database.  The entries in the 

database can be considered as all of the possible starting locations in each of the strings in that 

database.  Characters are limited to an alphabet 

€ 

A  (e.g., for nucleotides 

€ 

A = "A","C","G","T"{ } ).  A sequence of length 

€ 

L  is an ordered 

€ 

L -tuple of members of the 



alphabet, so is a member of of an 

€ 

L -fold Cartesian product of the alphabet   

€ 

A⊗ A⊗ A⊗ A . 

So an alignment is composed of 

€ 

L -tuples of pairs of characters from the Alphabet 

  

€ 

A⊗ A( )⊗ A⊗ A( )⊗⊗ A⊗ A( ) . An example alignment may be 

 

…GCAATAAACTGAAAATGTTTAGACGGGCTCACATCACCCCATAGACAAAT… 

…GCAATACACTGAAAATGTTTAGACGAGCTCATATCACCTCATAAACAAAT… 

In considering random sequence alignments, each of these alignment cases may be 

constructed by selecting alphabet members with typical probabilities 

€ 

p j  according to an index of 

alignment types 

€ 

k  (e.g. for genetic sequence alignments,   

€ 

k ∈ (AA),(CT),…{ }).  The score for 

any specific alignment for sites 

€ 

l is 

€ 

s = skl
l
∑ .  This ultimately depends only on the number of 

each species of pairs, and is not sensitive to order.  In the simple case of no indels, the probability 

of finding an alignment 

€ 

k = i, j( )  of a pair of characters 

€ 

i, j ∈ A  by chance is

€ 

p i, j( ) = f ig j  where 

the frequencies 

€ 

fi  and 

€ 

g j  are the relative frequencies of the genetic or peptide species 

€ 

i  and 

€ 

j  in 

the alphabet.  

The number of times each of these alignment pairs will have been constructed out of 

some 

€ 

L -tuple are 

€ 

nk  with the total number of alignments constrained to sum to the length of the 

alignment 

€ 

L = nkk∑ . Associated with each alignment type

€ 

j  is a score 

€ 

s j .  The total score is 

then a random variable 

€ 

S = n js jj∑ .  Therefore, the scores depend only on the counts 

€ 

nk , and 

do not depend on the order they were drawn.  If there are no correlations among the sequence 

members, drawing alignments by chance are independent, and the probability of seeing any 

combination of 

€ 

nk  is the same as if 

€ 

L  pairs were drawn with no sensitivity to sequence.  This 

process can therefore be described by a multinomial distribution.  The probability of observing 

any specific configuration of alignments is described by  

€ 

p n j{ }( ) =
L!
n j!j∏

p j
n j

j∏ . 

The problem to be solved is then to compute the p.d.f. for 

€ 

S .  The probability density function 

for

€ 

S  may be computed 

€ 

f s( )ds = E I s ≤ S ≤ s+ ds( )( ) = I s ≤ S ≤ s+ ds( ) L!
n j!j∏

p j
n j

j∏
n j{ }
∑ 	
  

given the indicator function 

€ 

I ⋅( ) .   



Before evaluating this function, the behavior under convolution may be derived.  

Consider 

€ 

l j  such that 

€ 

l j
j
∑ = L1, and 

€ 

m j  such that 

€ 

m j
j
∑ = L2  each distributed with the same 

corresponding 

€ 

p j ’s  Then the generating function for these variables is 

€ 

E e
l j t j

j
∑⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = p je

t j

j
∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

L1

 

and likewise for 

€ 

m j .  The generating function for 

€ 

n j = l j + m j  is 

€ 

E e
l j +m j( )t j

j
∑⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = E e

l j t j
j
∑⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ E e

m j t j
j
∑⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = p je

t j

j
∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

L1 +L2

, so the convolution of the distributions 

for two lengths 

€ 

L1 and 

€ 

L2 is just the distribution corresponding to 

€ 

L1 + L2.  Defining 

€ 

S1 = s j l j
j
∑ and 

€ 

S2 = s jm j
j
∑ , the variable 

€ 

S = S1 + S2  will also satisfy the same convolution 

through its linear dependence on the 

€ 

n j = l j + m j .  Algorithms based on accumulating matching 

sequences may therefore be expected to be describable as renewal processes. 

Evaluation of the distribution function 

Sterling’s approximation may be applied to the factorials in the multinomial distribution, 

and the discrete sum may be approximated by integrals in the continuum limit (larger 

€ 

L ) to yield 

€ 

f s( )ds = d n j{ }δ s− n js j
j
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ∫ dsδ L − n j

j
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
2πLLLe−L

2πn j
j
∏

exp n j ln p j − n j lnn j + n j( )
j
∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , 

where the two delta functions represent the indicator function and impose the 

€ 

L = n jj∑ .   

The term in the exponential may be expanded about the extremum subject to the 

constraints imposed by the 

€ 

δ  functions.  The arguments involving identification of the extremum 

are very similar to those describing the grand canonical ensemble in elementary statistical 

mechanics. [19] First, consider the expansion 

€ 

n j = N j + δn j .  Then 

€ 

n j ln p j − n j lnn j + n j( )
j
∑ = N j ln p j − N j lnN j + N j( )

j
∑ +

ln p j − lnN j( )δn j
j
∑ −

δn j
2

2N jj
∑ +

δn j
3

2N j
2

j
∑ + ...

 

Imposing 

€ 

s = N js j
j
∑ , 

€ 

L = N j
j
∑ ,

€ 

δn js j
j
∑ = 0, and

€ 

δn j
j
∑ = 0 , if  

€ 

ln p j − lnN j =α + βs j , 



as long as the 

€ 

δn j ’s satisfy their constraints, then the linear combinations involving the 

€ 

α ’s and 

€ 

β ’s will be automatically satisfied, and those constraints can be guaranteed by finding the 

€ 

N j ’s, 

€ 

α ’s and 

€ 

β ’s that match the constraints.  In this case, 

€ 

N j = p je
−α−βs j . 

Then 

€ 

L = N j = p je
−α−βs j

j
∑

j
∑ = e−α p je

−βs j

j
∑ ,	
  

€ 

e−α =
L
p je

−βs j

j
∑

,	
  

€ 

N j =
Lp je

−βs j

pke
−βsk

k
∑

, and 

€ 

s = N js j
j
∑ =

L p js je
−βs j

j
∑

p je
−βs j

j
∑

.  Define 

€ 

Z β( ) = p je
−βs j

j
∑ .  Then

€ 

s = −L
d lnZ β( )
dβ

. 

Next,	
  

€ 

N j ln p j − N j lnN j + N j( )
j
∑ = L − L lnL + L

d β−1 lnZ( )
d 1 β( )

.  If 

€ 

δn j
2 N j =O 1( ), the cubic 

term is contributing 

€ 

N j
3 / 2 N j

2 =O L−1/ 2( ), and when the 

€ 

δn j  are large enough that the cubic term 

is of order 1, then the quadratic term is 

€ 

N j
4 / 3 /N j =O L1/ 3( ) .  Contributions to the integral outside 

of this region are negligible.  The sequence in the exponent may be replaced by the truncated 

series terminating with the quadratic term.  The integral then reduces to 

€ 

f s( )ds =

2πL exp L
d β−1 lnZ( )
d 1 β( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

2πN j
j
∏

ds d δn j{ }δ − δn js j
j
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ∫ δ − δn j

j
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ exp −

δn j
2

2N jj
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

=
1
2π( )2

2πL exp L
d β−1 lnZ( )
d 1 β( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

2πN j
j
∏

ds

⋅ dω1∫ dω2∫ d δn j{ }∫ exp −
δn j

2

2N j

+ iω1δn j + iω2s jδn j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 

 

using Fourier integral representations of the 

€ 

δ-function. Then the integral reduces to 

€ 

f s( )ds =
L

2πσ s
2 exp L

d β−1 lnZ( )
d 1 β( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ds, where 

€ 

σ s
2 =

L2

Z β( )
s j
2p je

−βs j

j
∑ − s2 = L2

d2 lnZ β( )
dβ 2

. 

 

 

To summarize: 



€ 

Z β( ) = p je
−βs j

j
∑

N j =
Lp je

−βs j

Z β( )

s = −L
d lnZ β( )
dβ

σ s
2 = L2 d

2 lnZ
dβ 2

f s( )ds =
L

2πσ s
2 exp L

d β−1 lnZ( )
d 1 β( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ds =

L
2πσ s

2 Z
Leβsds

 

Comparison with Monte-Carlo simulations 

 

 A distribution for a simple model with four characters, frequencies 

€ 

p j = 0.22,0.22,0.28,0.28( )  and scores 

€ 

sij =

0.8 −1.0 −1.0 −1.5
−1.0 1.0 −1.0 −1.5
−1.0 −1.0 1.2 −1.5
−1.5 −1.5 −1.5 0.5

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 was computed from 

the formula and by simulation.  Scores were sampled 5,000,000 times, for random strings of 

lengths 10, 21, 100, 1000, and 10,000 using simple direct Monte-Carlo sampling.  The random 

number generator employed was the Tausworthe generator[20], employing the improved seeding 

algorithm[21] as implemented in the Gnu Scientific Library (GSL)[22] 

(http://www.gnu.org/software/gsl/).  The theoretical distribution function was computed at the 

midpoint of each bin, with 

€ 

ds representing the bin-width in comparing

€ 

f s( )ds  with the sampled 

frequencies.  The expected variance due to sampling from the multinomial distribution is 

expected to be 

€ 

Nql 1− ql( ) ≈ Nql  given probability 

€ 

ql  that the randomly generated sample would 

land in bin 

€ 

l.  Therefore the expected standard error would roughly scale as the square root of the 

counts in each bin.  The sample error bars are too narrow at 5,000,000 samples to plot.  Figure 1 

shows normal and logarithmic scales for 

€ 

f s( )ds  for each of 

€ 

L  = 10, 21, 100, 1000, and 10,000.  

Cutoff for the theoretical curve occurred where computation was outside of the range of 

exponents for double precision floating point representation.  Cutoffs on the log-scales occurred 

where no samples were generated out of the 5,000,000 samples computed.   

Rare event probabilities were estimated for 

€ 

L=100 by performing a Metropolis-Hastings 

MCMC simulation with importance sampling.  The importance weighting function employed was 



a simple exponential in the score 

€ 

s.  Given an array of occupancies for alignment species, a 

transition of one item from 

€ 

nk  to 

€ 

n ʹ′ k  derived from the multinomial distribution was 

€ 

nk p ʹ′ k e
λΔs

n ʹ′ k +1( )pk

, 

where 

€ 

λ  is the importance sampling weighting parameter, and the values of the 

€ 

n’s are those 

prior to the actual movement of the count from  

€ 

nk  to 

€ 

n ʹ′ k  .   

€ 

5 ×108  samples were collected.  

Values of 

€ 

λ  ranged from  0.1287, 0.1545, 0.1802, 0.1931, and 0.2060. This produced results for 

probabilities within the bins spanning a range roughly of 

€ 

10−5  to 

€ 

10−13 .  The selected initial 

values of 

€ 

Nij =

9 4 5 4
4 10 5 4
5 5 17 5
4 4 5 12

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 were derived from an initial state corresponding to 

€ 

β = −0.1287 .  Figure 2 shows the comparison of the asymptotic approximation to MCMC with 

importance sampling where 

€ 

L =100.  

Figure 3 shows the value of 

€ 

β  describing the distribution for 

€ 

L=100.  The primary range 

representing most of the realized alignment scores shows smooth and relatively slow variation 

compared to the endpoints representing the extreme maximum and minimum alignment scores 

that can be realized. 

 

Results 

 

 The plots show that the distribution function correctly captures the scaling of the 

simulations over 3 orders of magnitude, from 

€ 

L  = 10 to 10,000.  While the number of Monte-

Carlo samples collected reduces the error expected in the frequencies due to stochastic variations, 

the bin sizes also provides some deviation between the continuum estimate at midpoint and the 

total collected within the bin where the distribution function varies rapidly within the bin.  The 

samples collected probe the distribution over orders of magnitude below 

€ 

10−6 , testing that the 

accuracy of the expression to ranges expected for searching databases containing of the order of 

€ 

106 entries.  Further, the shape of the distribution shifts over changes in 

€ 

L , which the 

multinomial asymptotic approximation captures. 

The distribution shows some deviations at small 

€ 

L  = 10 in part due to the discrete 

character of the score sums.  It is expected that this minimum number would be larger with a 

more complicated alphabet (e.g. peptides rather than nucleotides).  The approximation is 

essentially based on Sterling’s approximation, and replacing discrete sums with integrals over the 



continuum.  The most important contributors to the distribution will tend to be those with the 

larger counts, which is where Sterling’s approximation applies most accurately.  So the 

distribution approximation describes the data surprisingly well down to scales as small as 

€ 

L  = 10.  

The approximation is much better at 

€ 

L  = 21, typical of miRNA alignments. 

 The function 

€ 

β = β s L( )  is essentially independent of 

€ 

L .  The plot for 

€ 

L  = 100 for the 

model computed here is shown in Figure 3.  This shows that 

€ 

β  varies smoothly and with 

relatively low variation over much of the range where scores are likely to be observed, with 

significant swings in value near the end-points of the distribution where almost all the alignments 

approach extreme score values.  This result suggests that simple expansions about a score of 

interest may be applied to explore the distribution of results in that immediate vicinity of that 

score, which would be appropriate for the best score results in a database search for which 

extreme-value distribution behavior is of interest. 

 

Discussion 

 

 The results show that the asymptotic distribution presented above adequately describes 

the form of the distribution over a wide range of length scale, and down to the rare-event regime.  

As such, analytical behavior of the distribution may be expected to be informative in application 

to understanding the Karlin-Altschul results[2, 7-10], as well as conditions where approximate 

agreement may be expected. 

 

Distribution in intermediate ranges 

 

At more intermediate ranges, where probabilities would be more typical of random 

sequences, but for larger scores where 

€ 

β < 0, the behavior of the exponent 

satisfies

€ 

d
ds

L lnZ β( ) + βs( ) = β , and

€ 

d2

ds2
L lnZ β( ) + βs( ) =

dβ
ds

= −
L
σ s
2 , so that 

  

€ 

L lnZ β( ) + βs = L lnZ β0( ) + βs0 + β0 ⋅ s− s0( ) − L
2σ s

2 s− s0( )2 +…  If 

€ 

β ⋅ s− s0( ) ≈1, 

then

€ 

L
2σ s

2 s− s0( )2 ≈ L
2β 2σ s

2 =O 1
L
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ .  Also, the variation of 

€ 

σ s
2 β( )  in the denominator will 

depend on 

€ 

dσ s
2 β( )
ds

1
β

=O L( )  compared to 

€ 

σ s
2 β( ) =O L2( ) .  Then 



€ 

P s ≤ S ≤ s+ ds( ) =
L

2πσ s
2 β0( )

eL ln Z 0 +β 0s0 +β 0 s−s0( )ds , 

so that 

€ 

P S ≥ s0( ) =
L

2πσ s
2 e

L ln Z +βsds
s0

∞

∫ ≈ −
1
β0

L
2πσ s

2 β0( )
eL ln Z β 0( )+β 0s0 	
  , 

recalling that 

€ 

β0 < 0 .  

  

Invariance of the distribution under displacements of the scoring function 

 

Define 

€ 

s j
ʹ′ = s j − s  and 

€ 

ʹ′ Z β( ) = p je
−βs j

ʹ′

j
∑ = eβs p je

−βs j

j
∑ = eβs Z β( )  with the same 

€ 

β .  

Then 

€ 

ʹ′ s = −L d ln ʹ′ Z 
dβ

= −Ls + s . Under this transformation, 

€ 

L ln ʹ′ Z + β ʹ′ s = L lnZ + βs , 

and

€ 

σ s
ʹ′
2

= L2 d2 ln ʹ′ Z 
dβ 2

= L2 d2 lnZ
dβ 2

=σ s
2 . It is always possible to choose an 

€ 

s  such that 

€ 

ln ʹ′ Z = βs + lnZ = 0 , which occurs at 

€ 

s = − lnZ
β

.  In this case, it is clear 

that

€ 

L lnZ + βs = L ln ʹ′ Z + β ʹ′ s = β ʹ′ s < 0 as long as 

€ 

ʹ′ s > 0.  Essentially, the structure of the 

spectrum of scores is arbitrary.  Further, it is always possible to transform the scores so that 

€ 

Z β( ) =1 at the region of scores being explored.  Yet, the distribution function and 

€ 

β  parameter 

are invariant under these transformations. 

 

Length dependence 

 

The distribution function 

€ 

f s( )ds =
L

2πσ s
2 Z

Leβsds  suggests that the distribution 

becomes insensitive to variations in 

€ 

L  when 

€ 

Z β( ) =1.  This occurs at some 

€ 

β = β0 , at which 

point the distribution appears to satisfy an exponential distribution 

€ 

f s( )ds =
L

2πσ s
2 e

β 0sds .  

There are a number of points to note, most of which have been indicated before.  The alignment 

scores 

€ 

s j  must satisfy some specific conditions in order to guarantee that a root for 

€ 

Z β( ) =1 

exists.  Further, that root is not invariant under transformations since a transformation of 



alignment scores 

€ 

s j
ʹ′ = s j − s  produces a new 

€ 

ʹ′ Z β( ) = eβs Z β( )
  

so that the root 

€ 

Z β0( ) =1 

corresponds to  

€ 

ʹ′ Z β0( ) = eβ 0s .   The greatest difficulty is that the exponential expansion 

approximates the distribution only for a width much smaller than 

€ 

σ s β0( )L−
1
2 ∝L

1
2   (the 

effective size of the region where the quadratic contribution is less than 1), and the score in this 

region is 

€ 

s = −L
d lnZ β( )
dβ

∝L .  The region where the distribution is relatively insensitive to 

€ 

L  is 

itself 

€ 

L  dependent, though there is some tolerance within that region.  Further, any particular 

sample of alignments may themselves not be contained in a region characterized by this particular 

€ 

β0 . 

 More generally, the distribution function depends on 

€ 

L  in several positions.  However, 

the simplest parts involve an 

€ 

L  in the exponent.  Expansion about the extremum, which occurs at 

€ 

β = 0 suggests a first order approximation to the width proportional to 

€ 

L−
1
2 .  However, this must 

be propagated back through the  

€ 

d β−1 lnZ( )
d 1 β( )

 in the exponent to determine exactly how the width 

in 

€ 

ˆ s  scales.  The scaling of the fall-off in the tails is proportional to 

€ 

L−1. 
An alternative probe to the randomness of relatively improbable scores still far from the 

endpoints is to note that 

€ 

P ˆ S L ≥ ˆ s ˆ S L ≥ ˆ s 0( ) = eβ ˆ s 0( ) s−s0( ) = eLβ s0( ) ˆ s − ˆ s 0( ) , 

for 

€ 

s0  near the set of best scores retrieved, which gives a view of what would be expected by 

random scores larger than a threshold.  In this case, it may be possible to determine if the 

distribution of scores reflects random substitutions within that region of scores.  Then it may be 

expected that 

€ 

P ˆ S L ≥ ˆ s ˆ S L ≥ ˆ s 0( )[ ]
1

L
= eβ ˆ s 0( ) ˆ s − ˆ s 0( )  

will be an 

€ 

L  independent measure of how scores from multiple alignment lengths may behave. 

 

Extreme value distribution in intermediate ranges 

 

Given the above results considering fixed 

€ 

L , defining 

€ 

SN =max{S j} for 

€ 

N  samples of 

iid 

€ 

S j ’s, it follows that 

€ 

P SN ≤ s0( ) = P S ≤ s0( )[ ]N ≈ exp −N −1
β0

L
2πσ s

2 s0( )
eL ln Z 0 +β 0s0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .    



Given results from a query of length 

€ 

m  and a database with 

€ 

n loci in it, it may be expected that 

€ 

N ≈ mn .  If the quadratic contribution to the expansion of 

€ 

L lnZ + βs satisfies 

€ 

L
2σ s

2 s− s0( )2 β0 s− s0( )[ ] =
L s− s0( )
2β0σ s

2 ≈
L lnN
2β0

2σ s
2 <<1, 

then

€ 

P SN ≤ s0( ) = exp −−1
β0

L

2πσ s
2 s0 +

lnN
β0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

e
L ln Z 0 +β 0 s0 +

ln N
β 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

, which corresponds to a 

Karlin-Altschul -- like result, though with an 

€ 

L  dependence, with parameter 

€ 

K* ≈ −1
β0

L
2πσ s

2 e
L ln Z 0 .  Note this does not apply to scores with gap penalties. 

Specifically, the largest of 

€ 

N  retrieved scores is distributed as 

€ 

P SN ≤ s S j ≥ s0( ) = P S ≤ s S ≥ s0( )[ ]
N
≈ exp −Neβ 0 ⋅ s−s0( )[ ] = exp −e

β 0 ⋅ s+
ln N
β 0

−s0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
. 

Conclusions 

 

 The distribution function presented here shows good agreement with simulation over 

twelve orders of magnitude in frequency, and over the three orders of magnitude tested for 

aligned sequence lengths derived from first principles.  The formulation also provides a measure 

of the number of alignment species 

€ 

N j  contributing most to the distribution as a function of 

score.   It provides a practical way to compute probabilities for scores representing gapless 

alignments as in scoring sequences retrieved from a database.  The distribution provides a 

reasonable approximation down to relatively small sequence lengths (10 bases in the example 

computed here) at which point the discrete character of the scores starts to become visible, which 

is smaller than many practical lengths of interest (e.g. miRNAs).  Lastly, it provides an analytical 

expression for a distribution against which behavior of real or simulated data may be compared.  

This type of tool may find an expanding utility in exploring the diversity and variability of the 

human genome as more samples are analyzed and more sequences throughout the genome 

become available. 
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Figure Captions 

 

Figure 1.  Distributions generated by simple Monte-Carlo sampling of alignments against the 

asymptotic approximation in both normal and log scales, where alignments are of length 10 (a) 

and (b), 21, (c) and (d), 100 (e) and (f), 1000 (g) and (h), and 10,000 (i), and (j). 

Figure 2.  Distribution for 

€ 

L =100  in a rare-event tail using MCMC with importance sampling 

against the asymptotic approximation in log-scale. 

Figure 3.  Plot of 

€ 

β = β ˆ s ( )  for 

€ 

L =100. 
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