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Abstract

This paper presents and evaluates the performance of a

prototype of an on-line OPRA data feed decoder. Our work

demonstrates that, by using best-in-class commodity hard-

ware, algorithmic innovations and careful design, it is pos-

sible to obtain the performance of custom-designed hard-

ware solutions.

Our prototype system integrates the latest Intel Nehalem

processors and Myricom 10 Gigabit Ethernet technologies

with an innovative algorithmic design based on the DotStar

compilation tool. The resulting system can provide low la-

tency, high bandwidth and the flexibility of commodity com-

ponents in a single framework, with an end-to-end latency

of less then four microseconds and an OPRA feed process-

ing rate of almost 3 million messages per second per core,

with a packet payload of only 256 bytes.

1 Introduction

Financial exchanges communicate with its members

through consolidated ‘market data feeds’. These feeds are

composed of event messages that provide in real time the

current status of the market. The event messages contain

reports of completed trades, bid and ask prices of various

financial instruments, trade correction, trade cancellation,

and other status updates. Financial institutions that sub-

scribe to these market data feeds process incoming mes-

sages to identify profitable trade opportunities through al-

gorithmic trading, as well as to manage and update risks

on trade books. A typical market data processing system

at these institutions consists of several functional units that

receive event messages, publish financial data of interest to

their subscribers (such as traders at workstations), and route

trade data to various exchanges and other venues. This sys-

tem, known as a ticker plant, is shown in Figure 1a. With

market data feeds already in the gigabit per second range,

and growing exponentially, a reliable market data system

that can process huge volumes of data at low latency, is be-

coming increasingly critical to the success of the financial

institutions both in the U.S. and abroad, and is the main fo-

cus of this paper.

1.1 Skyrocketing Data Rates

U.S. exchanges that allow trading of securities options

have been authorized under the Securities Exchange Act of

1934 to agree to a ”Plan for Reporting of Consolidated Op-

tions Last Sale Reports and Quotation Information”. This

reporting of consolidated options last sale reports and quo-

tation information is administered by a committee called

Options Price Reporting Authority or OPRA [13]. OPRA

is the securities information processor that disseminates,

in real-time on a current and continuous basis, informa-

tion about transactions that occurred on a large number of

quoted instruments in the options markets. This information

is also broadcast by the exchange, and is used by traders

at financial institutions to know the state of the market in

real time. Based on this information, traders identify ’prof-

itable’ opportunities, either through algorithmic trading us-

ing analytical models or detecting patterns in the market,

through instrument arbritrage, or through managing and re-

ducing risk. Fueled by the growth of algorithmic and elec-

tronic trading, the global options and equities markets are

expected to produce an average of more than 128 billion

messages/day by 2010, rising from an average of more than

7 billion messages a day in 2007 [21]. In the options mar-

ket, the OPRA consolidated feed for all US derivatives busi-

ness represents a very significant portion of market data

in the national market system. Figure 1b shows that the

OPRA market data rates have dramatically increased over

the course of the past 4 years, approaching a peak of 1 mil-
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Figure 1: (a) High-Level Overview of a Ticker Plant, (b)

OPRA market peak data rates

lion messages per second. The traffic projection for OPRA

alone is expected to reach an average of more than 14 billion

messages/day at the end of 2010 [13].

1.2 Role of High Performance Computing

The growing message flow is stretching the raw data

rates at which the exchange transmits the market feed to

its members. This data rate, that was less than a megabit

per second a decade ago has already reached hundreds of

megabits per second and is rapidly approaching gigabits

per second. The increasing data rate creates pressures on

the network infrastructure between the exchanges and the

financial institutions. This problem is being alleviated by

using compressed data formats that are further increasing

the processing requirements both at the exchange and re-

ceiving institutions. It is important to note that low latency

is critical, especially with the increasing competition as well

as diminishing profit margin. How fast a trading system can

respond to the market will determine who wins and who

loses, even a few microseconds gap in latency is enough to

make the difference. For instance, the opportunity of an ar-

bitrage (difference in prices between markets) only exists

until the first trader is able to exploit it.

Designing a highly responsive trading solution is a chal-

lenging problem because it requires both

1. a high-throughput system able to process millions of

messages per second, extensible to tens of millions in

the future, and

2. a low-latency system with response times of a few mi-

croseconds.

We believe that delivering such a solution entails com-

plex research that includes high-level software design,

lightweight communication libraries, top-of the line hard-

ware, and an overall design that takes into consideration

that each level of the system pipeline processes high band-

width at low latency. Together with the increased perfor-

mance, data centers are also encountering typical problems

in high performance computing: the complexity of devel-

oping, testing and validating parallel software. The need is

to reduce power consumption in the processing units that

are often “co-located” near the data feeds to minimize the

communication latency and reduce floor space requirement,

which typically comes at a high premium. For these rea-

sons, the financial community is demanding solutions that

are extremely fast, easy to program, and adaptable to dy-

namically changing requirements.

1.3 Related Work

On-line trading systems pose a unique challenge in

terms of computational and communication capabilities.

Not surprisingly, many of the technologies that are com-

monly used in high performance computing are rapidly

appearing in the data centers of many financial institu-

tions [9, 8, 3]. Field Programmable Gate Array (FGPA)

based solutions [10, 7, 4, 1] employ hardware acceleration

to achieve low latency, but are difficult to program and in-

flexible to dynamically changing environments. For a sim-

ilar workload, a Cell/B.E. based solution [15] achieved a

latency in the order of tens of microseconds. IBM Web-

sphere [6] uses software solutions and commodity hard-

ware and to achieve low latency at the current data rates of

the market. Other vendors are designing high performance

message routers [20], switches [5, 22], and Network Inter-

face Controllers (NICs) [11] to address the needs of the fi-

nancial community.



1.4 Commodity vs Special Purpose Solu-
tions

Together with speed, trading systems need to provide a

high a degree of interoperability with existing data centers

and proprietary software that embody the trading strategy

of a financial institution. This extra requirement poses a

further design challenge. On the one hand, special purpose

systems that rely on the most advanced communication and

computation technologies can provide a significant perfor-

mance advantage. On the other hand, legacy software and

the compatibility with various standards require the adop-

tion of a commodity technology.

In this paper we analyze a very specific area of this large

design space, trying to push the limit of commodity tech-

nology. More specifically, we combine two high-end com-

modity technologies, 10 Gigabit Myricom Ethernet and the

Intel Nehalem processor, to evaluate the performance of a

prototype on-line trading system.

1.5 Contributions

The primary contribution of this paper is the design, im-

plementation and evaluation of a trading system that is built

out of commodity components, Intel x86 processors and 10

Gigabit Ethernet. The proposed system relies on previous

work [2] and integrates the OPRA decoder in a fully func-

tional system that includes the network communication be-

tween processing nodes. In fact, the network and the net-

work stack play an important role, and are increasingly be-

coming the bottleneck in systems that can handle the OPRA

protocol operating at the sub-microsecond level.

In our prototype we have used the Myricom Myri-10

GigE Network Interface Cards (NICs) [11] and DBL and

MX, optimized libraries that allow OS-bypass data commu-

nication, and our novel FAST OPRA feed decoder based on

our home-brewed DotStar pattern processing engine [14].

The seamless integration of all these components delivers a

prototype trading system that can streams OPRA messages

with an end-to-end latency of less than 4 microseconds. The

system is able to deliver a high bandwidth, reaching 3 mil-

lion messages per second per core, with a packet payload

size of only 256 bytes.

We also present a preliminary analysis of the Myrinet

communication protocols and highlight interesting trade-

offs between latency and bandwidth of the Myrinet network

interface card. Thanks to our high-level compilative ap-

proach based on DotStar our system can be easily retargeted

to dynamically changing OPRA formats, as well as other

market data feeds [2].

Overall, the paper demonstrates that by using best-in-

class commodity hardware, algorithmic innovations and

careful algorithmic design it is possible to obtain the per-

formance of custom-designed hardware solutions.

One evident limitation of this work is that our end-to-

end latency does not take into account the line arbitration

that is performed on the incoming market feeds. Using line

arbitration, the redundant input streams from the exchange

can be exploited to reconstruct the sequence of message and

minimize latency due to packet loss.

2 OPRA feed decoding

An essential component in ensuring the timely report-

ing of option equity/index and every other transaction is

the OPRA IP multicast data stream. OPRA messages are

delivered through the national market system with a UDP-

based IP multicast [19]. The options market data gener-

ated by each participant is assembled in prescribed message

formats and transmitted to the appropriate TCP/IP proces-

sor address via participant’s private communications facil-

ity. As each message is received, it is merged with mes-

sages received from other participants, and the consoli-

dated message stream is transmitted simultaneously to all

data recipients via their private communications facilities.

Each message is duplicated and delivered to two multicast

groups. OPRA messages are divided into 24 data lines

(48 when counting redundant delivery) based on their un-

derlying symbol. Multiple OPRA messages are encapsu-

lated in a block and then inserted in an Ethernet frame.

The original definition of OPRA messages is based on an

ASCII format [17], which uses only string based encoding

and contains redundant information. With the growth of

data volume, a more compact representation for messages

was introduced: OPRA FAST (FIX Adapted for STream-

ing) [16, 18].

The techniques used in the FAST protocol include im-

plicit tagging, field encoding, stop bit, and binary encod-

ing (see Table 1). Implicit tagging eliminates the overhead

of field tags transmission. The order of fields in the FAST

message is fixed and thus the meaning of each field can be

determined by its position in the message. The implicit tag-

ging is usually done through XML-based FAST template.

The presence map (PMAP) is a bit pattern at the beginning

of each message where each bit is used to indicate whether

its corresponding field is present. Field encoding defines

each field with a specific action, which is specified in a tem-

plate file. The final value for a field is the outcome of the

action taken for the field. Actions such as “copy code”, “in-

crement”, and “delta” allow FAST to remove redundancy

from the messages. A stop bit is used for variable-length

coding, by using the most significant bit in each byte as a

delimiter. FAST uses binary representation, instead of text

string, to represent field values. OPRA is an early adopter

of the FAST protocol for reducing the bandwidth needed for
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Figure 2: OPRA FAST encoded packet format.

Figure 2a shows the format of an encoded OPRA version

1 packet. Start of Header (SOH) and End of Text (ETX) are

two control characters that mark the start and end of the

packet. One transmission block can contain multiple mes-

sages, where a message is a unit of data that can be indepen-

dently processed by the receiver. In OPRA FAST version 2

(see Figure 2b) there is a header after SOH and before the

first message to further reduce redundant information. The

first byte of an encoded message contains the length in bytes

and is followed by the presence map. For example, presence

map 01001010 means field 1, field 4 and field 6 are present.

The type of each field is specified by message category and

type. Data fields that are not present in an encoded mes-

sage but that are required by the category will have their

value copied from the same field of a previous messages

and optionally incremented. OPRA data fields can be either

unsigned integer or string.

Description

Category ’a’ Equity and Index Last Sale

Category ’d’ Open Interest

Category ’f’ Equity and Index End of Day Summary

Category ’k’ Index and Stock Quotes

Category ’C’ Administrative

Category ’F’ FCO End of Day Summary

Category ’H’ Control

Category ’O’ FCO Last Sale

Category ’U’ FCO Quote

Category ’Y’ Underlying Value Message

default Contains Text value

Table 1: OPRA Message Categories with Description

2.1 A Characterization of the OPRA Pro-
tocol

OPRA market data feeds are transmitted in a set of 24

channels. In this experimental section, we assume that each

channel can inject messages at full speed by storing the

OPRA feeds in main memory, and therefore is not the bot-

tleneck of the decoder. While this hypothesis may not be

realistic in practice, it serves the purpose of pushing to the

limit the OPRA decoding algorithm and provides an upper

bound.
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Figure 3: Message Size Distribution

OPRA packets are 400 bytes on average, each containing

multiple messages that are encoded using the FAST proto-

col. We use real market data feeds, obtained by capturing

few seconds of the network traffic, totalling one gigabyte

of version 1 and 2 OPRA format for experimental analysis

throughout this section.

Figure 3 gives the distribution of the message size for

both OPRA version 1 and 2 format. The messages are typ-

ically distributed across the 10-50 byte range, with an aver-

age message size of 21 bytes. Thus each packet contains 19

messages on average.

Under the assumption of full injection, the feeds across

the various channels have very similar data pattern and dis-

tribution and, as shown in Figure 4, they tend to have the

same processing rate. Since, the performance is insensitive

to the OPRA protocol version, we will consider only OPRA

version 2 traces in the rest of this paper.

Figure 5 gives a distribution of the OPRA messages

among 11 categories, as described earlier. We observe that

99% messages flowing in the market are category K equity

and index quotes. The first field of each message after the

message length is the PMAP, containing encoded informa-

tion about the position and type of the data fields that follow.

Figure 6 shows a distribution of the PMAP length, for ver-

sion 2 OPRA format, and shows that a majority of the mes-

sages contain a 5 byte PMAP. The data fields can be either

integer or string type, that is given as a part of the protocol

specification. Each OPRA message can contain multiple in-

teger fields, with length varying from 1 to 5 bytes. Figure 7

gives a distribution of the encoded integer field length, and

shows that more than 80% of encoded integers are less than

2 bytes.
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3 Background

Designing an end-to-end solution to process financial

market data feeds at a high bandwidth and low latency re-

quires a state of the art Network Interface Card (NIC) that

can interface the OPRA processing system with the network

infrastructure. In this paper we evaluate and use the Myri-

com Myri-10 GigE NICs [12], that promise to deliver the

performance of specialized hardware while maintaining a

commodity framework. The Myri-10G NIC is internally

programmable, for conventional TCP/IP and UDP/IP oper-

ation, the processors and firmware in the NIC are used for

highly effective stateless offloads, resulting in wire-speed

throughput with low host-CPU utilization. In this section,

we give some background information about the communi-

cation protocols that can be used with these NICs.

3.1 Datagram Bypass Layer

The Datagram Bypass Layer (DBL) is a new communi-

cation protocol designed by Myricom [11] to provide low

latency communication over a sockets type interface. DBL

is based on the UDP/IP transport protocol and hence is not

hampered by the additional overhead of flow control im-

posed by TCP/IP. The DBL software, along with the new

generation Myri-10G [12] Ethernet NIC’s enables the user

to bypass the kernel and communicate directly with peer ap-

plications from the user space. The DBL receivers can op-

erate in multiple modes - interrupt based and polling based.

As seen with other communication protocols, polling based

communication mechanism, though CPU intensive, pro-

vides the best communication performance. For applica-

tions that have dedicated computing resources, such mode
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will give the best possible performance in terms of end-to-

end latency as well as arrival pattern of packets. As DBL is

based on UDP/IP, the overhead of ensuring reliable delivery

and flow control falls on the user application.

3.2 Myrinet Express

Myrinet Express (MX), is a low-level communication

layer for Myrinet. MX can operate in Ethernet mode

(MXoE) as well as native Myrinet mode (MXoM). MX uses

a completely different communication semantic as opposed

to socket based communication. It also ensures reliable de-

livery of messages in hardware. Due to the different com-

munication semantic, and hardware offload, MX is capable

of providing much lower latencies when compared to the

standard sockets style communication.

4 Experimental Results

In this section we describe the setup and evaluate the per-

formance of our test environment. Our experimental setup

consists of two hosts equipped with the Intel Nehalem se-

ries of processors with dual quad-core processor nodes op-

erating at 2.93GHz with 48 GB RAM and a PCIe 2.0 in-

terface. Red Hat Enterprise Linux Server release 5.2 with

Linux Kernel version 2.6.28 was used on the hosts. Each

host was equipped with a dual port Myri-10G card capable

of operating in both Ethernet as well as the native Myrinet

mode. The hosts are connected through a Fujitsu 10 Giga-

bit Ethernet switch. We have used DBL version 0.4.5 and

an experimental version of MX in our experiments.

4.1 Microbenchmark Level Evaluation

We first look at the basic performance of the various

communication protocols under evaluation - DBL, MXoE,

UDP/IP. We use a standard ping-pong benchmark to per-

form the evaluation. Figures 10 (a) and (b) shows the com-

munication performance of the various protocols in terms

of latency and message rate respectively. The latency mea-

surements include the latency of sending a message from

source by reading from the memory of the system, trans-

mitting through the NIC to the network, and receiving it at

the destination through the NIC to the memory of the end

system. We only look at the performance of small message

sizes as that is the target range of most financial applica-

tions. We get the best latency of 2.45 microseconds with

MXoE followed very closely by DBL at 3.14 microseconds.

The relatively poor performance obtained with UDP/IP is

due to the effect of interrupts and kernel context switches.

For analyzing the end-to-end system, we parse and nor-

malize OPRA packets at the destination system. We inte-

grate our high speed feed decoder [2] based on the Dot-

Sender

UDP DBL MX

OPRA Feeds

Communication

Protocol

UDP DBL MX
Communication

Protocol

Receiver

Network

Figure 8: Communication Protocols

Star protocol processing tool, that is able to capture the

essence of the OPRA structure in a handful of lines of a

high-level description language. This is combined with

hand-optimized actions on the various field of the OPRA

message, that are triggered by the OPRA scanner. With this

optimized implementation, a single Intel Xeon E5472 quad-

core is able to achieve a rate of 15 million messages/second.

Figure 11 shows the overhead caused by adding OPRA de-

coding in the flow. As we can see, the performance im-

pact of the message decoding is minimal, between 150 and

300 nanoseconds. While maintaining an end-to-end latency

below 4 microseconds both with DBL and MX protocols,

our end-to-end system is able to stream, process and parse

OPRA feeds at a peak rate of 3.2 million messages per sec-

ond using the MX protocol, and 2.8 million messages per

second using the DBL protocol. It is important to note that

ours is the first result that achieves processing rates of mil-

lions of messages per second for OPRA at 4 microsecond

latency with commodity technology.

4.2 Analysis of Arrival Patterns

For low latency stock market applications, the consis-

tency with which the underlying hardware is able to deliver

packets is as important as the lowest latency that can be

achieved. The performance of stock market arbitration al-

gorithms is closely tied up with the frequency of arrival of

packets. In this context, we evaluate the inter arrival times

of messages with the different communication protocols un-

der evaluation. Figures 12 (a), (b) and (c) depict the fre-

quency distribution of the arrival patterns of 99.9% of mes-

sages for MX, DBL and UDP respectively. The best case

would be when the arrival times of most, if not all, of the
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packets is same. The frequency distribution graph for this

ideal case would show up as a sharp Gaussian curve with

very few outliers. As we can see, though MX gives mini-

mum number of outliers, the curve does not match the ideal

scenario we discussed earlier. There are multiple peaks

indicating that there is some variation in the arrival pat-

tern of the packets. The curve for DBL on the other hand,

though has a few more outliers, forms a very sharp Gaus-

sian curve indicating that most of the packets arrive without

a lot of variation which is what we want for a stock market

type application. Due to the effect of interrupts and context

switches, the arrival pattern for UDP is not as good.

To understand the effects of load balancing on network

performance, we study the performance of the communi-

cation protocols with multiple receivers. We only choose

MX and DBL for this experiment as they demonstrated bet-

ter performance in the previous experiments. Figures 13

(a) and, (b) shows the comparison of arrival patterns with

one and two receivers for MX and DBL respectively. Con-

trary to our expectations, the graphs show that the arrival

patterns for cases with multiple receivers is worse and have

more outliers than those with just one receiver. Further in-

vestigation showed that we were hitting the NIC firmware’s

receive limit with just a single receiver and consequently

having multiple receivers only degraded the network per-

formance. We plan to conduct more studies on the impact

of load balancing by using multiple ports in the same NIC

to evaluate their performance.
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Figure 10: Communication Performance
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OPRA parsing: the overall performance is insensitive to the

parsing delay
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Figure 12: Arrival Rates for 99.9% Messages

5 Conclusion

In this paper we present the design, implementation and

evaluation of a trading system that is built out commod-

ity components, Intel x86 processors and 10 Gigabit Eth-

ernet. In our prototype we have used the Myricom Myri-

10GigE Network Interface Cards (NICs) [11] and DBL and

MX, optimized libraries that allow OS-bypass data com-

munication. We integrate our hand optimized OPRA de-

coder [2] based on our home-brewed DotStar pattern pro-

cessing engine [14], to process the OPRA feeds at the des-

tination node. The seamless integration of all these compo-

nents delivers a prototype trading system that can streams

OPRA messages with an end-to-end latency of less than 4

microseconds. The system is able to deliver a high band-

width, reaching 3 million messages per second per core. We

also present a preliminary analysis of the Myrinet commu-

nication protocols and highlight interesting trade-offs be-

tween latency and bandwidth of the Myrinet network inter-

face card.

We observe that the network and the network stack play

an important role, and are increasingly becoming the bot-

tleneck in systems that can parse the OPRA protocol in

parsing systems that operate at the sub-microsecond level.

Overall, the paper demonstrates that by using best-in-class

commodity hardware, algorithmic innovations and careful

algorithmic design it is possible to obtain the performance

of custom-designed hardware solutions.
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