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Numerical methods for the design of large-scale
nonlinear discrete ill-posed inverse problems

E. Haber∗, L. Horesh† and L. Tenorio‡

November 20, 2009

Abstract

Design of experiments for discrete ill-posed problems is a relatively new area of
research. While there has been some limited work concerning the linear case, little
has been done to study design criteria and numerical methods for ill-posed nonlinear
problems. We present an algorithmic framework for nonlinear experimental design
with an efficient numerical implementation. The data are modeled as indirect noisy
observations of the model collected via a set of plausible experiments.An inversion
estimate based on these data is obtained by weighted Tikhonov regularization whose
weights control the contribution of the different experiments to the data misfit term.
These weights are selected by minimization of an empirical estimate of the Bayes risk
that is penalized to promote sparsity. This formulation entails a bilevel optimization
problem that is solved using a simple descent method. We demonstrate the viability of
our design with a problem in electromagnetic imaging based on direct current resistivity
and magnetotelluric data.

1 Introduction

Inverse problems have come to play a key role in a variety of fields such as computer vision,
geophysics and medical imaging. Practical applications of inverse problems in these fields
require consistent discretization schemes as well as numerical optimization methods and
algorithms for solving the linear systems defined by their underlying PDEs. A great volume
of work has already addressed some of these issues, see, for example, [7, 16, 3, 12, 17, 21]
and references therein. Primarily, this work has addressed questions such as regularization,
incorporation of a-priori information, sensitivity analysis, as well as the development of
efficient inversion schemes for large-scale problems. In this paper we address important
questions that arise in experimental design of discrete ill-posed nonlinear inverse problems.
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The basic setup is as follows: discrete data d ∈ Rn consist of noisy indirect observations
of a discrete model (function) m ∈ Rs via a forward operator F : Rs → Rn:

d(m; p) = F (m; p) + ε, (1.1)

where the noise ε ∈ Rn is assumed random with a known probability distribution and p is a
vector of experimental parameters that defines the experimental configurations. The opera-
tor F is assumed to be well-defined on a convex set M that contains m. It is also assumed
that the parameter space is discretized so that p holds vector values p1, ..., pn. This is a com-
mon assumption in experimental design [5, 28, 8]. We shall write Fk(m) = F (m; pk) to refer
to the forward problem in the kth experimental configuration. Our approach proposes the
consideration of all the experiments at once, while assigning weights that will be determined
optimally. The forward mapping we consider is then F (m) = [F1(m), . . . , Fn(m)]>, where
Fk(m) is, in general, a nonlinear function of m. We shall also write d(m) = [d1(m), ..., dn(m)]
with dk(m) = Fk(m) + εk (for simplicity we assume that the di(m) are scalars but in the
general case they may be vectors). In the forward problem, F (m) is computed for a given
model m and the data d can be simulated by the addition of noise realizations from the
known noise distribution. The forward problem typically requires the solution of a large
system of (possibly nonlinear) equations. On the other hand, the objective of the inverse
problem is to obtain an estimate of a model m given the data d. In realistic settings, this
question typically leads to a large-scale optimization problem where a combination of a data
misfit and regularization terms is minimized. It is well known that the process of regular-
ization may introduce a considerable amount of bias into the model estimates, even when
the noise level is negligible [1, 10, 23]. We may regard this bias as a systematic error that
depends on the experimental design and the regularization procedure. The key point is that
such systematic error can be controlled by an appropriate choice of both. In this paper we
address the former, which shall be henceforth called the design problem.

In the design problem we do not have (at least not formally) a model m or data d; instead
we consider the question of choosing an optimal (in some sense) set of experiments to be
conducted. That is, we would like to choose an optimal subset of the n potential experiments.
The experimental design involves an inverse problem that we solve using penalized weighted
least squares (i.e., generalized Tikhonov regularization):

min
m
J (m,w) =

1

2

n∑
j=1

wj[Fj(m)− dj(m) ]2 + S(m), (1.2)

where the regularization functional S(m) is assumed to be twice differentiable 1, and 0 ≤
w ∈ R+n

is a vector of non-negative weights (the regularization parameter α that multiplies
S(m) is integrated within the weights). Hence, the contribution of the selected experiments
(those with wk 6= 0) is weighted to control their overall influence in the data misfit. The
weights are passed to the practitioner who will then conduct the chosen experiments and
subsequently estimate the model using (1.2). Let us consider an example:

1The problem can be solved effectively also when this restrictive assumption does not hold, see for example
[20] and references therein
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Example 1 In magnetotelluric (MT) inversion (e.g., [25, 27]), the goal is to solve for the
conductivity given measurements of the electric field at different frequencies. The forward
functions Fj(m) are derived by the discretization of a partial differential equation:

Fj(m) = q>[A+ i γjG(m) ]−1b,

where q is the observation operator, b is the source term (both given), A is the discretization
of the operator ∇ × ∇× , G(m) is a mass matrix weighted by the conductivity m, and γj
is the source frequency. We have a choice of frequencies G = { γ1, . . . , γn } that can be used
for data acquisition and the goal is to choose an optimal subset of G.

The rest of the paper is organized as follows: In Section 2 we discuss optimality crite-
ria for the design problem. These criteria lead to optimization problems whose numerical
implementations are described in Section 3. In Section 4 we present numerical results ob-
tained with an inverse problem based on direct current resistivity and magnetotelluric data.
Section 5 summarizes the study and outlines questions for future research work.

2 Optimality criteria

Experimental designs require the definition of optimality criteria. In the case of linear models
with a full-column-rank forward matrix operator, the least-squares estimate is unbiased and
it is thus sensible to define optimality criteria based solely on the information matrix (inverse
of the covariance matrix) [8, 28]. In our case such a measure is insufficient; the bias needs
to be considered. We therefore define measures based on an average error of the inversion
estimate.

For a fixed model µ ∈M, the data vector d(µ) ∈ Rn is acquired by solving the forward
problem and adding noise 2:

d(µ) = F (µ) + ε.

Next, an estimate m̂ of the model µ is obtained from the solution of (1.2) with a fixed w:

m̂ = m̂(w, d(µ)) = arg min
m

1

2
‖W 1/2 [F (m)− d(µ) ] ‖2 + S(m), (2.3)

where W 1/2 = diag(w1/2 ). Clearly, the estimate m̂ depends on w and d(µ); its associated
squared error is

error = ‖m̂− µ‖2.

In practice, the experiments are conducted with other unknown models; it is therefore impor-
tant to consider the variability of the MSE overM. To do so, we use an average measure of
the MSE: the elements ofM are modeled as random with some prior distribution π and the
Bayes risk R(w) = E[ MSE(w,µ) ] is minimized so as to obtain an estimate of the weights w
that works well on average across M. This is a natural way to proceed as the experimental
design is carried out prior to data acquisition; the design parameters are chosen to minimize

2We use µ to indicate a fixed model rather than m, which is a variable in the function to be optimized.
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an expected value over noise and model distributions (this is an example of a frequentist
calculation that is Bayesianly justifiable [29]). However, both expectations are difficult to
compute for the nonlinear, ill-posed problems we consider. Hence, we use approximations
based on sample estimates.

The MSE is estimated via a sample average over L independent noise vectors εj
3

MSE(w,µ) ≈ 1

L

L∑
j=1

‖ m̂(w, dj)− µ ‖2, (2.4)

where dj = F (µ) + εj. For the expectation over π we use K independent samples µi (the
µi are sometimes already available and thus we refer to them as ‘training models’). An
empirical estimate of R(w) is then

min
w

R̂(w) =
1

LK

∑
i,j

‖ m̂(w, dj(µi))− µi ‖
2 (2.5)

s.t 0 ≤ w.

Clearly, trivial solutions of the optimization problems (2.5) can be obtained by simply
choosing wk � 0 for all experiments. This merely states that conducting more experiments
yields better model reconstructions. To obtain efficient and effective designs we must penalize
solutions that include many nonzero wk. We therefore proceed as in our previous work on
experimental design of linear inverse problems [15]; we use a sparsity-controlled experimental
design where the sparsity of w is controlled by an `p penalty. Thus, the sparsity controlled
design problem is:

min
w

R̂β(w) = R̂(w) + β ‖w‖p (2.6)

s.t 0 ≤ w.

Here the parameter β ≥ 0 is tuned to achieve a desired sparsity level. For the `p penalty
we consider values of p ∈ [0, 1]. The `0 penalty leads to the sparsest design, however, such
designs are combinatorially difficult to find. The `1-norm setup leads to a convex term in
the objective function that can be tackled using a variety of methods [2, 30, 31, 34, 9], this
choice will be discussed next. Some heuristics for the designs with p = 0 have been discussed
in [15] and will be revisited below.

Note that (2.6) can be casted as a bilevel optimization problem:

min
w, m̂ij

1

LK

∑
i,j

‖ m̂ij − µi ‖
2 + β‖w‖p (2.7a)

s.t 0 ≤ w (2.7b)

m̂ij = arg min
1

2

∥∥W 1/2[F (m)− dj(µi) ]
∥∥2 + S(m). (2.7c)

Remarks:

3The subscript j (and later ij) is used here to indicate the jth vector (matrix) and not the jth entry of a
vector (matrix). The dimensions of εj should be clear from the context.
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• When F is linear the problem reduces to the one already considered in [15]; no bilevel
optimization is necessary. This case is discussed in the next section.

• For simplicity, we have formulated (2.7c) as an unconstrained optimization problem.
In many situations it may be better to cast this inverse problem using the PDEs as
equality constraints. Such formulation is not considered here.

• The search for an optimal experimental design is a large-scale bilevel optimization
problem. While such problems are difficult to solve in general, it is important to
remember that in many practical cases even a small improvement upon the current
design (i.e., not necessarily the global optimum) is valuable.

• Our particular problem involves weakly coupled L×K lower level optimization prob-
lems (coupled through w). Any efficient algorithm for the solution of the experimental
design problem should be able to handle this computational task.

3 Numerical solution of the optimization problem

3.1 The linearized case

We now review and propose some extensions for the linear/linearized case that has al-
ready been considered in [15]. If the regularization operator is quadratic of the form
S(m) = ‖Bm‖22, then a number of simplifications can make the problem more tractable:
First, consider a linearization of each nonlinear problem around the true model µ. This
leads to an equation for the perturbation δm in terms of the data response d̃ = d− F (µ):

d̃ = J(µ) δm+O
(
‖δm‖2

)
,

where J(µ) ∈ Rn×s is the Fréchet derivative of F . By neglecting second order terms, the
inverse problem for δm reduces to

min
δm

1

2
‖W 1/2 [ J(µ)δm− d̃ ] ‖2 +

1

2
‖B(µ + δm)‖2. (3.8)

The best (true) solution of this problem is δm = 0. Nevertheless, it is obvious that such

a solution is rarely obtained because the least square minimizer δ̂m = (J(µ)>WJ(µ) +
B>B)−1(J(µ)>Wd̃−B>Bµ) is generally nonzero.

The MSE of δ̂m can be decomposed into bias and variance components:

Bias(w,µ) = E (δ̂m)− 0 = −[ J(µ)>WJ(µ ) +B>B ]−1B>Bµ

Var(w,µ) = E‖ δ̂m − E (δ̂m) ‖2 = σ2 tr
[
WJ(µ)(J(µ)>WJ(µ) +B>B)−2J(µ)>W

]
,

where σ denotes the noise standard deviation. The linearized MSE for each fixed µ is simply

MSE(w,µ) = ‖Bias(w,µ) ‖2 + Var(w,µ).
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As discussed in Section 2, the variability of the MSE over the set of modelsM is controlled
in an average sense. We use an empirical estimate based on an average of the linearized MSE
of K training models µ1, ...,µK from the prior π:

R̂lin(w) ' 1

K

K∑
j=1

MSE(w,µj). (3.9)

An optimal design is then obtained by minimizing this average, linearized MSE with an `p
penalty:

min
w

R̂lin(w) + β ‖w‖p (3.10)

s.t 0 ≤ w.

We have already designed algorithms for the solution of (3.10) for the case when F is linear
[15]. Thus, it is straightforward to use our previous techniques to solve this problem.

3.2 The nonlinear case

Solving for w in the context of nonlinear experimental design requires the solution of bilevel
optimization problems of the form (2.6). This task might be quite difficult because some
of the components of the optimization problem may be non-differentiable or discontinuous,
especially if the lower level problem is non-convex and includes inequality constraints. We
therefore make some assumptions that significantly simplify the computations. Although
these may seem to be strong assumptions, there is a broad range of inverse problems for
which they are reasonable.

Assumptions: It is assumed that the lower level optimization problem

(A1) is convex and has a well defined minimum

(A2) includes no inequality constraints

The first assumption is rather restrictive; it implies that the underlying inverse problem has
a unique solution for all possible designs. This assumption also implies that both F and S
are twice differentiable. While this assumption is obviously false in general, it is valid in
many practical situations. The second assumption prevents the use of bound constraints for
the model recovery. Such constraints are important if one wishes to maintain continuous
derivatives of the upper level optimization problem with respect to the weights. They are
also important in applications as they provide means to include prior physical information.

Under assumptions A1 and A2, one can replace the bilevel optimization problem with
the penalized empirical Bayes risk expression subject to an equality constraint as follows:

min
w,mij

R̂β(w,mij) =
1

LK

∑
i,j

‖mij − µi‖
2 + β ‖w‖p (3.11a)

s.t cij = c(mij, w) = J(mij)
>W [F (mij)− dij ] + S ′(mij) = 0 (3.11b)

0 ≤ w, (3.11c)
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where dij = F (µi) + εj. In this subsection we use p = 1. An approximation for p = 0
is discussed in Section 3.3. There is a broad range of algorithms designed for nonlinear
programming that could be used, at least in principle, to solve this problem. In fact, it
can be posed as a control problem with m being the state and w the control. Nevertheless,
two imperative characteristics of the problem should be addressed in the development of an
efficient algorithmic framework:

• Realistically, the forward computation may be computationally intensive and there-
fore solving the constraint equation (the nonlinear inverse problem) c(mij, w) = 0 is
typically a non-trivial task.

• The number of models and noise realizations can be quite large (in the thousands).
Nevertheless, these problems are completely separable given w. This implies that a
simple parallel or distributed implementation can be highly effective.

To address these issues we propose a solution based on a reduced space method in which
m is eliminated from the equations and viewed as a function of w. Computation of the
objective function can be performed by solving the constraints for a given w in parallel.
Implicit differentiation can then be used to compute the gradient of the objective function
with respect to w and, since the objective function is separable, these computations can also
be performed in parallel.

A straightforward calculation shows that

∂cij
∂mij

= J(mij)
>WJ(mij) + S ′′(mij) +Kij (3.12a)

∂cij
∂w

= J(mij)
> diag[F (mij)− dij ], (3.12b)

where Kij stands for second order terms. The derivative of mij with respect to w can thereby
be expressed as

Mij :=
∂mij

∂w
= −

(
∂cij
∂mij

)−1
∂cij
∂w

(3.13)

= −
[
J(mij)

>WJ(mij) + S ′′(mij) +Kij

]−1
J(mij )> diag [F (mij)− dij ] .

It is important to note that the matrix ∂cij/∂mij ∈ RLK×LK in (3.12a) is invertible because
of our convexity assumption of the lower problem with a well defined minimum (A1).

Given the derivatives of mij, w can be easily updated using a variety of available methods.
The gradient required for the update is obtained by differentiation of the reduced objective
function (3.11a)

∇wRβ(w,mij(w)) =
1

LK

∑
i,j

M>
ij (mij − µi) + β e, (3.14)

where e denotes a vector of ones.
The computation of the model mij(w) requires the solution of a nonlinear problem, while

the calculation of the gradient requires the computation of products of the form M>
ij z, with
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z = mij−µi. It is worth noting that this calculation does not require the explicit computation
or construction of Mij. Instead, it is possible to compute the product in three steps: (i) solve
the system

[ J(mij)
>WJ(mij) + S ′′(mij) +Kij ] y = z; (3.15)

(ii) Compute the product J(mij) y, and (iii) pointwise multiply J(mij)y by the vector
F (mij)−dij. Efficient methods for inversion of the matrix (3.15) are based on Krylov meth-
ods [16], which do not require the matrix J(mij) but rather the computation of products of
J(mij) and J(mij)

> with a vector. Typically, the matrix S ′′(mij) is used as a preconditioner
to accelerate convergence [16], although other preconditioners may also be considered [18].

In contrast to our previous work on experimental design for non-linear inversion [19],
one of the advantages of the formulation presented here is that the sensitivity relations of
the inverse problem with respect to the design parameters are merely accessed in the form
of matrix-vector products. This property is particularly valuable for large-scale problems
and for any other situation where the sensitivity relations are not given explicitly by the
code employed. Thus, it is possible to use the proposed design algorithm with any currently
available inverse solver that complies with the assumptions A1 and A2.

Once the gradient is obtained, the facilitation of the projected gradient method for solving
the design optimization problem is straightforward [24]. The algorithm for the solution of
the problem is described in Algorithm 1.

Algorithm 1 Optimal design

1: (Initialization)
Set w = 1, k = 1

2: while (non convergence) do
3: Solve equation (3.11b) for all mij(w) in parallel
4: Compute rij = F (mij)− dij
5: Solve [ J(mij)

>WJ(mij) + S ′′(mij) +Kij ]−1yij = mij − µi in parallel
6: set ∇wRβ =

∑
i,j rij � (J(mij)yij) + βe

7: Project the update pointwise: wk+1 = max (wk − γ∇wRβ, 0)
8: end while

It is important to note that the main computational effort in execution of this algorithm is
devoted to the solution of the L×K nonlinear equations for the models mij and the L×K
linear equations of the gradient. However, these computations can be easily parallelized.
Given a multi-processor architecture, the computation time for the solution is dominated by
our ability to solve the (nonlinear) inverse problem.

3.3 Approximating the `0 solution

The minimization of R̂β(w) = R̂(w)+β‖w‖1 was discussed in Section 3.2 and justified by the
well known property of the `1-penalty in promoting sparsity of the solution. Alternatively,
one may consider a penalty that leads to the sparsest design; for example, the minimization
of R̂β(w) = R̂(w) + β‖w‖0, where the `0 penalty is defined as the number of nonzero entries
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of w. Since the solution of this problem is NP hard, we use a strategy suggested in [5]. The
basic idea is to first solve the `1-norm problem, while keeping only the estimated nonzero
entries in w. Let IZ and IN be, respectively, the sets of indices corresponding to zero and
nonzero entries of w. The following optimization problem is used to approximate the `0
solution:

min R̂(w(IN)) (3.16)

s.t w(IZ) = 0.

By construction, this `0 approximation has the same sparsity pattern as the `1 solution but
with possibly different values. To implement the `0 approximation we define the matrix PN
such that

PNw = w(IN);

that is, the matrix PN selects the set of indices that are non-zero at the solution. We then
proceed by minimizing the empirical Bayes risk without any explicit regularization term

min R̂(PNw)

s.t 0 ≤ w.

From a technical standpoint, it means that the algorithms and software used for the `1 design
problem can be used to solve the approximated `0 design. The only required modifications
are: setting the regularization parameter to zero (i.e., β = 0) and reducing the experiment
set to only include the active ones.

3.4 Controlling the sparsity of w

Since the choice of the `1 regularization parameter β controls the sparsity of w, it is natural
to look for ways to select β that lead to sparse optimal designs. Here we discuss an approach
that utilizes our objective function.

In principle, it is possible to determine the sparsity of w a-priori. For example, one may
decide ahead of time that only t experiments are to be conducted. While this approach
has been used in the past, we have found it to be rather limited. To see why, Figure 1
shows a typical curve of the empirical Bayes risk as a function of the non-zero entries in w.
Since this curve represent a tradeoff between the number of nonzeros of the solution and
the empirical Bayes risk as a function of β, it is often referred to as a Pareto curve. Now
assume that one wishes to conduct only a small number of experiments and that optimal
weights for these experiments have been obtained. When this number is small, then it is
evident from the curve that a small increase in the number of experiments can improve the
results substantially. On the other hand, if the number of experiments to be conducted is
relatively large, then it is possible to select fewer experiments with no significant loss in
the quality of the recovered models. It stands to reason that a reasonable tradeoff between
multiple experiments and minimal risk is achieved when the number of experiments is close
to the value corresponding to the curve’s corner; in this case increasing the number of
experiments does not significantly improve the outcome of the experiment while a reduction
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Figure 1: A Pareto curve: The empirical Bayes risk as a function of the number of nonzeros
in w.

in the number of experiments significantly deteriorates the quality. The drop of the curve
depends on various factors, such as the amount of information that each experiment adds
compared to its noise contribution. Thus, a plot of the risk as a function of the sparsity of
w can be highly informative in designing efficient experiments.

The Pareto curve is typically obtained using a continuation process [13, 26]. One starts by
solving the problem with a large β to obtain the optimal solution w∗(β); β is then decreased
and the optimal value is updated.

In essence, one can spare the repeated computations of the design problem for a range
of β values and instead attempt to recover an optimal value of β by means of parameter
estimation. This can be done by computing the sensitivity of the regularized empirical Bayes
risk to β and deriving the maximal curvature value as a sensible trade-off point. While such
approach may seem appealing at first glance, the computation of such sensitivities is not
trivial, especially when the inner optimization level includes realistic, non-linear, PDE-based
problems.

4 Applications to joint inversion of electromagnetic data

In this section we describe an application of experimental design to geophysical electro-
magnetic experiments. The forward problem for a typical direct current (DC) resistivity
experiment is given by the partial differential equation

∇ · m∇φ = q(x) φ ∈ Ω; ∇φ · n = 0 φ ∈ ∂Ω,

10



Figure 2: The training models used in the AMT/DC experiment.

where m is the conductivity, φ is the potential field and q is a vector of sources. The data
are typically gradient measurements of the potential field. Upon discretization of the PDE,
the forward model can be written as

F (m; β) = QA(m)−1q,

where Q projects the electric potentials onto the measurement locations and A is the dis-
cretization of the operator∇·m∇φ given by a sparse matrix that depends on the conductivity
m.

A complementary way to achieve a similar goal is using a magnetotelluric (MT) ex-
periment in which electromagnetic waves at different frequencies interact with the earth
generating electric and magnetic fields that can be recorded. In this case the forward model
is obtained from Maxwell’s equations in the quasi-static regime:

∇× µ−1∇× ~E − iβm~E = iβ~s ~E ∈ Ω; ∇× ~E × n = 0 ~E ∈ ∂Ω,

where ~E is the electric field, ~s are sources, µ the magnetic permeability, m is the conductivity,
β the frequency and n is a unit vector in the normal direction. Upon discretization of
Maxwell’s equations using finite volume or finite elements [12, 22], the forward model can
be written as

F (m; β) = QβAβ(m; β)−1(iβs),

where Aβ is a sparse matrix that depends on the conductivity and the frequency. The matrix
Qβ projects the electric field everywhere to the measurement locations [13].

Equipment that can record both DC and audio magneto-telluric (AMT) signals has been
recently developed. The experimental design question is to determine how many and what
frequencies should be recorded to obtain the best possible experiment. In particular, we try
to determine if the DC measurements provide important information for the the recovery
process.

To setup the problem we assume six training models in the domain [0, 103] × [0, 103] ×
[0, 5 × 102]. The models are plotted in Figure 2. Each model is composed of 2 conductive
cubes randomly embedded within the media. We then divide the domain into 64× 64× 32

11



Figure 3: A schematic description of the locations of the receivers for the AMT/DC experi-
ment

cells and solve the forward problem on this mesh. A thorough discussion on the forward
modeling and inversion codes used for this experiment can be found in [14]. For each model
we computed two sets of data with two different noise realizations. Although the number of
noise realizations is low, such number is often used to evaluate the variance of linear inverse
problems [11]. The standard deviation of the noise was set to 1% of the average of |F (m)|.
For the data, we discretized the frequency range [100, 104] using 129 points evenly spaced
in log scale. The goal is to pick a subset of frequencies in this range. For each frequency,
we record 900 measurements of the z component of the magnetic field on top of the earth,
as shown in Figure 3. We then use these data and models to compute the Pareto curve of
empirical Bayes risk vs the number of experiments. This curve is shown in Figure 4.

Among all the ‘kinks’ observed in the curve, the one that makes the most sense happens
when the number of nonzeros in w is around 42. At this point, conducting more experiments
leads to a mild amelioration of the empirical Bayes risk whilst performing fewer experiments
increases the empirical Bayes risk dramatically. We therefore choose this to be the optimal
design. The frequencies and corresponding weights for this design are shown in Figure 5. It
is clear that the zero frequency has a nonzero weight and therefore an optimal design includes
the DC response. To show that our design indeed yields better results when applied to a
model that was not used for determining optimal experimental design, we compare the latter
to a commonly used design; one where the frequencies are equally sampled in a log scale.
As the results in Figure 6 show, better results can be obtained from a well designed survey;
the recovered model is evidently closer to the ‘true’ model in the linearized and nonlinear
designs. The results obtained with the linearized design are also shown in the figure. This
design does lead to an improvement over the traditional one but the results of the nonlinear
design are still better.

12
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Figure 4: The Pareto curve for the AMT/DC experiment described in Section 4. It shows
the empirical Bayes risk as a function of the number of frequencies to be recorded.
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Figure 5: Optimal set of 42 out of 129 frequencies, the y axis is the magnitude of wi.
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Figure 6: Thirty two slices in depth of the true model (top left) and the results of the
non-optimal, linearized optimal and optimal designs.
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5 Summary

We have presented a methodology for experimental design of discrete nonlinear ill-posed
problems that can be summarized as follows: The data consist of indirect, noisy observa-
tions of the model, provided by a set of plausible experiments under consideration. An
inversion estimate based on these data is obtained by a weighted Tikhonov regularization
whose weights control the contribution of the different experiments to the data misfit. These
weights are selected by minimizing an empirical estimate of the Bayes risk subject to an
`p penalty that promotes sparsity of the collection of chosen experiments. The problem so
defined is a difficult bilevel optimization problem. However, we have shown that a descent
method based on the sensitivities can be efficiently used to tackle the problem in practice.
We have demonstrated the viability of our design to a problem in electromagnetic imaging
based on direct current resistivity and magnetotelluric data.

We have made an effort to use as few new functions and parameters as possible; that is,
to implement our algorithm one only requires functions and parameters already computed
for the inverse problem. This makes our approach ideal for many nonlinear design problems.
We further presented and explored the tradeoff curve between cost (number of experiments)
and empirical Bayes risk. We believe that this curve is important in realistic applications
where the number of essential experiments needs to be determined and the final design is
intended to aid in the decision making process.

There is still work to be done. In some applications one may wish to take into account
other factors like operational costs and availability of resources. In practical scenarios one
can obtain an actual cost function by assessing the real cost (in time or money) of each
experiment. For example, in geophysics the cost of a borehole experiment may be dictated
by the depth of the borehole. Since deeper boreholes cost more, a cost function that can
account for such expense can and should be used if practical solutions are to be obtained
from the experimental design.

Finally, we have not considered the quality of the estimate obtained by minimizing the
empirical Bayes risk. The selection of the weights is based on the minimization of empir-
ical averages over noise and model samples. This is a typical application of empirical risk
minimization [6, 32, 33]. Important considerations include the behavior of estimates as a
function of sample size, for example, consistency and existence of exponential bounds for
fixed samples, as well as more practical validation procedures [32]. Implementing such pro-
cedures in a computationally reliable way is a challenge that we intend to address in future
work.
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