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ABSTRACT
Many enterprises perform data-center transformations, consolida-
tions, and migrations to reduce costs and make IT greener. These
projects start with discovery of infrastructure and applications and
their dependencies. Typically, this is done by network monitoring
and middleware configuration analysis. However, certain depen-
dencies may not be detected without code analysis.

We designed and implemented the first code-analysis technique
for discovering hard-coded dependencies, based on static string
analysis. Key novel aspects include the ability to localizethe code
and associated files in a production enterprise environment, an anal-
ysis for identifying functions that can access external resources,
and a program-environment analysis (linked to the string analysis)
for inferring values originating outside of the program. The ap-
proach is sound under reasonable assumptions about the underlying
components.

We analyzed1097 Java EE applications from three enterprise
environments. The vast majority had hard-coded dependencies that
required our novel analysis techniques. Such applicationsneed spe-
cial treatment in transformation projects.

Categories and Subject Descriptors
D.2.9 [Software]: Software Management—Software maintenance

General Terms
IT Services

Keywords
discovery, IT services, code analysis

1. INTRODUCTION
Data-center transformation, IT optimization, consolidation, green

projects, virtualization, and migration to cloud are some of the buz-
zwords under which major enterprises are currently undertaking
projects to make their IT infrastructures and operations more effi-
cient. The economic climate has actually increased the investment
in such projects.
 
 
 
 
 
 
 
 
 

Virtually every large-scale transformation project starts with IT
discovery, because enterprises almost never have detailed, com-
prehensive, and up-to-date information about their IT infrastruc-
ture. One reason is that enterprise infrastructures have grown over
decades, with new-generation technologies—such as Service Ori-
ented Architecture (SOA)—added, but old-generation technologies
never pushed completely out. Another reason is mergers and acqui-
sitions, where different infrastructures are mixed. A third reason is
that usually documentation is either out of date or in silos for cer-
tain departments. Similarly, short-term problem-solving tasks often
need discovery, because the IT components of problematic applica-
tions are not always sufficiently understood.

For transformational projects, dependencies between different
software components, e.g., from a Java EE application to a database,
play a crucial role. Components that communicate with each other
typically need to be treated together, so that all business appli-
cations continue to work after the transformation. Dependencies
across different servers are of particular interest, but also dependen-
cies between separate applications on one server. Figure 1 shows
some typical dependencies. An arrow from ComponentA to Com-
ponentB means thatA depends onB.

Discovery of application details and dependencies in production

Figure 1: Dependencies between software components. Grey
boxes represent servers.
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environments is still a considerable challenge. Existing tools do not
provide all the information necessary or are very hard to deploy.
Therefore, it is still quite common to perform major parts ofthe
discovery process manually, which causes significant delays, errors
and costs. Many potential enterprise IT optimizations are never
undertaken because of these problems. Any additional automation
in dependency discovery can therefore have huge effects beyond
the direct savings. In this paper, we are particularly interested in
dependencies that are wholly or partially embedded in code,e.g.,
in the EJBs in Figure 1. We call these dependencieshard-coded.

In enterprise situations, we may immediately get an objection:
Java code in enterprises mostly exists in Java EE environments,
and the Java EE specification prescribes that all used resources are
declared in standard resource files. So we would only need to ana-
lyze these resource files, which is much simpler than analyzing the
code itself. However, while this is what we described in prior work
and still use a lot, we started to analyze semi-manually whether this
specification is really followed. Surprisingly, we saw manyexcep-
tions, i.e., dependencies directly in the code without correspond-
ing resource descriptions. We call these hard-coded dependencies,
even if some of them use certain non-Java-EE standard configura-
tion files. This led us to develop automated techniques to analyze
hard-coded dependencies, which we describe here. The evaluation
in Section 6.1 shows how prevalent hard-coded dependenciesare.

Our analysis is static, and based on underlying techniques for
discovery in production environments, here Galapagos [19], and for
code analysis including static string analysis, here WALA-SA [11].
We use the string analysis in determining the actual resource names,
which are typically strings. Major novel aspects beyond thecom-
bination of these two ingredients are the following:

1. The ability to localize the code and associated files (suchas
an XML configuration file) in a production enterprise envi-
ronment.

2. Sound identification of the basic constructs that allow code
to access external resources.

3. Abstract interpretation of configuration repositories and vari-
ables from the program environment, such as command-line
inputs and paths, that may be used in the derivation of re-
source names. This component is integrated with the string
analysis.

Without the third novel aspect above, the string analysis for re-
source names often conservatively returns* (a wildcard), or a con-
catenation where an important part is still* . We also show statistics
of that in Section 6.1. Note that the additional configuration repos-
itories mentioned above are not the same as the configurationfiles
in a Java-EE-compliant scenario, because their names and locations
are not standardized, nor are the actual field names, even when stan-
dard Java property files are used. Hence taking these non-standard
repositories into account is very important, but a significant analy-
sis challenge too.

Furthermore, the third aspect leads to recursion: The additional
configuration repositories are also external resources; determining
their names requires the same approach and can depend on yet more
external configuration repositories.

Our approach is largely independent of whether Java code runs
on a Java EE server at all.

The remainder of this paper is organized as follows: We start
with the problem setting and examples in Section 2, and review
related work in Section 3. We present the design of our algo-
rithm for discovering hard-coded dependencies in Section 4. We
describe our implementation for Java EE applications running on

IBM WebSphere in Section 5. In Section 6, we evaluate our ap-
proach: First, we present statistics about the occurrence of different
types of dependencies, which need more or less sophisticated anal-
ysis techniques, in over a thousand applications from real enter-
prise environments. Secondly, we demonstrate, under reasonable
assumptions, that our approach is sound in that it finds all external
dependencies with possible over-approximation. Thirdly,we dis-
cuss one of these assumptions in more detail. Finally, we present
performance results. We conclude in Section 7.

2. PROBLEM SETTING AND EXAMPLES
Our goal is to discover the external resources that a programmay

use, such as files, databases, messaging queues, and networkre-
sources accessed via URLs. In this section, we first present the
discovery setting in more detail, then show some code samples of
increasingly complex dependencies on external resources,which
our algorithm has to handle, and finally discuss our goals with re-
spect to soundness and precision.

2.1 Discovery Scenario
Figure 2 shows a program with its environment. The external

resources that we are primarily interested in are shown in bold on
the right. They may or may not reside on the same server or image.
The program has a basic run-time environment, such as a Java EE
application server, and may depend on other code libraries.Impor-
tant aspects of how the program runs come from the command-line
input that the program is started with, and it may have configuration
files or a configuration database; we summarize this as theconfig-
uration repository. Furthermore, full resource names may depend
on current paths.

In our discovery scenario, in contrast to typical code analysis
performed during product development or test, we consider pro-
grams together with an environment. For instance, we may have
a long-running banking or hospital application. Significant parts
of the environment, such as configuration repositories and the ini-
tial command-line input, are static at this time. Even if an enter-
prise production program does not run continuously, it is typically
restarted each time by a fixed start-up script, and thus with some
fixed resources. Technically, configuration repositories are also ex-
ternal resources, but semantically they play a secondary ormeta-
data role, and often contain information about primary external re-
sources.

Executable
program

Based on

Command-line 
input

Configuration
repository

Source code

Database 
used

Library
code Program 

statement

Variable

Database

File

Basic 
runtime 

environment

Queue

Running 
program 

or application

Environment

Users

Current paths

Figure 2: A program with its environment
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Furthermore, in a discovery scenario, source code is not always
available. Our analysis therefore has to work with binary code,
which is fortunately not a big problem with Java.

2.2 Examples
Figure 3 shows three examples of dependencies of a Java pro-

gram on a file. The stop function in all three cases is a construc-
tor of the classFileInputStream . The name of the file rep-
resented byf0 is given as a constant string. However, we will
see in Section 6 that this is not a very common case; hence we
do need analysis techniques that can handle more complex cases.
The name of the file represented byf1 is obtained by concatenat-
ing a constant string and the value of variablename. This value
depends on another variable,version . Naively overapproximat-
ing the value off1 as/data/ * would be sound, but too general.
However, string analysis, which is part of our approach, cancom-
pute the two possible filename values as/data/matrix.old
and/data/matrix) . The name of the file represented byf2 is
taken from the list of the program’s command-line arguments.

FileInputStream f0, f1, f2;
f0 = new FileInputStream("/data/matrix");
if (version == "old")

name = "matrix.old";
else

name = "matrix";
f1 = new FileInputStream("/data/" + name);
f2 = new FileInputStream(argv[1]);

Figure 3: Three types of dependencies of a program on files

Figure 4 shows a more complex, but not uncommon, exam-
ple of how a resource name may depend on configuration param-
eters outside the code. All four program lines may be in dif-
ferent parts of the program; in particular, the first two may be
in one class and the second two in another class. In this ex-
ample, DriverManager.getConnection is the stop func-
tion, and its first parameter is the database URL, which is derived
as a concatenation of two strings. As the value of the variable
db is unknown in the code alone, existing string analysis would
overapproximate the URL asjdbc:db2:// * . This is no real
help in identifying the database. Our extension of string analy-
sis to definitions outside the code allows us to go further: Itde-
tects that the variabledb is assigned a value only once in the
code, namelyprops.getProperty("db.dbname") . The
objectprops is also assigned a value only once: the return value
of getResourceAsStream("settings.properties") .
This is another stop function that refers to an external resource, so
in general we have to use string analysis recursively. However, in
this case, the resource name is a constant string, which tells us right
away that the resource is the filesettings.properties . With
the addition of path analysis based on where the run-time environ-
ment will look for this file at this point in its execution, we find the
actual file. Finally, we emulate the way the run-time environment
searches for a property in such property files, which is standard in
Java. For the example property file in Figure 5, the emulationfinds
that the value of variabledb can only besales . Substituting this

Properties props = new Properties();
props.load(getClass().getResourceAsStream(

"settings.properties"));
String db = props.getProperty("db.dbname");
Connection cn = DriverManager.getConnection(

"jdbc:db2://" + db, "admin", "pwd");

Figure 4: Dependency on a database via properties

# DATABASE configuration
db.dbname=sales
db.maxcon=5
db.mincon=2

Figure 5: Java property file settings.properties

into the results of the initial string analysis yields that the database
accessed in this program is preciselyjdbc:db2://sales . Fig-
ure 6 shows an XML property file similar to the Java property file
of Figure 5. Java programs often use custom XML properties files
too, but they are less standardized and thus require heuristics in the
analysis; if those do not succeed we still have to use* as their out-
put for soundness, and potentially add manual analysis based on
the component origins that the WALA-SA string analysis gives us.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java...
<properties>

<comment>DATABASE configuration</comment>
<entry key="db.dbname">sales</entry>
<entry key="db.maxcon">5</entry>
<entry key="db.mincon">2</entry>

</properties>

Figure 6: Java XML property file

2.3 Soundness and Precision Goals
Discovering precisely the resources that a program will useis

undecidable. Fortunately, for most use cases involving IT transfor-
mations, optimizations, or problem solving, a reasonable overap-
proximation is very useful. The only requirement in most cases is
for the analysis to be sound, which means that it will captureall
the dependencies. For example, assume that, for backup purposes,
we want to derive a list of files a program depends on. If we can
only derive that all these files are in a certain directory (for exam-
ple, all the filenames have the pattern/usr2/bak/ * ), it is safer
to back up all files in that directory than none, even if only one file
may actually be used. Therefore, our goal is to derive all resource
dependencies with reasonable overapproximation if necessary. In
Section 6.2 we will discuss under what (reasonable) assumptions
we achieve this goal; we will also mention a few cases where itis
useful to deviate from soundness, at least for the time being.

A key observation for this soundness is that, at least in a type-safe
language such as Java, to access an external resource, a program ul-
timately has to invoke a function out of a limited set of functions
defined in the run-time environment. We call a function that is de-
fined outside the program and gives access to an external resource
a stop function. Parameters to stop functions include the names,
types, and sometimes locations of the relevant external resources.

For our analysis, we can treat libraries either as part of thepro-
gram or as an extension of the basic run-time environment. We
usually do the former for customer libraries and the latter for well-
known standard libraries that we expect to encounter more than
once. We call every function defined outside of the program an
external function.

3. BACKGROUND AND RELATED WORK
Today IT asset and dependencies discovery tools are available

from every major IT services vendor. Such discovery tools probe
network nodes with requests [2, 9], monitor network traffic [6, 10,
16, 17, 29], or analyze software configurations [1, 4, 13, 19,24].

None of the tools that analyze software configurations touches
code, i.e., analyzing code in this context is one of the novelties of
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our current paper. The tools only analyze packaged middleware and
applications such as databases, Java EE servers, and ERM systems.
For Java EE servers, they only analyze objects and relationsexplic-
itly configured at the server level, such as what EJBs are deployed
in it and what resources they declared in the standard way. Typ-
ically, software configuration analysis is done by interacting with
running software via its management interfaces. In the Galapagos
tool we switched to analyzing configuration files directly (mostly
after the publications [18, 19]), because this is often possible with
fewer privileges, such as without the password of the administrator
of a specific application server or database. This approach also fa-
cilitates building up the novel code analysis for production servers
where we have to automatically find the code for analysis first, be-
cause the management interfaces would not give us the code and
all related files.

In addition, Galapagos uses a script-based approach where ev-
erything that needs to be done on the production servers is done by
one rather short, non-interactive script, while the bulk ofthe analy-
sis is done on a back-end analysis server. This approach was started
in [14]. The advantage is that the system administrators of the pro-
duction servers can run the script without giving any account to the
discovery team or its software, and can first validate that the script
indeed makes no changes on the production servers, reads no cus-
tomer data, and has low resource consumption. This can drastically
reduce the approval time and thus the real-life overall discovery
time, compared with approaches where a central server logs into
the production servers, for which it needs credentials and where
the system administrators have less control over what happens. In
situations where such logins are possible, it is easy to pushthe
script out automatically, so there is no downside to this approach
in terms of deployments. In the following, we use this approach
also for the code analysis. Figure 7 shows a small Galapagos ex-
ample, here for an IBM DB2 installation for which configuration
information was captured and parsed. We see that DB2 is installed
in /opt/ibm/db2 , and two instances are configured with user
home directories in/home . DBL is a local database, while DBR
is the remote definition of a database located onserver1 . Next,
this result is connected with other discovered software components.
In particular, if discovery was also run on serverserver1 , the link
to DBR is connected to the model of DBR discovered there, poten-
tially using alias analysis. Similarly, in this paper we want to link
a potential hard-coded dependency from a Java application to, say,
DBL, to the model of this database.

Monitoring can generally complement static discovery, because
they have opposite pros and cons: The main benefit of monitoring
is that it is relatively product-neutral. For instance, onesees a con-

/opt/ibm/db2

fs:/opt/ibm/db2

fs:/home/inst2fs:/home/inst1

fs:/db2/inst2db2://server1:50000/DBR

Figure 7: Example of existing Galapagos configuration-based
discovery

nection in anetstat table or a NetFlow result independent of
what middleware or application made it. The main benefit of con-
figuration analysis, or rather any static analysis including our new
code analysis, is that one can also see components and connections
that are not active during the monitoring time, e.g., that only occur
at certain times of the year or only in exceptional situations. Often
one even only gets a one-shot monitoring chance, e.g.,netstat
information at one point in time, which is clearly very incomplete.
Hence most commercial tools combine both approaches [4, 13,22].
In our specific use case of analyzing hard-coded dependencies in
Java programs, monitoring cannot help much: First, we are also
interested in dependencies within one server, such as the depen-
dencies on a messaging queue and a database shown in Figure 1.A
network-based tool cannot see these. And while monitoring of soft-
ware connections inside servers is possible in principle [5], current
production servers in enterprises almost never have such instrumen-
tation, and it is totally impossible in practice to get authorization to
deploy OS instrumentation on existing servers that run production-
level business applications, except sometimes thelsof tool. Sec-
ondly, for many optimization use cases we are in fact interested in
determiningwherethe dependencies are configured because some-
thing may need to be changed about them. Static analysis can find
this precisely, in terms of detailed components such as databases
and in terms of the actual configuration or code line, while mon-
itoring (both network-based and operating-system based) usually
only finds it at the overall process level.

Let us now look at the code analysis background. Finding depen-
dencies within a body of code is standard (call graphs etc.).How-
ever, we are interested in external dependencies, i.e., dependencies
on anything outside the current body of code. Furthermore, finding
the code on production servers in the first place is part of ourtask.

String analysis for Java, as we will use as a basis, was introduced
in the Java String Analyzer (JSA) by Christensen and others [7, 15].
It can be seen as an instantiation of abstract interpretation [21] for
string variables. JSA first builds a program’s control flow graph and
then extracts the grammar for the variable in question. In the gram-
mar, each string expression is represented as a non-terminal. At the
second stage, JSA substitutes each non-terminal by a context-free
grammar that emulates the result of the corresponding string oper-
ation. Its authors used the Soot framework [23, 25] as a front-end
for converting Java code to an intermediate representation.

String analysis is an important instrument for validating dynam-
ically generated content. Applications often construct SQL queries
dynamically at runtime and they do little or nothing to checkthat
the resulting query is valid. Gould et al. addressed this problem
by applying static string analysis for Java to derive possible values
of SQL queries [12]. Minamide applied JSA to approximate the
contents of dynamically generated PHP pages [20]. The approx-
imation is useful for validating the pages and detecting potential
vulnerabilities in cross-site scripting. String analysiswas also used
for security-related code and policies verification by Wasserman
and Su [27, 28].

Geay et al. presented a string-sensitive permission analysis for
Java and Common Language Runtime (CLR) applications [11].
They adapted string analysis to disambiguate permission propaga-
tion paths. The underlying string-analysis algorithm is based on
Minamide’s work, but introduces a novel labeling feature, which
allows tracking the origin of each component in the resulting string.
These string analysis extensions were added to IBM’s WatsonLi-
braries for Analysis (WALA) [26]; we call this WALA-SA. As we
are also interested in tracking the origin of string components, e.g.,
for potential later changes, WALA-SA was a natural choice asthe
underlying static-analysis engine for our current paper.
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Christodorescu et al. [8] demonstrated the possibility to deduct
string values not only for information-rich code, such as Java byte-
code, but also for dense x86 object code. The main problem solved
by the authors is the extraction of sufficient information from the
object code to reconstruct string operations. This may be interest-
ing for future extensions of our analysis of hard-coded dependen-
cies to x86 object code.

A common alternative to a full-fledged string analysis is theanal-
ysis based on constant propagation, where all non-constantvalues
are approximated with* , denoting an arbitrary string. Due to this
simplification, constant propagation analysis runs faster. However,
the locators of external data often undergo modifications inthe pro-
gram (typically concatenations). Hence an analysis solelybased
on constant propagation would not obtain enough precise results
for external dependencies. In their work, Geay, et al. reported a
precision improvement of 53% when using WALA-SA to compute
resource names, as opposed to using simple string-constantpropa-
gation.

We are not aware of prior work of analyzing code together with
parameters from its runtime environment, as we will presentit be-
low. In fact, many other use cases analyze code during its design
and test phases and before it is deployed. At this point, the envi-
ronment is not yet given. In this sense, optimization and transfor-
mation tasks for running enterprise applications are special.

4. DESIGN
In this section, we describe our algorithm, which generalizes

from the examples in Section 2.2. We start with an overview, and
the following subsections give more details about each step.

Recall that one of our goals is to concentrate everything that
needs to be performed on the production servers (where the ac-
tual application is running) into a short script, and to do asmuch as
possible on a dedicated discovery server. Hence we fetch thecode
and certain environment elements from the production servers with
the script, and perform all the analysis on our own server.

So far we only mentioned strings as the objects for which we
need abstract interpretation, because resource names are typically
strings, as we saw in Section 2.2. However, strings are not the
only objects involved. For example, the JavaProperties class
that we also saw in Section 2.2 extends theHashTable class.
Fortunately, string analysis, at least in WALA-SA, can be applied
to non-string objects by by artificially defining these objects to be of
string types and by writing emulators for functions on theseobjects.
By emulators we mean string-equivalents of these functionsin a
format that can be applied when the static string analysis comes
across such a function. In our context we call this configuration
analysis, because it mainly concerns the configuration repositories
in the sense of Figure 2. Thus, the entire abstract interpretation can
run in a uniform way for the actual string variables defining external
resource names, and for non-string property variables fromwhich
input strings might be fetched. This yields the following algorithm
structure.

1. Code and configuration gathering.Detect and collect pro-
gram modules, configuration, and state data, and transfer col-
lected information to the discovery server.

2. Stop function identification.Detect all the stop functions in
the given program. We do this by matching external func-
tions used in the program against a database of external func-
tions that we have previously classified into stop functionsor
non-stop functions, and by newly classifying unrecognized
functions. The classification includes which parameters of
the stop functions actually denote an external resource.

3. String and configuration analysis.Perform string analysis to
derive an abstract interpretation of parameters of stop func-
tions that define external resources. This includes the config-
uration analysis for non-string classes such asProperties ,
with our own abstract emulators for their methods.

4. Locating and Loading Configuration Repositories.If one of
the emulators requires loading of a named external resource,
such as a command-line argument or a configuration repos-
itory, locate that resource by determining the correct pathto
it and possibly by refining wildcards by comparison with ac-
tually existing resources. Then load it from the local copy
produced in Step 1, and continue the emulation.

5. Refetching.If the located repository was not collected from
the production servers in Step 1, collect it before resuming
the loading and thus the emulation. One will typically try to
analyze all programs from one server before refetching, be-
cause refetching typically involves interaction with the server
owners.

6. Postprocessing for overall discovery. When we have a result
for one of the initially desired external resources, i.e., the
stop function parameters identified in Step 2, we link it to
the model of the external resource in the overall discovery
result.

In the following, we describe each of these steps in more detail.

4.1 Code and Configuration Gathering
Before analyzing a program, we have to detect it and fetch its

code and related state and configuration data. Recall that wemainly
consider situations where we have to analyze a running production
environment where very little is known in advance.

Programs can be detected based on the currently running pro-
cesses, registered packages, standard installation paths, disk scan-
ning if audit and performance constraints on the productionservers
permit it, and known processes that start others. For example, the
inetd daemon can start a program upon receiving a network re-
quest. As none of these techniques is perfect, one needs a good
combination of them if the goal is to find all custom programs on a
server, and we do not claim soundness for this step. In our specific
situation, we only have to gather all applications officially declared
in certain application servers, so we do achieve soundness for our
more restricted situation.

In general, the configuration files used by a software component
can be in arbitrary places on a disk. Fortunately, in practice there
are heuristics that allow us to locate and fetch configuration files
in advance. For example, Java EE applications usually have con-
figuration files located inside their Enterprise Archive (EAR) files,
or somewhere in theclasspath environment variable. Hence
by fetching EAR files with the program modules, and files from
theclasspath , we obtain most of the related configuration files.
The others are fetched after the initial code analysis in Step 5.

In addition to code and configuration files, we fetch other sys-
tem parameters defining the environment of the program beingan-
alyzed: the directory it is started in, environment variables, and
command-line arguments either fromps output if the program is
currently running, or from a parent script. Most of this is not done
per program, but once for each server, e.g., by executing theps
command and transferring its entire output back. We also fetch the
configuration of the underlying application servers where our Java
code runs.
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4.2 Stop Function Identification
Recall that a key observation for our analysis is that in order to

address an external resource, a type-safe program must ultimately
call a stop function. A run-time environment may contain a huge
number of functions that a program could potentially call, and Java
EE run-time environments vary even over different versionsof the
same application-server product. It would be hard to classify all
those function in advance into stop functions and non-stop func-
tions. Instead, we take the following approach:

• Given a program, we build a callgraph of the functions that
are reachable from the program entrypoints. By entrypoints
we mean functions where program execution may start, such
as themain method of an application. Java EE applica-
tions have multiple entrypoints. Note that the information
about initial calls that we obtained from running processes
and startup scripts in Section 4.1 contains calls to the run-
time environment, which forwards them to entrypoints of the
custom code. The callgraph gives us a setF of functions that
may actually be called. This process eliminates a large num-
ber of external functions (some of which are stop functions)
from the analysis. This way, we also do not list external re-
sources that are specified in the program but are never used.

• We detect which of the functions inF are defined inside the
given program; all the others we call theexternal functions
of the program. These external functions form a setE.

• We maintain a databaseD of external functions that we man-
ually classified into stop functions or non-stop functions.More
precisely, “external” is a notion relative to a program, butas
long as we have unambiguous function identifiers, it does not
matter whether a function that is external for one program
is not external for another. For instance, theVector.add
constructor is not andFileInputStream.<init> is a
stop function. As we will show in Section 6.3, this database
converges at a reasonable rate. For known stop functions,
we also maintain a list of parameters that define external
resources. E.g.,FileInputStream.<init> ’s first pa-
rameter defines the file name.

• We look up all functions inE in the databaseD and obtain
a subsetS of known stop functions, as well as a setU of
previously unknown external functions used in our program.
We newly classify these functions, add them to the database,
and add those that are stop functions to the setS for this
program. Classification of new functions is, for now, done
manually. We also look up the parameters defining external
resources for the functions in setS. Thus we have a start-
ing set of parameters in specific calls inside the callgraph for
which we want to perform the remaining steps.

4.3 String and Configuration Analysis
External resource names or addresses are typically expressed as

String parameters of stop functions. Even where this is not di-
rectly the case, for example, with theURLclass in Java, the class is
typically based on strings or can be reinterpreted as strings. Hence,
we use string analysis to obtain an abstract interpretationof the
possible values of these parameters, in the form of a context-free
grammar (CFG) or regular expression. String-analysis engines em-
ulate string operations. They normally model basic operations such
as string concatenation, and emulate externally defined string func-
tions as transducers [20]. String-analysis engines are available for
a variety of languages. We use WALA-SA, the string analysis en-
gine based on the Watson Libraries for Analysis [11]. WALA [26]
has configurable front-ends for various languages. We focused our

analysis on Java EE bytecode applications, because we usually do
not have access to the sources of the programs we analyze. WALA-
SA can output not only a grammar with wildcards, but an abstract
interpretation that shows the originating program points leading to
these wildcards, such as the assignment to variabledb in Figure 4,
if an emulator for theProperties methods did not exist yet.
This is important for constantly improving our analysis to detect
new methods that we need to emulate.

Figure 3 and 4 showed examples where a file name depends on
a command-line argument, and a database name is derived froma
configuration file. These cases are common, and classical string
analysis would return wildcards for the corresponding string parts
Hence we need abstract interpretation not only for strings,but for
such configuration objects. We call thisconfiguration analysis.
For instance, for the code fragment in Figure 4, we provide em-
ulators for the methodsload , getResourceAsStream , and
getProperty . In our case of using WALA-SA, we can piggy-
back this configuration analysis onto the string analysis, i.e., we
only have to add configuration emulators. This works because
WALA-SA enables us to declare classes as string-equivalent; for
instance, we do this for theProperties class. The emulators
treat configuration objects as actual strings at their interfaces, in
order to be compatible with WALA-SA. For instance, the emula-
tor of getResourceAsStream reads the properties file into a
string variableprops . The emulator ofgetProperty gets two
strings as input (props anddb.dbname in our example) and out-
puts another string (sales in our example). In the implementation
of the emulator ofgetProperty we profit from the fact that the
structure of Java properties files is standard, i.e., the emulator can
parse it according to the few predefined ways of how name-value
pairs can be represented in such a properties string.

For readers familiar with string analysis, let us mention that we
do not define full string transducers for these functions. Transduc-
ers are the standard mechanisms to emulate string functionssuch as
append andsubstring in WALA-SA, because transducers can
be applied to CFGs, the representation of sets of possible strings in
the abstract analysis. As we know that the realProperties class
is only manipulated with the methods defined for it, we can derive
that the corresponding emulated properties grammar is never repre-
sented by an arbitrary CFG, only a string or an explicit enumeration
of a set of strings. Hence a simpler directly coded emulationis suf-
ficient instead of a formal transducer.

Another important emulator derives command line arguments
from theps command output captured on the source server. This
emulator knows the command line formats and argument num-
bering schemes on typical operating systems. It requires atleast
the program name as an input in order to find the correct line in
the ps output. Furthermore, here we needed to implement addi-
tional Java EE support in WALA, because in Java EE, the external
call as recorded inps or in a startup call goes to the application
server, which forwards it to an appropriate registered program (e.g.,
a servlet). These forwarding functions and their potentialchanges
of the arguments have to be modeled in order to obtain what argu-
ments the actual custom code obtains.

Generally, emulation of configuration files is not easy because
they can have custom formats. We envision that even for some
custom configuration files one can derive parameter values based
on a set of heuristics, e.g., if a custom XML file contains key-value
pairs in a format as in Figure 6; of course, heuristics that are not
validated for a particular use case cannot be guaranteed to be sound.
Fortunately at least for our primary use case, most configuration
repositories are standard Java properties files; we show related real-
word statistics in Section 6.1.

6



4.4 Locating and Loading Configuration Repos-
itories

In Step 4 of the algorithm, we have to actually locate a config-
uration repository (e.g., a set of configuration files) of a program,
based on the string parameter that the code uses to address it, as
identified in Step 3. The challenge is that the name in the codeis
not always a complete address.

In simple cases, the string parameter itself contains all the in-
formation. For example, ifFileInputStream is called with an
absolute file path, this path uniquely identifies the file, andthe file
is on the same server. Similarly, if a resource name is a URL, the
URL is typically a final result.

In other cases, the name or address that the code uses is relative,
and we need to make it absolute. For instance, the Java runtime
environment looks for properties files in the directories defined in
its classpath. Hence this is also where our emulator looks for it. We
retrieve the classpath from theps output line for the given program
on the given server, where it is visible as the-classpath option.

Other Java methods look for files relative to the current working
directory. We use OS-specific methods to retrieve the initial cur-
rent working directory of a process. However, the current working
directory gets changed during program execution, and we need to
know what values it might take at a particular point in the code
analysis. Such context parameters can be treated similar tonormal
parameters in the string analysis, except that they are not explicitly
defined. For example, by defining a global string variable CWDfor
the current working directory, and by emulating related functions
(which are necessarily external), one can achieve that CWD is a
parameter to all file-related stop functions. In this way, relatively
defined file names can be converted to absolute file names by con-
catenating the CWD and the relative name at the same place in the
program.

Once we have the full address of the configuration repositoryon
the same or another server, we can compare it with the addresses of
information prefetched during Step 1. (There may be alias resolu-
tion in this comparison.) We load it if it was prefetched.

If we do not have the full address from Step 4, but a reasonably
restricted expression with wildcards, we can improve the precision
of the result by matching this expression with our knowledgeof
real existing resources in the enterprise. For instance a dependency
on a databasesales * on a serverserv1.x.com can be replaced
with a dependency on databasesales3 on serverserv1.x.com
if discovery was also run on serverserv1.x.com and this is
the only database with such a name format there. In principlethe
same logic applies to file names, especially if read-only functions
such asgetResourceAsStream are used; however, as we typi-
cally do not fetch the entire directory structure with Galapagos (too
resource-intensive) we can only really perform this matching if we
are sure to have fetched all potential matches.

4.5 Refetching
If a configuration repository that has been located is not present,

it needs to be fetched before the analysis can resume. As mentioned
above, one should attempt to analyze all programs from one server
before refetching (or even from all servers if remote configuration
repositories are used) because even if the fetching is automated, the
fact that one wants to perform it typically requires interaction with
the server owner and is therefore time consuming.

4.6 Postprocessing for Overall Discovery
When we have a result for one of the stop function parameters

identified in Step 2, i.e., a “primary” external resource of our pro-
gram, we do not need to fetch it, but rather to link the models for

the overall discovery result; e.g., the overall model now shows that
a program depends on the database DBL from Figure 7.

If we do not have a model of that resource yet, we put a “place-
holder” into the overall discovery result, representing everything
that we learned about the resource from the dependency represen-
tation. This typically happens if discovery was not run on the other
server (yet), or for files because we typically do not fetch the entire
directory structures, or for resource types for which no (reliable)
static discovery is available yet.

5. IMPLEMENTATION
In this section, we present a few more details of our particular

implementation of the algorithm for discovering hard-coded depen-
dencies described in Section 4.

For Steps 1 and 5, we build upon the Galapagos discovery tool.
Galapagos in its current state, mostly added after the publications
about it [14, 19], collects information with two script front-ends:
one for a range of UNIX OSs and one for Windows. For our pur-
poses, we made it fetch the installed applications in the IBMWeb-
Sphere and Oracle WebLogic application servers.

So far we focused on the analysis of Java EE applications de-
ployed on IBM WebSphere application servers v.3 to v.7 because
of our business needs. However, other recent Galapagos capabil-
ities are to detect stand-alone applications that are either running
at the time of discovery, or registered to run at regular intervals or
based on certain events. Therefore, it would not be a huge effort
to extend the analysis of hard-coded dependencies to Java applica-
tions that are stand-alone or deployed on other applicationservers.

Our implementation of Step 2 mainly uses the call-graph analy-
sis features of WALA. We added the identification of externalfunc-
tions and their classification into stop functions and non-stop func-
tions, as well as the database of already classified functions.

The WALA-SA string analysis [11] that we used in Step 3 runs
on top of a 0-1-CFA context-insensitive callgraph constructed by
WALA. Based on the callgraph, the flow of the strings in the pro-
gram is deduced and constraint sets are generated [3]. By solving
the resulting constraint system, the possible values of thevariable
in question are inferred.

Recall that as long as the resource name components are truly
strings, and only transformed with standard string methodssuch as
concatenation, we can simply use the existing WALA-SA. How-
ever, a large part of the actual operations on resource name com-
ponents are not true string operations, but handle the loading and
interpretation of configuration repositories, such as properties files,
command-line arguments, and XML configuration files. Hence for
these data types and operations, we had to provide our own emula-
tors; we call this configuration analysis.

We wrote about two thousand lines of Java code to handle stop
functions, improve WALA Java EE support, and add new method
emulators. We also wrote about a thousand lines of shell script
code for various tests and experiments. The Galapagos Windows
and UNIX scripts that fetch WebSphere and WebLogic applications
and configuration data are about 300 lines long combined. More
than half of these lines are specifically written to fetch applications
and related configuration files. We plan to release the WALA Java
EE support improvements to the public domain.

6. EVALUATION
We examined three real-world enterprise environments, which

we call A, B, andC. EnvironmentA is the oldest; discovery was
performed as part of its sunsetting. Discovery in Environments B
andC was performed as part of optimization projects. Servers in
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A B C Total
WAS installations 45 17 204 266
Application instances 111 104 5040 5255
Unique applications 56 49 1034 1097

Table 1: Statistics of the analyzed applications

environmentsA andCmostly run AIX, servers inB mostly Solaris
OS, and a significant number of servers in all environments run
Linux. During the discovery, we fetched all applications deployed
on WebSphere application servers (WAS) and related system con-
figuration information in addition to normal Galapagos information
for the analysis of software configurations. Table 1 shows the to-
tal as well as per-environment statistics of the WAS installations
we found in these environments, the application instances in them,
and how many of these applications were unique. We ran our hard-
coded dependency analysis on each unique application from our
three environments.

6.1 Statistics of Hard-coded Dependencies
The most important result is that a large percentage of the Java

EE applications in all three environments indeed have hard-coded
dependencies. In other words, they contain dependencies that are
either completely hard-coded in the application code, or specified
in various non-Java-EE compliant configuration files. Thus they
require the new discovery method we describe in this paper.

Table 2 shows the percentage of such application dependencies
on messaging queues and databases, which are the kinds of depen-
dencies that we are most interested in for our use cases related to
IT transformation. Note that including a larger set of dependency
types would only increase these numbers; we were conservative
in particular to exclude non-code dependencies to other files in-
side the application archive files themselves. Still we see that in at
least 30 to 90% of the applications we analyzed, static discovery
with prior tools such as our own Galapagos tool and IBM Tivoli
Application Dependency Manager (TADDM) Level 3 scans (the
highest level) would miss some dependencies. Recall that whether
monitoring (such as it exists in TADDM Level 2) would find them
depends highly on the monitoring period, it would only work for
cross-network dependencies or if at leastlsof can be installed,
and would not give the same level of detail, in particular about
where the dependencies are configured in order to change some-
thing about them.

It is also interesting to observe that various enterprise environ-
ments seem to have different policies or guidelines about writing
applications. In particular, in environmentsA andCmost databases
are handled according to the Java EE specification, while this is
false for almost all messaging queue dependencies. In environment
B this is quite different.

Our second question was whether the string analysis is really
necessary. In particular, if string parameters were mostlyprovided
as constants, e.g., as inFile(“/data/data.xml”) rather than
File(filename) , one would be able to derive the external re-
source names without the complex string analysis. Table 3 shows
the percentage of such stop function invocations. As the number of
such easy cases is low, string analysis is really necessary to extract
hard-coded application dependencies on external resources.

A B C
Messaging queues (%) 94 31 92
Databases (%) 7 25 5

Table 2: Non-standard external dependencies in our three en-
vironments

A B C
Directly loaded string values (%) 8 10 7

Table 3: Calls to stop functions with constant parameters

Thirdly, we evaluated the importance of modeling parameters
defined in the environment of the program (not counting Java-EE-
compliant resource files). Table 4 shows the number of configura-
tion files used by our applications. We can see again that there
seemed to have been different coding standards and guidelines,
which resulted in different usage patterns for configuration files.
In particular, applications in the older setA do not rely on XML
files, while the newer applications inB commonly do this.

A B C
Properties 439 99 26,732
XML 0 13 29

Table 4: Numbers of property and XML files used by the ap-
plications

6.2 Soundness
We claimed above that our algorithm is sound, i.e., that it will

only overapproximate resources, but not omit any. Let us demon-
strate why this is true under reasonable assumptions.

First, the underlying Java runtime environment is type-safe, and
therefore it is not possible for a program to access an external re-
source, e.g., by directly accessing system resources or by reading
beyond its assigned memory. Any access outside its own virtual
machine must be mediated by a function. (This includes callsto
the Java Native Interface which allows calling other languages –
in this case our Java analysis will go as far as identifying that other
code is called; it is not responsible for analyzing further what down-
stream resources the other code may depend on). Hence we have
shown that every external resource access requires use of functions
defined outside the program itself.

Our Step 2 finds all these function calls in a program. For the
following classification into stop functions and non-stop functions,
we have to assume that the manual part is done correctly.

The string analysis in Step 3 is sound by the underlying work,
in our case by the soundness of WALA-SA [11]. In addition, we
have to assume here that we have programmed our own new emu-
lators for configuration methods such as command-line arguments
and property files in a sound way. For instance, this means that
we have to take either the same decision as the Java runtime or
to overapproximate in cases where several equally named proper-
ties are available and the runtime environment will choose one of
them. Note that on enterprise servers, command-line arguments are
also provided based on configuration files or start-up scripts and not
manually. Therefore, we assume that command-line arguments are
as constant as configuration files.

For Step 4, we have to assume that our resource location algo-
rithm is correct with respect to what the Java runtime would do, or
overapproximates it. For instance, it is no problem for soundness
if we cannot find a property file at all, we return* . It would be
a problem if we returned a different property file than the runtime
would, in cases there are several that match the name patternwe
have. Hence we have to assume that our analysis of current paths
and priorities is correct with respect to the Java runtime, and where
there is uncertainty we have to fetch and analyze all potential files.
If we perform a comparison with existing resources, as in theex-
ample with the databasesales3 in Section 5, then for soundness
we implicitly assume that the dependency is not dangling, e.g., that
it does not point to a non-existing databasesales4 , and that the
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discovery of resources of the given type is complete. Hence it is a
judgement call whether one performs this comparison for theben-
efit of greater precision, or omits it in order to retain soundness
under weaker assumptions.

For Step 5, fetching additional configuration repositoriesor pro-
gram components, the same argument as for Step 4 applies.

As to Step 1, we fetch all applications that are properly declared
in a supported application server, so these are the input applica-
tions to which the subsequent soundness arguments apply. A sim-
ilar statement would hold if we were given the code to analyzein
another way. If we are missing program components or properties
files in this step (although it occurs rarely in practice), then the fol-
lowing steps will automatically treat these as external resources and
point them out. If they are needed in Step 4 to determine a com-
ponent of the name of another resource, then either Step 5 will be
able to fetch them, or that name component of the other resource
will be output as* .

6.3 External Functions Classification
So far we manually classify external functions into stop andnon-

stop functions. The total number of external functions thatan appli-
cation can potentially use is large; we estimate that at least 100, 000

such functions are available for Java EE applications. It isvirtually
impossible to classify all of them into stop and non-stop functions
manually. Fortunately, the number of functions that are commonly
used is relatively small. Figure 8 shows how the number of en-
countered external functions grew with the number of applications
we analyzed. The number of used external functions is higherfor
the old and diverse environmentA, and lower for the newer en-
vironmentsB andC. Overall, the number of newly seen external
functions declines reasonably well as the number of analyzed ap-
plication increases.

Manual external functions classification is an ongoing process
for us. So far we analyzed about3, 000 external functions and
found that about 2% of them are stop functions. For lack of time,
we do sometimes show external dependencies that we already found
in applications where we had no time yet to classify all the external
functions into stop functions or non-stop functions. For instance,
statistics that just warn about the commonality of hard-coded de-
pendencies can only get more alarming with finding more stop
functions. In such cases, we are outside soundness in the sense
used before (finding a superset of the external resources), but on
the safe side for the application. Or any result may be betterthan
no result, e.g., because all discovered dependencies can already be
treated in a transformation. To achieve good stop functionscover-
age for such cases, we added commonly known stop functions to
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Figure 8: External Functions per Applications Analyzed

the list even if we did not encounter them yet.
For the future, we also consider moving the boundary of what

we consider external functions and thus stop functions down, i.e.,
to analyze the Java EE runtime environments and other libraries
used with our tool with respect to a more basic Java run-time envi-
ronment.

6.4 Performance
Table 5 shows the performance of our hard-coded dependency

extractor for several applications of different sizes. In this exper-
iment, we ran the extractor for a single stop function that isin-
voked only once in the code. We conducted this experiment on
a 2 GHz Linux machine with 4 GB of memory. For each applica-
tion we list the number of classes in the program, the number of
callgraph nodes, the number of production rules instantiated by the
string analysis to evaluate the values of the string variables in the
program, and the time required to perform the analysis. The appli-
cations are sorted by the number of classes in them, because this
is a good approximation of program complexity. About two thirds
of the execution time is spent on building the callgraph and doing
other one-time per application operations.

The string analysis algorithm includes the emulation of string
flows through an application. In case of a large enterprise applica-
tion this process becomes complex, which leads to relatively long
execution times (typically the total per-application processing takes
10–100 times longer than one stop function times listed in Table 5).
Fortunately, we perform this analysis off-line after we have fetched
the application code and related configuration files. Therefore, the
amount of time required to perform the analysis is tolerable. In
addition, the off-line nature of analysis allows us to use powerful
servers. In particular, for our large-scale experiments with all the
applications, we used a set of IBM System p5 57516 core systems
that are a lot more powerful than the server used for Table 5. We
used a commodity server in this section of the paper just to make it
easier for all readers to “feel” the execution times.

Application Classes Nodes Rules Time (sec)
App1 71 822 11130 33
App2 835 7828 545792 150
App3 1585 11648 406645 173
App4 3141 20510 674450 319

Table 5: Performance on applications of various sizes

7. CONCLUSIONS
We have presented a static discovery method for analyzing code

dependencies on external resources such as databases, messaging
queues, files, and whatever is not part of the program code. The
method is sound under reasonable assumptions. We implemented it
for Java EE applications in IBM WebSphere and Oracle WebLogic
application servers and analyzed three enterprise application en-
vironments, comprising 1097 unique applications. The resulting
statistics show that such code analysis is indeed necessary, although
the Java EE standards recommend that dependencies should bede-
fined in special resource files and not in the code. The percent-
age of hard-coded dependencies in the three environments, even if
one only counts databases and messaging queues, range from 31 to
94%, i.e., for this percentage of applications all prior static discov-
ery tools, including our own Galapagos tool, miss dependencies.
Hence, every transformation project or problem resolutionon such
environments must take hard-coded dependencies into account. We
also showed that less than 10% of hard-coded dependencies are
given as string constants, making static string analysis a necessary
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ingredient. Furthermore, we saw that components of these strings
often come from other resources in the environment of the program.
Thus, our framework comprises the novel aspect of configuration
analysis, which we implemented integrated with the existing string
analysis. Configuration analysis may be relevant also outside de-
pendency analysis, e.g., when string analysis is used for security
purposes as in [11].
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