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Controlling Autonomous Data Ferries: Proof of

Selected Theorems
Ting He, Kang-Won Lee, and Ananthram Swami

I. INTRODUCTION

This report contains detailed proofs for the theorems and

corollaries in [1]. We first list the theorems in Section II and

then give the proofs in Section III. See the original paper for

terms and definitions.

II. THEOREMS

Proposition 2.1: The optimal value function VT (b) can be

written as

VT (b) = max

(

max
α∈Γf

T

b · α, max
α∈Γs

T

b0 · α

)

. (1)

Moreover, Γf
T and Γs

T (T ≥ 1) satisfy the recursion1:

Γf
T = PΓ̃T , Γs

T = argmax
α∈Γ̃T

b0 · α, (2)

where PΓ̃T
∆
={Pα : ∀α ∈ Γ̃T }, and Γ̃T

∆
={α̃u, α′

, α̃
u :

∀u ∈ S, α
′ ∈ Γf

T−1} for

α̃u, α′

(s) =

{

γ(1 + c1) if s = u,
γα′(s) o.w.,

(3)

α̃u(s) =

{

γ(1 + c1) if s = u,
γc2 o.w.,

(4)

c1
∆
= max

α′∈Γf

T−1
∪Γs

T−1

b0 · α
′, and c2

∆
= max

α′∈Γs
T−1

b0 · α
′.

Theorem 2.2: At horizon T and belief state b, it is optimal

to follow the myopic policy if

1 − γ ≥
1 − b(1)

(1 − b(2)) [1 + b∗0γ(1 − γT−1)/(1 − γ)]
, (5)

where b(1) = maxu∈U b′(u) (achieved at u1) is the largest

immediate reward, and b(2) = maxu∈U\u1
b′(u) the second

largest immediate reward.
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1For T = 0, Γf
0

= Γs
0

= {(0, . . . , 0)}.

Proposition 2.3: Each belief-based dynamic policy π cor-

responds to a unique trajectory u
π ∆
=(uπ(t))d

t=1 (d can be

∞) within one domain such that π is equivalent to a policy

of following u
π and repeating it in different domains until

contact, after which this process is repeated in a new domain.

Claim 2.4: The optimal predetermined policy is to keep

switching among the most likely cells of different domains

(called the switching policy).

Theorem 2.5: The average inter-contact time E[KDY] of the

optimal dynamic policy satisfies

K ′
0 +

d′(1 − p′0)

p′0
≤ E[KDY] ≤ K0 +

d(1 − p0)

p0
, (6)

where p0
∆
=1 −

d
∏

t=1
(1 − pt), K0

∆
= 1

p0

d
∑

t=1
tpt

t−1
∏

i=1

(1 − pi), and

p′0, K ′
0 are similarly defined with pt, d replaced by p′t, d′.

Corollary 2.6: If b0 is uniform, then E[KSW] = n, and

n

2
≤ E[KDY] ≤ n −

d(n)

2
, (7)

where d(n) is the length of the longest dominating trajectory.

Corollary 2.7: If the node mobility is sufficiently biased

such that b
(1)
0 > b

(2)
0 /(1 − b

(1)
0 ), then E[KDY] = E[KSW], i.e.,

the switching policy is optimal.

Lemma 2.8: Let P be a base transition matrix and Pβ its

scaled version according to an activeness parameter β. Then

their associated steady-state distribution b0 and b
′
0 are equal

for all β ∈ (0, 1/(1 − min
i

Pii)).

Theorem 2.9: If we scale the transition matrix in Theorem

2.5 by an activeness parameter β, then besides the bounds in

(6), E[KDY] also satisfies E[KDY] ≤ K̃0+d′(1− p̃0)/p̃0, where

p̃0
∆
=

d′

∑

t=1

b
(t)
0 −

βδ

2

d′−1
∑

t=1

b
(t)
0 (d′ − t)(d′ − t + 1), (8)

K̃0
∆
=

1

p̃0

d′

∑

t=1

t

(

b
(t)
0 − βδ

t−1
∑

i=1

b
(i)
0 (t − i)

)

, (9)

for δ
∆
=max

i6=j
Pij and d′ defined as in Theorem 2.5. In particular,

as β → 0, E[KDY] converges to the lower bound at O(β).

Corollary 2.10: Under L ≥ 1 nodes per domain, Corollary

2.7 and 2.6 can be extended as follows: for biased mobility,

the switching policy is still optimal if b
(1)
0 > b

(2)
0 /(1 − b

(1)
0 ),

and its inter-contact time will converge to 1 as L increases
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at O((1 − b
(1)
0 )L); for symmetric mobility and large domains

(i.e., n ≫ 1), E[KSW] ≈ n/L, and

n

L + 1
≤ E[KDY] ≤

n[1 − (1 − d(n)/n)L+1]

(L + 1)[1 − (1 − d(n)/n)L]
, (10)

where d(n) is defined as in Corollary 2.6.

III. PROOFS

A. Proof of Proposition 2.1

We prove by induction. The result clearly holds for T = 0
and Γf

0 = Γs
0 = {(0, . . . , 0)}. At horizon T , we plug the

induction result for horizon T − 1 into the value iteration:

VT (b) = γ max
u

[

b′(u) + b′(u) max
α′∈Γf

T−1
∪Γs

T−1

b0 · α
′

+(1 − b′(u))max
(

max
α′∈Γf

T−1

b
′
\u · α′, max

α′∈Γs
T−1

b0 · α
′
)

]

.(11)

Given Γf
T−1 and Γs

T−1, max
α′∈Γf

T−1
∪Γs

T−1

b0 ·α
′ and max

α′∈Γs
T−1

b0·

α
′ are constants, denoting them by c1, c2.

For u ∈ Uf , if max
α′∈Γf

T−1

b
′
\u · α′ ≥ c2, then

VT (b) = γ
[

b′(u) + b′(u)c1 + (1 − b′(u))b′
\u · α̃′

]

= b
′ · α̃u, α̃

′

= b · (Pα̃
u, α̃

′

),

where α̃
u, α̃

′

is defined as in (3) for α̃
′ = arg max

α′∈Γf

T−1

b
′
\u · α′;

otherwise,

VT (b) = γ [b′(u) + b′(u)c1 + (1 − b′(u))c2]

= b
′ · α̃u = b · (Pα̃

u),

where α̃
u is defined as in (4).

For u ∈ Us, since b
′ is always reset to b0, VT (b) no

longer depends on b, and similar arguments as above will

show that VT (b) ≡ b0 · α
∗
T , where α

∗
T = arg maxb0 · α

over all α̃
u, α′

, α̃
u. Combining the above cases proves the

induction, where Γf
T contains all Pα̃

u, α′

and Pα̃
u, and Γs

T

only contains α
∗
T .

B. Proof of Theorem 2.2

The myopic action π1(b) = u1 is optimal if and only if its

reward is greater than all alternative actions, i.e.,

(b′(u1) − b′(u))(1 + VT−1(b0)) ≥ (1 − b′(u))VT−1(b
′
\u)

−(1 − b′(u1))VT−1(b
′
\u1

). (12)

Since it is preferable to earn rewards earlier due to discount,

the value function is upper bounded by the case when there is

an immediate contact: VT−1(b
′
\u) ≤ γ(1+VT−1(b0)). More-

over, the value function is lower bounded by its value at b0

since we have the option of switching domain: VT−1(b
′
\u1

) ≥
VT−1(b0). Applying these bounds to the right-hand side of

(12) gives a sufficient condition

1 − γ ≥
1 − b′(u1)

(1 − b′(u))(1 + VT−1(b0))
(13)

for all u 6= u1, which can be reduced to a single inequality

with b′(u) = b(2) (note b′(u1) = b(1)). Finally, the value

function is lower bounded by that of deterministically switch-

ing among the most likely cells of different domains, yielding

VT (b) ≥ b∗0γ(1 − γT )/(1 − γ). Replacing VT−1(b0) in (13)

by its lower bound proves the theorem.

C. Proof of Proposition 2.3

It suffices to show that the original policy π and the policy of

following u
π give the same action in every step. We construct

u
π as follows. Define b1 = b0 and bt+1 = [PT

bt]\uπ(t)

for t ≥ 1; define uπ(t) = π(bt) and d to be the last step

before switching, i.e., π(bd+1) ∈ Us. It can be verified that

each bt is indeed the belief after following π and having t−1
consecutive misses, and by the above construction the two

policies will give the same action.

D. Proof of Claim 2.4

Suppose that the optimal predetermined policy is to let the

ferry stay with one node for τ slots, at states u1, . . . , uτ

(possibly with repetitions), for some τ ≥ 1. We claim that the

expected reward rt of ut satisfies rt ≤ b0(ut) ≤ maxu b0(u),
and thus the switching policy is optimal.

Since rt = Pr{first contact occurs in step t} which can be

written as (1−
∑t−1

j=1 rj) Pr{st = ut|(sj 6= uj)
t−1
j=1}, it suffices

to show

Pr{st = u|(sj 6= uj)
t−1
j=1} ≤

b0(u)

1 −
∑t−1

j=1 rj

for any state u. We prove the claim by induction. For t = 1,

the result holds trivially. For t > 1,

Pr{st = u|(sj 6= uj)
t−1
j=1} ≤

Pr{st = u|(sj 6= uj)
t−2
j=1}

1 − Pr{st−1 = ut−1|(sj 6= uj)
t−2
j=1}

(14)

because P (A|B) ≤ P (A)/P (B). By induction and the invari-

ance of b0 under state transition, the numerator is bounded

by b0(u)/(1 −
∑t−2

j=1 rj), and the denominator is equal to

1 − rt−1/(1 −
∑t−2

j=1 rj) by definition. Plugging these into

(14) yields the result.

E. Proof of Theorem 2.5

For the upper bound, consider the inter-contact time KMY

of the myopic policy. If we call the process of completing the

policy trajectory once a round, then the mean inter-contact

time can be decomposed into

E[KMY] =

∞
∑

k=1

Pr{k rounds} · E[KMY|k rounds]. (15)

Within one round, its distribution satisfies

Pr{KMY = t} = pt

t−1
∏

j=1

(1 − pj), 1 ≤ t ≤ d,
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where pt
∆
= Pr{KMY = t|KMY > t − 1}. Let p0 denote the

probability of having a contact within the first round, given

by

p0
∆
= Pr{KMY ≤ d} = 1 −

d
∏

t=1

(1 − pt),

and K0 be the expected inter-contact time if having a contact

within the first round, given by

K0
∆
=E[KMY|KMY ≤ d] =

1

p0

d
∑

t=1

t Pr{KMY = t}.

Then we have Pr{k rounds} = (1 − p0)
k−1p0, and E[KMY|k

rounds] = (k − 1)d + K0 since different rounds are i.i.d.

Plugging the results into (15) yields the upper bound E[KMY] =
K0 + d(1 − p0)/p0.

For the lower bound, we first show that the inter-contact

time is lowered bounded when nodes are static. For any given

policy with trajectory (u∗(t))d∗

t=1, the mean inter-contact time

E[K] can be written as

E[K] =

∞
∑

t=1

tp∗t

t−1
∏

j=1

(1 − p∗j ), (16)

where p∗t
∆
=Pr{K = t|K > t−1} as before, with the property

that p∗t = p∗t−d∗ for t > d∗. We observe that E[K] is a

decreasing function with each p∗t by examining the partial

derivative

∂E[K]

∂p∗t
= t

t−1
∏

j=1

(1 − p∗j ) −

∞
∑

s=t+1

sp∗s





∏

j=1:s−1, j 6=t

(1 − p∗j )





=





t−1
∏

j=1

(1 − p∗j )



 (t − E[K|K > t]) < 0.

Moreover, within each round (i.e., 1 ≤ t ≤ d∗), p∗t ≤

b0(u
∗(t))/(1 −

t−1
∑

j=1

b0(u
∗(j))), achievable only if the node is

static and the trajectory does not have loops. This is from

the property that bt(i) ≤ b0(i)/(1 −
t−1
∑

j=1

b0(u
∗(j))), where

bt = P
T (bt−1)\u∗(t−1) (b1

∆
=b0). For t = 1, it holds trivially.

For t > 1,

bt(i) =
∑

j 6=u∗(t−1)

bt−1(j)

1 − bt−1(u∗(t − 1))
· Pji

≤
1

1 − b0(u∗(t−1))

1−
t−2
∑

l=1

b0(u∗(l))

·

∑

j 6=u∗(t−1)

b0(j)Pji

1 −
t−2
∑

l=1

b0(u∗(l))

≤
b0(i)

1 −
t−1
∑

j=1

b0(u∗(j))

.

We finish by noting that p∗t = bt(u
∗(t)).

Next, we find the minimum inter-contact time for static

nodes. Since for given values x1, x2, . . ., the permutation

φ that minimizes
∑

t
txφ(t)

t−1
∏

j=1

(1 − xφ(j)) is the descending

order xφ(1) ≥ xφ(2) ≥ . . ., the best policy for static nodes

is to tour each domain in descending order of b0(u) and

switch domain if the conditional contact probability < b
(1)
0 .

The corresponding mean inter-contact time can be computed

as in the upper bound.

F. Proof of Corollary 2.6

The lower bound follows directly by plugging b0(u) ≡ 1/n
into the lower bound in (6). For the upper bound, consider

a policy with the longest dominating trajectory as its policy

trajectory. By definition of the dominating trajectory, the

conditional contact probability is pt = 1/(n − t + 1) for

t = 1, . . . , d(n). Following similar arguments as in the proof

of Theorem 2.5, we can compute the inter-contact time of this

policy by K0 + d(n)(1 − p0)/p0, where

p0 = 1 −

d(n)
∏

t=1

(

1 −
1

n − t + 1

)

=
d(n)

n
(1 + o(1)),

K0 =
1

p0

d(n)
∑

t=1

t

n − t + 1





t−1
∏

j=1

(1 −
1

n − j + 1
)





=
d(n)

2
(1 + o(1)).

Plugging in the approximations yields the bound.

G. Proof of Corollary 2.7

Since E[KDY] ≤ E[KSW] by definition, it suffices to show

that the lower bound in Theorem 2.5 is equal to E[KSW] =

1/b
(1)
0 . Specifically, b

(1)
0 > b

(2)
0 /(1− b

(1)
0 ) implies that d′ = 1,

which leads to a lower bound of 1/b
(1)
0 .

H. Proof of Lemma 2.8

By definition of steady-state distribution, we have that for

any j ∈ {1, . . . , n},

b′0(j) =
n
∑

i=1

b′0(i)(Pβ)ij = b′0(j)(1−β
∑

i6=j

Pji)+β
∑

i6=j

b′0(i)Pij ,

which gives b′0(j)
∑

i6=j

Pji =
∑

i6=j

b′0(i)Pij . On the other hand,

b0 also satisfies

b0(j) =

n
∑

i=1

b0(i)Pij = b0(j)(1 −
∑

i6=j

Pji) +
∑

i6=j

b0(i)Pij .

Combining the above (and the uniqueness of steady-state

distribution) yields b
′
0 = b0.

I. Proof of Theorem 2.9

Let (v(t))d′

t=1 be the optimal policy trajectory for static

nodes, i.e., v(t) is the cell with the tth largest steady-state

probability b
(t)
0 and d′ is defined as in (6). The upper bound is

derived from the performance of this policy under the scaled
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transition matrix Pβ . We claim that the conditional contact

probability satisfies

pt ≥

b
(t)
0 − βδ

t−1
∑

i=1

b
(i)
0 (t − i)

t−1
∏

i=1

(1 − pi)

. (17)

It holds trivially for t = 1. For t > 1, we can write pt as

pt = Pr{node in v(t) in slot t|not in v(i) in slot i < t}

=
1

t−1
∏

i=1

(1 − pi)

(

Pr{v(t) in slot t}

−Pr
{

t−1
⋃

i=1

{v(i) in slot i, v(t) in slot t}
}

)

. (18)

Now note that Pr{v(t) in slot t} = b
(t)
0 , and Pr{v(i) in slot i,

v(t) in slot t} = b
(i)
0 (P t−i

β )v(i), v(t) ≤ b
(i)
0 (t − i)βδ. The last

inequality is from (P k
β )ij ≤ kβδ for i 6= j, where P

k
β is the

k-step transition matrix, shown by induction:

(P k
β )ij =

∑

l 6=j

(Pβ)il · (P
k−1
β )lj + (Pβ)ij · (P

k−1
β )jj

≤ (k − 1)βδ + βδ.

Applying these results and union bound into (18) yields (17).

Now that E[K] is a decreasing function of pt (see the

proof of Theorem 2.5), plugging the lower bound (17) into

the formula in Theorem 2.5 gives an upper bound on E[K] of

policy (v(t))d′

t=1, which in turn upper bounds E[KDY].
Moreover, the gap between the new upper bound and the

lower bound is

βδ

2p̃0p′0

[

( d′−1
∑

t=1

b
(t)
0 (d′ − t)(d′ − t + 1)

)

(

d′ +

d′

∑

t=1

tb
(t)
0

)

−2p′0

d′

∑

t=1

t

( t−1
∑

i=1

b
(i)
0 (t − i)

)

]

.

Since p̃0 → p′0 as β → 0 and the other quantities are

independent of β, we conclude that the gap decays at O(β)
as β → 0.

J. Proof of Corollary 2.10

For biased mobility, the optimality of the switching policy

follows from the same argument as in Corollary 2.7. For L ≫
1, its mean inter-contact time satisfies

E[KSW] =
1

1 − (1 − b
(1)
0 )L

= 1+(1−b
(1)
0 )L+o

(

(1 − b
(1)
0 )L

)

.

For symmetric mobility, we extend Corollary 2.6 as follows.

For the switching policy,

E[KSW] =
1

1 − (1 − 1
n )L

=
1

1 − e−L/n+o(1/n)
=

1
L
n + o( 1

n )
.

For dynamic policy, the proof is similar to that of Corollary

2.6.

Specifically, for the lower bound, assume the policy

is to sweep the field in the order of cells 1, . . . , n
(all orders are equivalent). The probability of hav-

ing the first contact in slot t can be written as

Pr{∃ node in cell t, 6 ∃ node in cells < t}, which is equal to
[

1 − (1 − 1/(n− t + 1))L
]

((n − t + 1)/n)
L

. Therefore, the

mean inter-contact time for static nodes is
n
∑

t=1

t

[

1 − (1 −
1

n − t + 1
)L

](

n − t + 1

n

)L

= n−L
n
∑

t=1

tL.

(19)

By the inequality
n
∫

0

xLdx ≤
n
∑

t=1
tL ≤

n
∫

0

(x + 1)Ldx, we have

that (19) is bounded between n/(L + 1) and [(n + 1)(1 +
1/n)L − n−L]/(L + 1), where the upper bound approximates

n/(L + 1) for large n.

For the upper bound, still consider the policy of following

the longest dominating trajectory. Its conditional contact prob-

ability is pt = 1 − [(n − t)/(n − t + 1)]L. Using the formula

in (6), we have

p0 = 1 −

(

1 −
d(n)

n

)L

,

K0 =
1

p0



n−L
n
∑

t=n−d(n)+1

tL − d(n)

(

n − d(n)

n

)L


 .

Applying the previous bounds on
n
∑

t=1
tL, we can show that

for large n, K0p0 can be approximated by n/(L + 1) −
((n − d(n))/n)

L
(n + Ld(n))/(L + 1). Plugging these into

the formula gives the upper bound.
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