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Abstract

Sparse representation techniques, such as
Support Vector Machines (SVMs), k-nearest
neighbor (kNN) and Bayesian Compressive
Sensing (BCS), can be used to characterize a
test sample from a few support training sam-
ples in a dictionary set. In this paper, we
introduce a semi-gaussian constraint into the
BCS formulation, which allows support pa-
rameters to be estimated using a closed-form
iterative solution. We show that using this
approach for phonetic classification allows for
a higher accuracy than other non-parametric
techniques. These phones are the basic units
of speech to be recognized. Motivated by this
result, we create a new dictionary which is a
function of the phonetic labels of the original
dictionary. The support vectors now select
relevant samples from this new dictionary to
create a new representation of the test sam-
ple, where the test sample is better linked to
the actual units to be recognized. We present
results using these new features in a Hidden
Markov Model (HMM) framework for speech
recognition. We find that these features allow
for a Phonetic Error Rate (PER) of 23.9%
on the TIMIT phonetic recognition task, the
best result on TIMIT to date when HMM
parameters are trained using the maximum
likelihood principle.

1. Introduction

In machine learning theory, problems can be cast in
a multi-class regression or classification framework.
While the former is the task of decomposing signals
into a common basis, the latter is the task of dis-
criminating between different classes. The regression
problem reduces to identifying the common sparsity
pattern of relevant variables selected from a relatively
high-dimensional space. In statistical signal process-
ing, whenever the optimal representation is sufficiently
sparse, it can be efficiently computed by convex opti-
mization (Donoho, 2006).

The original goal of these sparse representation re-
search efforts was not for classification, but rather
the efficient representation and compression of signals
(Candes et al., 2006), and their performance was mea-
sured in terms of sparsity of the representation. The
sparsest representation selects the subset which most
compactly expresses the input signal from other less
compact representations. In this paper, we exploit
the sparse representation of training samples, which
we will refer to as a dictionary, to perform multi-class
classification of test samples through an optimal selec-
tion of sparse examples from this dictionary.

Non-parametric methods, including kNNs and SVMs,
also utilize details of the training examples when
solving classification-type problems. However, para-
metric modeling techniques, such as Gaussian Mix-
ture Models (GMMs) continue to be extremely pop-
ular for recognition-type problems in speech recogni-
tion. While GMMs allow for fast model training and
scoring, training samples are pooled together for pa-
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rameter estimation, resulting in a loss of information
that exists within individual training samples. And
yet, while non-parametric methods have been shown
to offer improvements in classification accuracy over
parametric methods, gains on classification tasks us-
ing these non-parametric methods do not necessarily
translate into large gains for direct recognition appli-
cations (Deselaers et al., 2007). In both classification
and recognition, the goal is to determine classes that
best represent the test samples. In classification, the
segments associated with each class are known ahead
of time, and thus decision scores can directly be cal-
culated for each segment using non-parametric tech-
niques. In recognition, class boundaries are not known
beforehand, and thus must be determined via a dy-
namic programming approach (e.g., Hidden Markov
Models (HMMs)). In this paper, we look at creating a
new set of features using a non-parametric sparse rep-
resentation, but still explore these features for HMMs.

Sparse representations (SRs), including methods such
as compressive sensing (CS) (Candes et al., 2006),
have become a popular technique in recent years for
efficient representation and compression of signals. Re-
cently, SRs have also been used as a non-parametric
classifier for classification tasks (Sainath et al., 2010),
(Wright et al., 2009). Mathematically speaking, in the
SR formulation for classification, a matrix H is con-
structed consisting of possible examples of the signal,
that is H = [h1;h2 . . . ;hn]. For example, in speaker
classification, each hi ∈ H could represent features
from different speakers in the training set. Given a
test speaker’s feature vector y, the goal of SRs is to
solve the following problem in Equation 1 for β, where
∥ β ∥1< ϵ imposes an l1 regularization on the vector
β, thus selecting a small number of examples from H.

y = Hβ s.t. ∥ β ∥1< ϵ (1)

The above problem can be solved using a variety
of techniques, include Lasso, Dantzig (Candes et al.,
2006) or BCS (Ji et al., 2008) methods. In this pa-
per, we introduce an Approximate Bayesian Compres-
sive Sensing (ABCS) (Carmi et al., 2009) formulation
which allows us to derive an iterative closed-form solu-
tion for estimating sparseness parameters β. While we
do not assume that our dictionaryH obeys a restricted
isometric property (RIP), as in traditional compressive
sensing, we term this algorithm ABCS as the initial use
of it was for image classification (Carmi et al., 2009)
where H did obey an RIP property. Each element of β
in some sense characterizes how well the corresponding
hi ∈ H represents speaker y, with larger elements in
β representing better quality speakers hi. We can de-

velop a speaker classification decision for y, by choos-
ing the speaker from H that has the maximum size of
β elements (Wright et al., 2009).

Notice that using SR for classification utilizes details
about the training sample dictionary to characterize
a test sample using a few number of support train-
ing examples, similar to kNNs and SVMs. However,
the kNN and SVM techniques do not adapt the num-
ber and type of supports to each test example. SVMs
select a sparse subset of relevant training examples,
known as support vectors, and use these supports to
characterize “all” examples in the test set. kNN meth-
ods characterizes any test point by selecting a small
“fixed” number of k points from the training set which
are closest to the test vector, and voting on the class
that has the highest occurrence from these k samples.
The SR method presented in this paper is a superset
of these popular classification schemes since the test
sample is not only represented by training samples
from its class but also across multiple classes, while
changing the number of support training samples for
each test sample. In fact, (Sainath et al., 2010) ex-
plored SR for phonetic classification on the TIMIT
task (Lamel et al., 1986), and found that the SR tech-
nique outperformed the GMM, SVM and kNN meth-
ods, and offered one of the best reported results in the
literature to date.

In this paper, we first solve Equation 1 to find the
best β, where y is a feature vector from the test set,
and H is a collection of feature vectors from training.
Again, we show SRs allow for a higher classification
accuracy compared to other techniques, implying that
β is selecting a few appropriate samples from the over-
complete dictionary H to represent y. After β is com-
puted, we change the dictionary to be a function of
the actual phonetic labels in H. β now selects rele-
vant examples from this new dictionary. We now rep-
resent y using this new dictionary which we refer to as
Sparse Representation Phone Identification Features
(Spif ). The new features are better linked to the ac-
tual phonetic units to be recognized. Since SR selects
appropriate β values and provides a higher classifica-
tion accuracy than a GMM, scoring the Spif vectors,
derived from the same β values and now linked to pho-
netic units, with a parametric model should produce a
higher classification accuracy than the original y fea-
tures. In turn, higher classification accuracy may cor-
respond to higher recognition accuracy, when used in
combination with parametric HMM models. Thus, we
take advantage of the higher accuracy offered by the
SR method to derive a new set of features, while still
exploiting the use of the parametric HMM for speech
recognition.
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In summary, the key contributions of this paper are:

• A novel ABCS sensing formulation to solve prob-
lems in speech recognition

• A novel set of Spif vectors that can be used in
tandem with parametric GMM or HMM classifiers

2. ABCS

State-of-the-art methods for sparse signal recovery
commonly utilize convex relaxation methods, includ-
ing the Lasso and Dantzig selector techniques. How-
ever, these techniques require considerable effort to
tune the sparseness constraint. Moreover, these meth-
ods only provide a point estimate for β, and can thus
be considered to be a sub-optimal solution. Alter-
natively, an optimization method known as BCS has
recently been introduced, which uses a probabilistic
framework to estimate the spareness parameters. This
technique limits the effort required to tune the sparse-
ness constraint, and also provides complete statistics
for the estimate of β. The approach in (Ji et al., 2008)
uses a Laplacian prior, which is not conjugate to the
Gaussian likelihood and is thus approximated with a
relevance vector machine (RVM). In this paper, we
address drawbacks of the Lasso and Dantzig methods.
Following a probabilistic formulation similar to BCS,
we introduce a semi-gaussian prior into this framework
which allows for the derivation of a iterative closed-
form solution for the sparseness parameters. We call
this new technique Approximate Bayesian Compres-
sive Sensing (ABCS).

2.1. ABCS Derivation

Before we present the ABCS derivation, we provide
an intuitive explanation about the characteristics of
∥ β ∥21= (

∑
i |βi|)2 and ∥ β ∥1= (

∑
i |βi|)). We

can denote the semi-gaussian density function as pro-
portional to psemi−gauss ∝ exp(− ∥ β ∥21) and the
laplacian density function proportional to plaplace ∝
exp(− ∥ β ∥1). When ∥ β ∥1< 1, it is straight-
forward to see that psemi−gauss > plaplace. When
∥ β ∥1= 1, the density functions are the same, and
when ∥ β ∥1> 1 then psemi−gauss < plaplace. There-
fore the semi-gaussian density is more concentrated
than the laplacian density in the convex area inside
∥ β ∥1< 1. As shown in (Chartrand, 2007), given the
sparseness constraint ∥ β ∥q, as the fractional norm
q goes to 0, the density becomes concentrated at the
coordinate axes and the problem of solving for β be-
comes a non-convex optimization problem where the
reconstructed signal has the least mean-squared-error
(MSE). As stated above, the semi-gaussian density has

more concentration inside the region ∥ β ∥1< 1. Intu-
itively, we expect the solution using the semi-gaussian
prior to behave closer to the non-convex solution.

Our CS formulation using the semi-gaussian con-
straint, similar to Equation 1, is given below:

y = Hβ s.t. ∥ β ∥21< ϵ (2)

In Equation 2, y is a sample of data from the test
set such that y ∈ ℜm where m is the dimension of
feature vector y. H is a matrix of training examples
and H ∈ ℜm×n, where m << n.

We assume that y satisfies a linear model as y = Hβ+ζ
where ζ ∼ N(0, R). This allows us to represent p(y|β)
as a Gaussian:

p(y|β) ∝ exp(−1/2(y −Hβ)TR−1(y −Hβ)) (3)

Assuming β is a random parameter with some
prior p(β) we can obtain the maximum a posteri-
ori (MAP) estimate for β given y as follows: β∗ =
argmaxβ p(β|y) = maxβ p(y|β)p(β).

In the ABCS formulation, we assume that p(β) is ac-
tually the product of two density functions, namely a
gaussian density function pG(β), representing prior be-
lief on β, and a semi-gaussian density function pSG(β),
which represents the sparseness constraint ∥ β ∥21< ϵ.
Therefore, the total objective function J , which we
would like to maximize to find β, is given as follows:

β∗ = argmax
β

J = argmax
β

p(y|β)pG(β)pSG(β) (4)

We assume that pG(β) is represented as pG(β) =
N(β|β0, P0). Here β0 and P0 are initialized statisti-
cal moments. The semi-Gaussian prior, pSG(β), as
given by Equation 5, imposes sparseness on β with σ2

controlling the degree of sparseness.

pSG(β) = exp

(
−||β||21

2σ2

)
(5)

Let us define βi to be the ith entry of the vector β =
[β0, β1, . . . , βn]. We define a vector V with entries set
as V i(βi) = sign(βi), for i = 1, . . . , n. Here V i(βi) =
+1 for βi > 0, V i(βi) = −1 for βi < 0, and V i(βi) = 0
for βi = 0. Using this definition for V , we obtain:

∥ β ∥21= (
∑
i

(|βi|))2 = (
∑
i

(V i(βi)βi))2 = (V β)2

(6)

Substituting this expression for ∥ β ∥21 given in Equa-
tion 6 and assuming y = 0, we can rewrite Equation 5
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as Equation 7 given below, which provides a Gaussian-
like representation.

pSG(β) = p(y = 0|β) = exp

(
−(0− V β)2

2σ2

)
(7)

Given the dependency of V on β, in order to solve
Equation 4, we introduce an iterative procedure that
computes V based on the sign of the previously esti-
mated β. Thus, to estimate β at iteration k, we define
each entry V i(βi) ∈ V as V i(βi) ≈ V i(βi

k−1), where
k refers to the iteration index. This iteration also re-
quires replacing σ2 in Equation 7 by d × σ2, where d
is the total number of iterations. Below we will give a
further explanation for using the term d × σ2 but for
now we define the semi-gaussian at iteration k as:

pSGd(β) = exp

(
−(0− V β)2)

2dσ2

)
(8)

The objective function maximized at each iteration
is outlined in Equation 9. First, only the gaussian
constraint is enforced (i.e. Equation 9a), and then
the semi-gaussian constraint is imposed starting with
Equation 9b, for d iterations.

J0(β) = p(y|β)pG(β) (9a)

J1(β) = J0(β)pSGd(β) (9b)

...

Jd(β) = Jd−1(β)pSGd(β) = J (9c)

Using the fact that exp(−a/b) = exp(−a/(b × d))d,
taking the product of d exponential products pSGd is
equivalent to the true semi-gaussian pSG in Equation
5. This proves that Jd(β) in Equation 9c is equivalent
to the total objective function J in Equation 4. In
addition, this also illustrates why changing the vari-
ance in Equation 8 to d × σ2 is equivalent to a true
semi-gaussian in Equation 5 with variance σ2.

Now that we have given an overview of the ABCS
method, in the next section, we describe how to es-
timate β for each step given in Equation 9.

2.2. ABCS Solutions

In this section, we present a two-step approach to solve
for β, which we call the ABCS Solution.

2.2.1. Step 1

In step 1, we solve for the β which maximizes Equation
9a. This equation is equivalent to solving y = Hβ

without enforcing a sparseness constraint on β. As
described in Appendix A, a closed form solution can
be obtained for β since Equation 9a is represented as
the product of two Gaussians. This closed for solution
is given more explicitly by Equation 10:

β∗ = β1 =
(
I − P0H

T (HP0H
T +R)−1H

)
β0+

P0H
T (HP0H

T +R)−1y (10a)

Similarly, we can express the variance of β1 as P1 =
E
[
(β − β1)(β − β1)T

]
, given more explicitly by Equa-

tion 10b.

P1 = (I − P0H
T (HP0H

T +R)−1H)P0 (10b)

2.2.2. Step 2

Step 1 essentially solved for the pseudo-inverse of
y = Hβ, of which there are many solutions. Us-
ing the solutions to Step 1 in Equation 10, we can
rewrite Equation 9a as another gaussian as p′(β|y) =
p(y|β)pG(β) = N(β|β1, P1). Therefore, we would now
like to solve for the MAP estimate of β given the
sparseness semi-gaussian constraint, in other words:

β∗ = argmax
β

p′(β|y)pSG(β) (11)

Because of the semi-gaussian approximation given in
Equation 7, an iterative procedure is used in Step 2 to
solve for β and P , as indicated by Equations 9b and
9c. Since the objective function at each iteration can
be written as the product of gaussians, as shown by
Equation 9c, a closed form solution can be obtained
for β and P for each iteration. Equation 12 gives the
recursive formula which solves Equation 11 at iteration
k, for k > 1 to d.

βk = βk−1 −
Pk−1V

T

V Pk−1V T + d× σ2
V βk−1 (12a)

Pk =

[
I − Pk−1V

T

V Pk−1V T + d× σ2

]
Pk−1 (12b)

Thus, the ABCS approach allows for closed-form so-
lution and the complete statistics of β, addressing the
issue of the Lasso, Dantzig and Bayesian CS methods.

Let us denote p̂(β|y) as the posterior pdf obtained by
using the ABCS solutions where the approximate semi-
gaussian is used. In addition, denote p(β|y) as the
pdf when the true semi-gaussian is used to estimate
β. It can be shown in (Carmi et al., 2009) that for a
large number of iterations k, the Kullback-Leibler di-
vergence between the two pdfs is bounded by O(1/σ2).
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3. Phone Identification Features

In this section, we review the use of SR for classifica-
tion (Sainath et al., 2010). We then introduce a novel
set of features that are derived from this classification
method, and demonstrate its success when applied in
speech recognition.

3.1. Classification Using Sparse
Representations

3.1.1. Motivation

The goal of classification is to use training data from
k different classes to determine the best class to as-
sign to a test vector y. First, let us consider taking
all training examples ni from class i and concatenat-
ing them into a matrix Hi as columns, in other words
Hi = [xi,1, xi,2, . . . , xi,ni ] ∈ ℜm×ni , where xi,j ∈ ℜm

represents a feature vector from the training set of
class i with dimension m. Given sufficient training ex-
amples from class i, (Wright et al., 2009) shows that a
test sample y from the same class i can approximately
be represented as a linear combination of the entries
in Hi weighted by β, that is:

y = βi,1xi,1 + βi,2xi,2 + . . .+ βi,nixi,ni (13)

However, since the class membership of a test sample
y is unknown, we define a matrix H to include train-
ing examples from all w classes in the training set, in
other words the columns of H are defined as H =
[H1,H2, . . . , Hw] = [x1,1, x1,2, . . . , xw,nw ] ∈ ℜm×N .
Here m is the dimension of each feature vector x and
N is the total number of all training examples from all
classes. We can then represent test vector y as a linear
combination of all training examples, in other words
y = Hβ. Ideally the optimal β should be sparse, and
only be non-zero for the elements in H which belong
to the same class as y. This motivates us to solve for
the sparse representation of β using any SR method,
including ABCS.

3.1.2. Classification Rule

After using a SR method to solve y = Hβ, we must
then assign y to a specific class. Ideally, all nonzero
entries of β should correspond to the entries in H with
the same class as y. In this ideal case, y will assign
itself to training samples from one class in H, and we
can assign y to the class which has the largest support
in β. However, due to noise and modeling errors, β
might have a non-zero value for more than one class.
Therefore, we compute the l2 norm for all β entries
within a specific class, and choose the class with the
largest l2 norm support.

More specifically, let us define a selector δi(β) ∈ ℜN as
a vector whose entries are non-zero except for entries
in β corresponding to class i. We then compute the
l2 norm for β for class i as ∥ δi(β) ∥2. The best class
for y will be the class in β with the largest l2 norm.
Mathematically, the best class i∗ is defined as

i∗ = max
i

∥ δi(β) ∥2 (14)

This SR technique was first explored in (Sainath et al.,
2010) for Phonetic Classification on TIMIT and out-
performed the GMM, SVM and kNN classifiers. In
addition, in (Sainath et al., 2010), many different clas-
sification decision rules were explored, with the rule in
Equation 14 yielding the best performance.

3.2. Novel Phone Identification Features

In this section, we discuss in more detail how we can
use β from solving the initial y = Hβ to create a
new set of Spif vectors. First, let us define a matrix
Hphnid = [p1,1, p1,2, . . . , pw,nw ] ∈ ℜr×n, which has the
same number of columns n as the original H matrix
(i.e. meaning the same number of training examples),
but a different number of rows r. Each p ∈ ℜr repre-
sents an entry in this matrix Hphnid. Recall that each
sub-matrix Hi ∈ H contains examples from a specific
class. We can think of associating examples from each
Hi class with a class index, for example entries from
class H0 belong to index 0, class H1 to index 1, etc.
We will define each p ∈ Hphnid corresponding to fea-
ture vector x ∈ H to be a vector with zeros everywhere
except at the index corresponding to class of x. Figure
1 shows the Hphnid corresponding to H, where each pi
becomes a phone identification vector with a value of 1
corresponding to the class of xi. Here r, the dimension
of each p, is equivalent to the total number of classes.
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1H= Hphnid =

x x x
p p p
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0,1 0,2 1,1
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0

0 1

0

0

Figure 1. Hphnid corresponding to H

Once β is found using SR, we use this same β to
select important classes within the new dictionary
Hphnid which is derived from the original H dictio-
nary. Specifically, let us define a new feature vector
Spif , as Spif = Hphnidβ

2, where each element of β is
squared, i.e., β2 = {β2

i }. Notice that we are using
β2, as this is similar to the ∥ δj(β) ∥2 classification
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rule given by Equation 14. We will refer to this Spif

vector as a sparse representation phone identification
(Spif ) vector. Each row j of the Spif vector roughly
represents the l2 norm of β entries for class j.

A speech signal is defined by a series of feature vectors,
Y = {y1, y2 . . . yn}, for example Mel-Scale Frequency
Cepstral Coefficients (MFCCs) (Sainath, 2009). For
every test sample yt ∈ Y , we solve yt = Htβt to com-
pute a βt. Then given this βt, a corresponding St

pif

vector is formed. Thus a series of Spif vectors is cre-
ated as {S1

pif , S
2
pif . . . S

n
pif}. It is these new vectors,

which take advantage of the non-parametric benefits
of SRs, that we use as input features for recognition.

3.3. Choice of Parameters

In this section, details of specific parameters for the
ABCS method are discussed further.

3.3.1. Construction of H

Ideally, H represents a dictionary of all training exam-
ples. However, pooling together all training data from
all classes into H will make the columns of H large
(i.e., greater than 2,000,000 for TIMIT), and will make
solving for β using Equations 10 and 12 intractable.
Furthermore, givenH ∈ ℜm×N , (Donoho, 2006) shows
that the following condition given by Equation 15 must
hold in order for the SR solution of β to be sparse.
Here s is the number of non-zero support vectors in β.
For large N , Equation 15 will not hold.

m > 2s log(N) (15)

Therefore, to reduce the size of N and make the ABCS
problem more practical from an implementation point
of view, for each y, we find a neighborhood of closest
points to y in the training set using a kd-tree. These k
neighbors become the entries of H. k is chosen to be
large enough to ensure that β is sparse and all training
examples are not chosen from the same class, but small
enough to ensure that Equation 15 holds. Further-
more, experiments in (Sainath et al., 2010) revealed
that using a neighborhood of points from a kd-tree
was an appropriate choice for H.

3.3.2. Choice of P0

As discussed in Section 2.1, constants P0 and β0 must
be chosen to initialize the ABCS algorithm. Recall
that β0 and the diagonal elements of P0 all correspond
to a specific class, from H defined in Section 3.1.1. We
choose β0 to be 0 since we do not have a very confident
estimate of β and we assume its sparse around 0. We

choose to initialize a diagonal P0 where the entries
corresponding to a particular class are proportional
to the GMM posterior for that class. The intuition
behind this is that the larger the entry in the initial P0,
the more weight is given to examples in H belonging
to this class. Therefore, the GMM posterior picks out
the most likely supports, and ABCS refines it further.

3.3.3. Choice of Class Identification

The Spif vectors are defined based on the class labels
in H. We explore two choice of class labels in this pa-
per. First, we explore using 49 class labels, which is
the exact number of phonemes in TIMIT. Since each
phoneme corresponds to one dimension of the Spif vec-
tor, one disadvantage of this approach is that a clas-
sification error could lead to β values from incorrect
classes being over-emphasized. Thus some phonemes
in the Spif vector might dominate others, leading to
potential recognition errors.

To address this issue, we also explore labeling classes in
H by a set of context-independent (CI) HMM states.
Specifically, we build a 3-state HMM for each of the 49
CI phonemes, giving a total of 3× 49 = 147 states. A
first pass recognition is performed to align each sample
in the training data to one of the 147 states. While
147 increases the dimension of the Spif vector, the
elements in the vector are less sharp now since β values
for a specific phoneme are more likely to be distributed
within each of the CI states of this phoneme.

3.3.4. Using Spif Vectors for Recognition

It is important to ensure a reasonable dynamic range
for the Spif vectors. In this section, we present two ap-
proaches that ensure numerical stability for practical
applications such as phone recognition. First, since H
is constructed using examples from a kd-tree, not all
classes are contained in H. This implies that some of
the entries in the Spif vectors will be zero. Thus, we
smooth out each entry by perturbing it with a small
value sampled randomly from a uniform distribution,
thus ensuring that no entry will be 0.

Secondly, βt at each sample represents a weighting of
entries in Ht that best represent test vector yt. This
makes it difficult to compare βt values and the Spif

vectors across samples, which is necessary for recog-
nition (Sainath, 2009). Therefore, to ensure that the
values can be compared across samples, the Spif vec-
tors are normalized at each sample. Thus, the new

St
pif at sample t is computed as

St
pif

∥St
pif∥1

.
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4. Experiments

Recognition experiments are conducted on the TIMIT
(Lamel et al., 1986) acoustic phonetic corpus. The
corpus contains over 6,300 phonetically rich utterances
divided into three sets. The standard NIST training
set consists of 3,696 sentences, used to train various
models used by the recognizer. The development set
is composed of 400 utterances and is used to train var-
ious classifier tuning parameters. The full test set in-
cludes 944 utterances, while the core test set is a sub-
set of the full test set containing 192 utterances. In
accordance with standard experimentation on TIMIT,
the 61 phonetic labels are collapsed into a set of 49
for acoustic model training. For testing purposes, the
standard practice is to collapse the 49 trained labels
into a smaller set of 39 labels, ignoring the glottal stop
[q]. All results are reported on the core test set.

The system in this work uses MFCC features as raw
features. This feature set is based on an initial spec-
tral analysis that uses 20-ms frames smoothed with
a Hamming window and a 5-ms frame step. The fi-
nal recognition feature set for all systems in this work
are generated by concatenating raw features from nine
consecutive frames and projecting to a 40-dimensional
feature space using a Linear Discriminative Analysis
(LDA) transform. These LDA features are used for
both y and H to solve y = Hβ at each frame us-
ing ABCS. Once a β is computed for each frame, the
phone labels from H are using to construct a new dic-
tionaryHphnid and Spif vector, as described in Section
3.2.

A number of experiments are conducted to analyze the
performance of the Spif vectors. First, we analyze the
frame-level accuracy of the SR classifier compared to a
GMM and kNN method. The parameters of each clas-
sifier were optimized on the development set. Specifi-
cally, the number of k closest neighbors for kNN was
learned. Also, for SRs the size of H was optimized to
be 200 examples from the kd-tree. This number was
chosen to satisfy the SR sparsity relationship in Equa-
tion 15, and till have the true class contained in the
200 examples more than 99% of the time.

Next, we explore the performance of Spif for recog-
nition, using both CI and Context-Dependent (CD)
HMMs. A set of CI HMMs are trained using infor-
mation from the phonetic transcription. Maximum
Likelihood (ML) estimation is used to train param-
eters of the HMM. The output distribution of each
CI state is a 32-component GMM. The CI models are
then used for bootstrapping the training of a set of tri-
phone CD ML-trained HMMs. Totally the CD system
has 2,400 states and 15,000 Gaussian components, also

optimized on the development set. A trigram language
model is used for all experiments. We first compare
the performance of the CI system using LDA and Spif

features, followed by an investigation of the behavior
of the CD system with both of these features.

5. Results

5.1. Frame Accuracy

The success of Spif first relies on the fact that the
β vectors give large support to correct classes when
computing y = Hβ at each frame. Thus, the classifi-
cation accuracy per frame, computed using Equation
14, should ideally be high. Table 1 shows the classifica-
tion accuracy for the GMM, kNN and ABCS methods.

Classifier Frame-Level Accuracy
GMM 51.8
kNN 62.1
ABCS 64.0

Table 1. Frame Accuracy on TIMIT Testcore Set

Notice that the ABCS technique offers significant im-
provements over the GMM method, again showing the
benefit of the non-parametric ABCS classifier. In ad-
dition, ABCS also offers improvements over the kNN,
showing the advantages of dynamically adjusting the
support vector β per frame. The strength of the SR
classifier over other classification techniques motivates
us to further explore its use for recognition.

5.2. Recognition Results

Table 2 shows the phonetic error rate (PER) at the
CI level for different features. Notice that both Spif

features outperform LDA features, showing the benefit
of using a non-parametric technique to derive features
with better frame classification accuracy. Notice that
decreasing the sharpness of Spif features by using 147
phones results in a decrease in error rate.

Features PER
Baseline LDA Features 25.9

Spif - 49 phones 25.7
Spif - 147 phones 25.3

Table 2. PER on TIMIT Core Test Set - CI Level

Next, Table 3 shows the PER at the CD level for
LDA and Spif features. Please note we have only
included Spif results for 147 phones since it offered
lower error rates than using 49 phones at the CI level.
Again the Spif features outperform the LDA features,
and a Matched Pairs Sentence Segment Word Error
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(MPSSWE) (Sainath, 2009) significance test indicates
that Spif result is statistically significant.

Features PER
Baseline LDA Features 24.9

Spif - 147 phones 23.9

Table 3. PER on TIMIT Core Test Set - CD Level

Finally, Table 4 compares our results to other CD-ML
trained systems reported in the literature on TIMIT.
The Spif features offers the best result of all meth-
ods at the CD level for ML trained systems. This
demonstrates the advantage of using the SR method
to create Spif vectors, which can be used in tandem
with the parametric HMM.

System PER (%)
LDA Features, IBM CD HMM 24.9

Monophone HTMs 24.8
(Deng & Yu, 2007)

Heterogeneous Measurements 24.4
(Halberstat & Glass, 1998)

Spif Features, IBM CD HMM 23.9

Table 4. Comparison of CD ML Trained Systems on
TIMIT Core Test Set

6. Conclusions

In this paper, the following key contributions were
made:

• We presented a new SR method for learn-
ing sparseness parameters. Specifically, we in-
troduced a sparseness promoting semi-gaussian
prior. This allowed for an efficient closed-form so-
lution in a probabilistic framework for estimating
the sparseness parameters and avoids any param-
eter tuning.

• We demonstrated that using SR for phone classi-
fication at the frame level resulted in higher accu-
racy compared to the GMM and kNN methods.

• We derived a novel set of Spif features and demon-
strated how these features can be successfully ap-
plied in an HMM framework for phone recogni-
tion. This yields the best performance reported
in the literature to date when the parameters of
the HMM are trained using the Maximum Likeli-
hood principle.
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A. Appendix

This section shows how to obtain a closed-form solu-
tion for β when J0 in Equation 9a is represented as the
product of Gaussians. Specifically J0 is written as:

J0(β) = p(y|β)pG(β) = N(y|Hβ,R)×N(β|β0, P0)
(16)

Now, we can maximize J0 with respect to β by solving:

∂ log p(J0(β))

∂β
= 0 (17)

This in turn yields

β1 =
(
P−1
0 +HTR−1H

)−1 [
P−1
0 β0 +HTR−1y

]
(18)

The term
(
P−1
0 +HTR−1H

)−1
requires taking the in-

verse of an n× n matrix. To reduce inverse computa-
tion, using the matrix inversion lemma (Carmi et al.,
2009), this term can be rewritten as:(

I − P0H
T
(
HP0H

T +R
)−1

H
)
P0 (19)

Multiplying Equation 19 by the term[
P−1
0 β0 +HTR−1y

]
in Equation 18 gives the

following expression for β1 after some algebra.

β∗ = β1 =
(
I − P0H

T (HP0H
T +R)−1H

)
β0+

P0H
T (HP0H

T +R)−1y (20)

Thus, a closed form solution can be obtained for β
assuming that J is the product of Gaussians. In ad-
dition, the inverse is computed for an m ×m matrix.
The computation for P has a similar derivation to β
and can be found in (Carmi et al., 2009).
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