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Connectivity graphs of uncertain regions⋆

Erin Chambers, Alejandro Erickson, Sándor Fekete, Jon Lenchner,
Jeff Sember, Venkatesh Srinivasan, Ulrike Stege, Svetlana Stolpner,

Christophe Weibel, and Sue Whitesides

Abstract. In this paper we provide an algorithmic study of connectivity problems with neighborhoods:
Given a family of geometric sets, choose one point per set, such that the length of the longest edge in a
connecting structure is minimized. We show that even simple geometric scenarios give rise to problems that
are NP-hard to approximate; on the positive side, we give approximation and exact algorithms.

1 Introduction

Finding an optimal connected structure is one of the fundamental optimization problems in network design. The
standard problem of minimizing the total edge cost in the network amounts to a minimum spanning tree, which
can be computed by straightforward greedy methods. A closely related problem that has gained in importance
in the context of wireless networking is to consider the “bottleneck” problem of minimizing the length of the
longest edge, which corresponds to choosing the necessary power and thus range for the routers to be placed at
nodes. Quite conveniently, the same greedy methods still yield optimal solutions.

The situation changes when the location of routers becomes part of the problem: How should each location
be chosen from a given neighborhood, such that the solution of the resulting connectivity problem is as good as
possible? The neighborhoods can be the result of imprecise input data, or simply arise from a geometric range
of possible locations; depending on the scenario, the choice of locations can be optimistic (i.e., best case) or
adversarial (i.e., worst case).

Formally, our problem can be defined as follows. Let U denote a family of uncertainty regions, e.g., a family
of disks, squares, line segments or pairs of points. For each uncertainty region ui ∈ U , one point pi is to be
chosen inside this region. Let P be the set of points chosen. For some value α ∈ R, we define the connectivity
graph Gα = (V, E) of P with respect to α as follows: V = P and E = {(pi ∈ P, pj ∈ P ), ‖pi − pj‖2 ≤ 2α}. In
other words, the graph connects a pair of points with an edge whenever closed disks of radius α centered at these
points intersect. Motivated by the two scenarios described above, we define the following two problems.

1. Problem Bα (Best Case α) Find the minimum value α such that there exists a set of points P such that
the connectivity graph Gα of P is connected.

2. Problem Wα (Worst Case α) Find the minimum value α such that for any choice of points P the connectivity
graph Gα of P is connected.

We study problems Bα and Wα for different kinds of uncertainty regions.

⋆ The authors are grateful for two Bellairs workshops supporting this research: the 8th and 9th McGill—INRIA Workshop
on Computational Geometry in 2009 and 2010.



2 Chambers et al.

Related Work. If the n uncertainty regions are points (in other words there is no uncertainty), an efficient
algorithm is known for finding the minimum α for which the connectivity graph is connected. The algorithm,
due to Delfinado and Edelsbrunner [5], has a running time of O(nα(n)), where α(n) denotes the inverse of the
Ackermann function.

The well-studied family of range assignment problems is closely related. In these problems the disks centered at
each point can be of different radii, and the goal is to minimize the total power consumption under the constraint
that the network satisfies certain structural properties like connectivity, strong connectivity, or a particular
broadcast property. Most of the work on these problems has considered point sets rather than uncertainty
regions (see [3, 12, 13, 1, 9]).

The minimum spanning tree problem has been studied in the setting of uncertainty regions. Yang et al. [18]
showed that the problem of computing a spanning tree that minimizes the total edge length is NP-hard if the
uncertainty regions are non-overlapping unit disks or rectangles. They also give a polynomial-time approximation
scheme (PTAS) for the case where the uncertainty regions are unit disks; this is notably different from our
problem, which does not allow a PTAS, unless P=NP. Other optimization problems with neighborhoods that
have received quite some attention include the Traveling Salesman Problem; e.g. see [2, 11, 8, 4, 15]. The bottleneck
version of TSP is known to be NP-hard [10, p. 212]. A 2-approximation has been known since 1984 [16] which,
interestingly, only requires TSP with the triangle inequality.

Our Main Results. After sketching that many variants of the Bα problem are NP-hard (some even to ap-
proximate), we give positive algorithmic results for for the Bα problem for several types of uncertainty regions
As the underlying problem is inherently geometric in nature, we focus our attention on Euclidean scenarios. Our
main results are as follows:

1. We show that the Bα problem is NP-hard when the uncertainty regions are all squares, vertical line segments,
and pairs of points; we show that it is NP-hard to approximate Bα within a factor less than

√
5/2 when the

uncertainty regions are pairs of points. See Section 2.
2. For uncertainty regions which are all unit disks, we show constant additive approximation algorithms for

Wα and Bα. The algorithm for Wα is shown to be a constant (multiplicative) factor approximation while
the Bα algorithm is not. However, a slight modification of the Bα algorithm gives a constant multiplicative
approximation in case the disks are non-overlapping. See Section 3.

3. We present an exact algorithm for Bα when the instance consists of n− k fixed points and k line segments.
The algorithm is polynomial in n for constant k. See Section 4.

2 Hardness Results

In this paper, we prove two hardness results for variants of the Bα problem. Our first theorem shows NP-hardness
when the uncertainty regions are non-overlapping point pairs. This result also implies a hardness of approximation
result for the case of point pairs and a NP-hardness result for the case of line segments (see Section 6.2 and
6.3 in the appendix). Our second theorem proves NP-hardness for the case of non-overlapping uncertain square
regions. In this section, we sketch the main ideas behind the first result. The full proofs of both the results can
be found in the appendix.

NP-hardness of Bα for line segments and point pairs. We consider the Bα problem for the simple case
of non-overlapping uncertainty regions of vertically aligned pairs of points, unit distance apart with integer
coordinates. We study the decision version of Bα problem for α = 1, i.e., we want to decide if G1 is connected
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for some choice of points, one for each uncertainty pair. By using a reduction from Planar 3-SAT, we will show
that this problem in NP-hard.

Overview of the Reduction. In our proof, we show a reduction from Planar 3-SAT, 3-SAT with the added
condition that the input formula can be represented as a planar graph. Formally, Planar 3-SAT is defined as
follows. Let Φ = (X, C) be an instance of 3-SAT, with variable set X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}.
Each clause consists of exactly three literals, each a variable or its negation. For such an instance, we define a
formula graph H(Φ) as follows: H(Φ) = (V, E) with vertex set V = X ∪ C and edge set E = E1 ∪ E2, such
that E1 = {(xi, xi+1)|i < n}, and E2 = {(xi, cj)|cj contains xi or xi}. A planar 3-SAT instance is one whose
corresponding formula graph H(Φ) is planar. The Planar 3-SAT problem is to determine whether a planar 3-SAT
instance Φ is satisfiable. Planar 3-SAT problem is known to be NP-complete [14].

We make use of the fact that, given a planar 3-SAT instance Φ with formula graph H(Φ), this graph has a
planar layout on a O(n) × O(n) grid [7, 17]. Further, in this layout, the vertices (variables and clauses) can be
drawn as horizontal line segments and edges as vertical line segments.

To reduce from Planar 3-SAT to an instance of Bα, where the uncertainty regions are pairs of points, we
make use of a number of gadgets. Specifically, given a layout of a Planar 3-SAT instance using line segments as
described above, we replace each horizontal line segment corresponding to a variable by a variable gadget, each
horizontal line segment corresponding to a clause by a clause gadget, and each edge by an appropriate vertical
sequence of uncertainty pairs. We will argue that there exists a choice of points in each of these uncertainty
pairs such that the connectivity graph for α = 1, G1, is connected if and only if the corresponding Planar 3-SAT
instance is satisfiable. We next describe the different gadgets in detail and how they may be connected.

Overview of the Gadgets. We give the main ideas behind the three types of gadgets we use in our reduction:
clause gadget, variable gadget and connectors linking the gadgets.

A clause gadget is designed so that it contains three “gates”, one for each of the literals in the clause. The
gate for each literal will be either on the top or the bottom of the clause gadget depending on whether the
literal appears below or above the clause in the planar layout. For the connectivity subgraph corresponding to
the clause to be connected to the rest of the graph in G1, at least one of these three gates should be open. This
will correspond to setting the literal to “true”. This, in turn, ensures that the clause is satisfied. See Figure 5 in
the Appendix.

The role of a variable gadget is to choose and propagate a truth value for the variable to all the clauses
containing it in a consistent manner. The variable gadget contains three types of constructs. Type I and type II
constructs will help link the variable to all the clauses that contain it and are either above or below it. We have
one such type I-type II pair for every occurence of the variable in a clause. A construct of type III is used to
ensure that the truth assignment to the variable in all the copies of type I-type II pair are the same. If not, the
graph G1 corresponding to this variable gadget is not connected. See Figure 7 in the Appendix.

The variable and clause gadgets are linked to each other using two types of connectors. The connector linking
a clause to a variable ensures a consistent assignment of truth value to a variable and a clause that contains this
variable or its negation. Inconsistent assignments will result in G1 being disconnected. The connector linking a
variable to another variable can be more flexible. It should help connect one variable gadget to another variable
gadget in G1 irrespective of the choice of truth values for each of them. See Figure 8 in the Appendix.

3 Constant Factor and Additive Approximations

Our approximations are based on computing minimum bottleneck spanning trees, MBSTs, which are spanning
trees that minimize the maximum length edge in the tree. These can be computed in O(nα(n)) time the methods
of [5].
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Lemma 1. Given a set of uncertainty regions which are unit disks D1, . . . , Dn with centers p1, . . . , pn, let L
be the largest edge of a bottleneck shortest path tree on {pi}. Then choosing broadcasting locations ℓi = pi and
α = L/2 is at worst an OPT+1 approximation to the Bα Problem. In other words, if OPT denotes the smallest
radius α for any choice of ℓi ∈ Di, then L/2 ≤ OPT+1. We can compute this approximation in time O(nα(n)).

Proof. Let L be the maximum length edge of a MBST on {pi}. Consider the best choice of the ℓi ∈ Di and an
associated MBST on these ℓi. The edges of this MBST are each at most 2 shorter than the corresponding edges
of a spanning tree, S, on the corresponding pi. Thus the maximum length of any edge in S is at most 2 greater
than the maximum length edge in the MBST on the ℓi, and so too the maximum length, L, of any edge of a
MBST on the {pi} must also be at most 2 greater than the maximum length edge in the MBST on the ℓi. The
result follows.

Lemma 2. Given a set of uncertainty regions which are unit disks D1, . . . , Dn with centers p1, . . . , pn, let L be
the largest edge of a MBST on {pi}. Then choosing r = L/2 + 1 always results in connectivity graph which is
connected and is at worst an OPT+1 approximation to the Wα Problem - Problem 2.

Proof. First note that the connectivity graph given by any selection of ℓi ∈ D(pi; 1) and {D(ℓi; L/2 + 1)} is
connected since if (pi, pj) is an edge of a MBST on {pk} then D(ℓi; L/2 + 1) ∩D(ℓj ; L/2 + 1) 6= ∅ for any choice
of ℓi ∈ D(pi; L/2 + 1), ℓj ∈ D(pj ; L/2 + 1). We are thus left to show that choosing r = L/2 + 1 is at worst an
OPT+1 approximation. But clearly we can choose ℓi = pi ∀i whence the minimum α is L/2. Hence OPT ≥ L/2
and the lemma is established.

Lemma 3. Given a set of uncertainty regions which are unit disks D1, . . . , Dn with centers p1, . . . , pn, let L be
the largest edge of a MBST on {pi}. Then choosing α = L/2 + 1 is at worst a factor 2 approximation to OPT
for the Wα Problem.

Proof. Note that OPT+1 ≤ 2OPT as long as OPT ≥ 1 so, by Lemma 2, it suffices to show that OPT ≥ 1. By
assumption there are more than one disk centers {pi}. Let pj be a leftmost point amongst the {pi} and choose ℓj

to be the leftmost point in D(pj ; 1) and for all other D(pk; 1)k 6=j choose ℓk to be the rightmost point in D(pk; 1).
Then ℓj is at least distance 2 from each of the other ℓk and so we must choose α ≥ 1 to keep the alpha complex
connected. It follows that OPT ≥ 1 and the lemma is established.

Unfortunately our approximation for the Bα Problem is not a constant factor approximation, since if one
takes n unit disks with non-empty intersection, then the ℓi can all be taken to equal one of the intersection points
so that OPT= 0 while L/2 can be non-zero (and as big as 1).

In the case of the Wα Problem, Lemma 3 shows that the simple broadcast-from-center heuristic can be no
worse than a 2-approximation. However, we have found examples showing only that the approximation can be
(asymptotically) as bad as a

√
2-approximation, as the next Lemma asserts. The proof, which amounts to a

detailed construction, is given in the Appendix.

Lemma 4. Given any L > 2, there is an instance of the Wα Problem with uncertainty regions that are unit

disks {Di = Di(pi; 1)}n
i=1 such that the longest edge of a MBST on the {pi} is L and OPT is as small as

√
L2+4
2 ,

and therefore the algorithm of Lemma 2 can be as bad as a factor
√

2 − ǫ approximation for arbitrarily small ǫ.

While the broadcast-from-center heuristic is not a constant factor approximation to the Bα Problem for
highly overlapping unit disks, it is easy to make a small modification to the heuristic so that it is a constant
factor approximation to Bα for non-overlapping unit disks. A problem for the heuristic, as it stands, in the case
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of non-overlapping disks occurs if we have just two disks and these two disks are within ǫ of being tangent to
one another. As ǫ → 0 one can choose broadcast locations ℓi increasingly close together so broadcast-from-center
becomes arbitrarily bad. However, we can either deal with two disks as a special case, or take the following more
principled approach: begin as in broadcast-from-center by picking the centers of all uncertainty disks, and then
finding a MBST on these centers, but at the end, “cinch-up” any leaf nodes by bringing the broadcast locations
for these disks as close as possible to their parent nodes. In the case that the MBST is actually a simple path, be
sure to cinch-up twice, first at one end, then at the other. This process ensures that we always obtain OPT for
two disks. For three disks, we are not guaranteed to have OPT, but since points on three unit disks cannot come
arbitrarily close to one another, the modified broadcast-from-center heuristic is a constant factor approximation.
See Figure 1.

c b

a

c
′

b
′

a
′

a
′

c
′

b
′

Fig. 1. The Bα Problem for three (almost) tangent unit disks. OPT, as shown on the left is given by the choice of

broadcasting locations (a′, b′, c′), not quite on an equilateral triangle, with MBST cost (
q

1 + (
√

3 − 1)2 − 1)/2 ≈ .12,

while the “cinch-up” heuristic, on right, chooses broadcasting locations (a′, b′, c′) with cost .5.

4 An exact algorithm solving Bα for n fixed points and k segments

In this section, we present an exact algorithm that solves variant k-BLα of Bα. Here, given are a set of n fixed
points and as uncertainty regions k line segments of any length and orientation. While it is not hard to see that
Bα is fixed-parameter tractable1 for parameter k when the k uncertainty regions are pairs of points,2 pains were
taken to obtain an exact algorithm for k-BLα that is polynomial in n for any fixed k. Our algorithm determines
a set of point positions on the segments, such that there is a spanning tree connecting all the points on the
segments as well as all fixed points, with no tree edge longer than L, where L = 2α and α is minimized. In other
words, we seek to find a spanning tree connecting exactly one point of each segment and all fixed points, with its
longest edges being of minimum length. We first show some properties w.r.t. the positions of points on segments
in an optimal solution. Then we present our algorithm and examine its complexity analysis.

Note that for k > 1 we have considerable freedom on the placement of points on segments not incident to
longest edges, and therefore a very large number of optimal solutions may exist. To reduce the search space, we

1 A parameterized problem k-P with input 〈x, k〉 is fixed-parameter tractable if solvable in time f(k)poly(|x|). Here, f(.)
is an arbitrary function (depending on parameter k only) and poly(.) is a polynomial function in the input size [6].

2 To show fixed-parameter tractability simply determine for each of the 2k point sets in polynomial a best α and then
return the maximum α of all these.
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constrain the solution to be determined. In order to compare different (spanning tree) solutions we define the
following. For any two selections of points on segments, and for their corresponding spanning trees, let L and L′ be
ordered list of lengths of all edges in the two trees, sorted from longest to shortest. That is, L = (l1, l2, . . . , ln+k−1)
and L′ = (l′1, l

′
2, . . . , l

′
n+k−1), with li ≥ li+1 and l′i ≥ l′i+1 for all i. We say that L dominates L′ if for a certain

i, li < l′i, and lj = l′j for any j < i. This defines a general ordering on lists where two lists are incomparable
only if they are identical. Our algorithm seeks to choose points on segments and a spanning tree such that the
corresponding list of edge lengths dominates all other possibilities of point selections on the segments. We call
such a tree a minimum solution tree. In a minimum solution tree, not only are longest edges as short as possible,
but also the number of longest edges is minimum. Further, for all i the ith longest edge is as small as possible,
and the number of edges of that length is minimum. A choice of points on segments that results in a minimum
solution tree is an optimal point set.

The above conditions imply convenient properties on the optimal point set w.r.t. a minimum solution tree.
Note that, for any point p of an optimal point set, it is impossible to improve the solution by slightly moving p
on its segment as this would lengthen one of the longest edges incident to p. We distinguish the possibilities for
a point p in an optimal point set (see Figure 2).

segment

b
b

b

b

b

segment

b

b
b

b

b

b

segment

b

b
b

b

b

b

Fig. 2. Points (in blue) of type 1, 2, and 3 respectively, with longest incident edges in blue. In each case, moving the point
along the segment results in a longer longest incident edge.

1. Point p lies at an extremity of the segment. Then, one of the longest tree edges incident to p lies on the half
plane which is delimited by a line perpendicular to the segment and does not contain the segment. Moving
p would lengthen that edge.

2. Point p is on the relative interior of the segment and one of the longest edges of the tree incident to the point
is perpendicular to the segment. Moving p in any direction would lengthen that edge.

3. Point p is on the relative interior of the segment and not of type 2. Then, two longest tree edges incident to
p lie on different half-planes delimited by a line perpendicular to the segment passing through that point.
Moving p in any direction would increase the length of one of these two edges.

For any point p of type 1 or 2, let us call any incident edge fixing edge if it would become longer when p was
moved, and for any point p of type 3, let us call any pair of incident edges fixing pair if one of them would
become longer when moving p. Notably, if we know a fixing edge or fixing pair for a point on a segment, then
we can deduce the point’s position without any knowledge of other incident edges.
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Properties of critical paths. Let (E1, . . . , Em) be a given sequence of fixed points and segments, where E1

and Em are fixed points or segments, and E2, . . . , Em−1 are segments. In the following, we study the possible
choices of points pi on segments Ei such that the tree edges ei from pi to pi+1 satisfy certain properties.

We next define a for our algorithm important notion, the critical path. A critical path consists of points pi

located at selected positions on the segments Ei and are connected by edges ei such that (1) the edges all have
the same length, and (2) no other selection of point locations on these segments results in a sequence where edges
are not longer but some are strictly shorter.

Our algorithm essentially consists in a successive computation of critical paths. Problem k-BLα can be solved
this way, because the position of points on segments can be determined just by knowing the critical paths of
successive edge lengths in the solution.

We next study the properties of critical paths. Since it is impossible to shorten an edge of a critical path
by moving a single point pi without causing another edge to be longer, all pi on the critical path must be of
one of the three types described above. There is, however, a particular case that needs to be addressed: that
of parallel segments. If a consecutive subsequence of elements in (E1, . . . , Em) consists of parallel segments at
equal distances, and a path of edges of equal length is defined using point locations on these segments which
are collinear and perpendicular to the segments, then none of these points can be moved individually without
lengthening some edge. Yet it may be possible to move all points of the subset at once without creating any
longer edges (Figure 3). We present the rules governing such cases. These rules are summarized by the following

b

b

b

b

b

b

E1

E2

E3

E4

b E1

U1(L)

S1(L)

E1

U1(L)

S1(L)

Fig. 3. Left: Choosing points (in red) on E2 and E3 results in a path of same-length edges. As they are of type 2, neither
can be moved without lengthening the bridging edge; yet they can be both moved simultaneously in a way that shortens
some edges of the path without lengthening any other. Examples of U1(L) (middle and right) and S1(L) for the cases
that E1 is a fixed point or a segment respectively.

idea: we consider any consecutive subset of the sequence of parallel segments at equal distances as a single
segment with the same orientation, equivalent to the intersection of the orthogonal projection of all the parallel
segments on a line with the same orientation. Assuming we have a critical path over a sequence (E1, . . . , Em)
such that the elements of a consecutive subset (Ei, . . . , Ej) of segments are all parallel, and the points pi, . . . , pj

are the intersection of (Ei, . . . , Ej) with a single perpendicular line P . Then the following possibilities can occur
(Figure 16 in Appendix).
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I. Line P intersects with a segment E′ at its extremity, E′ ∈ (Ei, . . . , Ej). Then, either ei−1 or ej lies in the
half-plane delimited by P that does not contain E′. This is equivalent with having a point of type 1.

II. Edges ei−1 and ej lie on different half-planes delimited by P . This is equivalent with having a point of type
3.

III. Either edge ei−1 or ej lies on P (but the connected element, Ei−1 or Ej+1, is not a segment parallel to
Ei, . . . , Ej). This is equivalent with having a point of type 2.

IV. Line P goes through the extremity of two segments E′, E′′ in (Ei, . . . , Ej), such that E′ and E′′ are in
different half-planes delimited by P . Thus, there is a unique line perpendicular to the parallel segments that
intersects all segments. There is therefore a unique choice of points connected by edges of the same length,
without further conditions required. This is equivalent to considering the sequence of parallel segments as a
fixed point.

V. All elements in (E1, . . . , Em) consist of parallel segments at equal distances, and any set of points p1, . . . , pm

defined by their intersection with a perpendicular line P defines a critical path. This is equivalent with
having a single segment of length equivalent to the intersection of the orthogonal projections of the segments
(E1, . . . , Em) on a line with the same orientation.

We show in the following that, apart from sequences of type V, (E1, . . . , Em) supports at most one critical path,
i.e. there is a unique choice of point locations on the segments of the sequence that forms a critical path. We call
the sequences of type V degenerate. We need a few more definitions.

Given (E1, . . . , Em), let U1(L) be the set of points in the plane reachable from E1 by an edge of length L or
less, and let Ui(L) for i > 1 be the set of points on the plane reachable from Ui−1(L)∩Ei by an edge of length L
or less. Let further S1(L) be the set of points on the plane reachable from E1 by an edge e1 of length L exactly.
That is in the case that E1 is a segment, no point in S1(L) can be reached from E1 by an edge a shorter than
L. Similarly, let Si(L) for i > 1 be the set of points on the plane reachable from Si−1(L) ∩ Ei by an edge ei of
length exactly L, such that e1, . . . , ei form a critical path (assuming the endpoint of ei that is not on Ei is a
fixed point).

We study the properties of Ui(L) and Si(L). First, we can deduce inductively that if Ui−1(L) ∩Ei 6= ∅, then
it consists of a single point or a subsegment (a connected subset) of Ei. If the set Ui(L) 6= ∅, then Ui(L) is either
a ball of radius L, or the Minkowski sum of a ball of radius L and a segment. That is, Ui(L) = E1 if i = 1, and
Ui(L) = Ui−1 ∩ Ei otherwise (Figure 3).

Lemma 5. Si(L) ⊆ Ui(L).

Proof. By definition, S1(L) is a subset of U1(L). We prove by induction that Si(L) is a subset of Ui(L) for all i.
We remark that it is sufficient to prove that any open set containing a point of Si(L) intersects with the boundary
of Ui(L). By contradiction, let us assume that a point p of Si(L) belongs to an open set U ⊆ Ui(L). We can then
choose two points q, q′ ∈ U such that p is the midpoint of segment qq′. Since q ∈ Ui(L), there is a set of points
q1, . . . , qi in E1, . . . , Ei such that the q1, . . . , qi, q are connected by edges of length at most L, with some of them
shorter. We define q′1, . . . , q

′
i for q′ analogously. For each pair qi, q′i, we define a continuous linear transformation

qi(λ) = (1−λ)qi+λq′i, with 0 ≤ λ ≤ 1. We also define q(λ) = (1−λ)q+λq′, so that q(0.5) = p. Let l2i (λ) represent
the square of the length of the edge connecting qi(λ) and q′i(λ). We prove that l2i (λ) is a convex function. If the
coordinates of qi and q′i are (qx, qy) and (q′x, q′y) respectively, then l2i (λ) = (qx + λ(q′x − qx))2 + (qy + λ(q′y − qy))

2.
Then the second derivative is 2(q′x − qx)2 + 2(q′y − qy)2 ≥ 0, and so l2i (λ) is convex. So if l2i (0) ≤ L2 and
l2i (1) ≤ L2, then l2i (λ) ≤ L2, and if one of the former inequalities is strict, then the latter also is. Therefore,
q1(0.5), . . . , qi(0.5), q(0.5) = p defines a list of edges of length no more than L, and since some of the edges
connecting q1, . . . , qi, q are shorter than L, some of the edges in the path leading to p are shorter than L. This
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contradicts the assumption that there is a critical path leading to p with edges all of length L, which implies
that there is no other path with shorter edges.

It follows that if Ui−1(L)∩Ei = ∅, then Si−1(L)∩Ei = ∅. If Ui−1(L)∩Ei consists of a single point p, then either
Si−1(L)∩Ei = ∅ or Si−1(L)∩Ei = {p}. If Ui−1(L)∩Ei is a subsegment of Ei, then Si−1(L)∩Ei can be empty,
one extremity of the subsegment, both extremities of the subsegment, or the complete subsegment. In fact, we
can prove the following lemma.

Lemma 6. (a) The set S1(L) is the boundary of U1(L). (b) For all i > 1, the set Si(L) is the intersection of
the boundary of Ui(L) with the Minkowski sum of a circle of radius L and Si−1 ∩ Ei.

Proof. (a) follows from the definition of S1(L). (b) By definition, Si(L) contains only points at distance L of
Si−1 ∩Ei. From Lemma 5, we know that Si(L) ⊆ Ui(L). It is therefore sufficient to prove that every point in the
intersection is in Si(L). We prove by induction. Let p be any point in the intersection. Since p is in the Minkowski
sum of a circle of radius L and Si−1 ∩Ei, there exists q ∈ Si−1 ∩Ei at distance exactly L of p, and by induction
hypthesis, there is a path of edges of length L to q, which we can extend to p. We need to prove that there is
no other path to p that uses edges no longer than L, and some shorter. Suppose there is a choice of p1, . . . , pi

such that p1, . . . , pi, p is such a path. Suppose first that the last edge is shorter than L by some ε > 0. Then, by
changing the length of the last edge by less than ε, we can find paths to any point in some open set around p.
This contradicts the assumption that p is part of the boundary of Ui(L). Therefore, the last edge of the path
is of length L exactly. But that means that p is at distance L of both q and pi, which are both in Ui(L) ∩ Ei.
This means that the midpoint of the segment from q to pi is in Ui(L) ∩ Ei and at distance less than L from p,
yielding a contradiction.

The following cases are possible (Figure 4).

b
E1 E2

b

b

E1

E2

b b
E1

E2

b b

b

E1 E2

E1

E2

Fig. 4. Shapes of Si(L) of type a, b, c, d and e respectively. S1(L) is indicated with a dashed line, S1(L) ∩E2 and S2(L)
are in red.

a. Si−1(L) ∩ Ei = ∅ and therefore Si(L) = ∅.
b. Ui−1(L) ∩Ei consists of a single point p and Si−1(L) ∩ Ei = {p}. Then Si(L) is a circle of radius L centered

around p.
c. Ui−1(L)∩Ei is a subsegment of Ei and Si−1(L)∩Ei is a single extremity of the subsegment. In this case, Ui

is the Minkowski sum of the subsegment and a ball of radius L, and Si is the half circle of radius L centered
on Si−1(L) ∩ Ei at the “one end” of Ui.
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d. Ui−1(L) ∩ Ei is a subsegment of Ei and Si−1(L) ∩ Ei consists of both extremities of the subsegment. In this
case, Ui is the Minkowski sum of the subsegment and a ball of radius L, and Si consists of both half circles
of radius L each centered on a point of Si−1(L) ∩ Ei at both “ends” of Ui.

e. Ui−1(L)∩Ei is a subsegment of Ei and Si−1(L)∩Ei is the same subsegment. In this case, Ui is the Minkowski
sum of the subsegment and a ball of radius L, and Si is the boundary of Ui.

For a given (E1, . . . , Em) and length L it is therefore possible to compute successively the Ui(L)’s and Si(L)’s.
In order to obtain a critical path we require Um−1(L) ∩ Em = Sm−1(L) ∩ Em. Notably, his can only happen for
the smallest L such that Um−1(L) ∩ Em 6= ∅.

Given (E1, . . . , Em) and L, the following algorithm determines an existing critical path with the required
precision. (1) Determine Um−1(L). (2) If Um−1(L)∩Em = ∅, then increase L and go to (1). (3) If Um−1(L)∩Em 6=
∅, then decrease L and go to (1). Once the approximate minimum L∗ is found, check whether Um−1(L

∗)∩Em =
Sm−1(L

∗) ∩ Em. Possible outcomes are for Um−1(L) ∩ Em 6= ∅ (Figure 17 in Appendix):

α. For the minimum L∗ where Em intersects the interior of Um−1(L
∗), there is no critical path.

β. For the minimum L∗ with Um−1(L
∗) ∩ Em = Sm−1(L

∗) ∩ Em = {p}, there is a critical path.
γ. For the minimum L∗ with Um−1(L

∗)∩Em is a single point and Sm−1(L
∗)∩Em = ∅, there is no critical path.

δ. For the minimum L∗ with Um−1(L)∗ ∩ Em = Sm−1(L
∗) ∩ Em is a segment, the sequence is a degenerate

sequence of parallel segments, and there are infinitely many critical paths.
ǫ. For the minimum L∗ with Um−1(L) ∩ Em is a segment and Sm−1(L) ∩Em consists only of extremities of the

segment, there is no critical path.

Description of the algorithm. In this subsection we show how to compute an optimal solution by examining
possible critical paths.

Lemma 7. If (E1, . . . , Em) supports a critical path of longest edges in an optimal solution, and if there is a
unique choice of point locations that defines the critical path, then this choice is part of the optimal solution.

Note that if we have an oracle giving us a (E1, . . . Em) that supports a critical path of longest edges in the
optimal solution, then we can determine the choice of points on these elements in the optimal solution. We can
then replace the segments in the sequence by fixed points and solve the rest of the problem separately. This
eventually allows us to replace all segments by fixed points, and solve the problem using an algorithm provided
in the literature [5]. Note that while the longest edge in an optimal solution might connect fixed points, in the
remainder of this section we are only interested in longest edges incident to points on segments.

Lacking an oracle we determine these sequences by complete enumeration of all possible sequences (E1, . . . , Em)
with E1 and Em are fixed points or segments, and E2, . . . , Em−1 segments. This enumeration accounts for most
of the complexity of our algorithm. For each sequence in the enumeration, we check whether it supports a critical
path and and whether the edge-length for this path is best. If not, we discard this path. That is, we prune these
sequences in the enumeration as we find them. Once gone through the complete list possible sequences, we have
found the critical path with shortest longest edges. and replace the segments of the sequence with fixed points
defined by the critical path. We then execute the algorithm recursively on the thus reduced instance, using edges
of length no more than the ones in the critical path just found.

Once the instance does not contain any more segments, we connect all remaining connected components in
polynomial time using an algorithm for a given point set.

Procedure Solve(instance,max)
if instance contains a segment then
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(* find critical path of instance *)
C∗ = ∅
for each (E1, . . . , Em) with E1, Em point or segment and E2, . . . , Em−1 segments do

if (E1, . . . , Em) is a candidate for a critical path C of value LC and LC < max then

fix points on segments in C
Solve(modified instance, LC)

else

solve problem for point set
if solution better than previous one considered then

save new solution for instance

It is crucial to determine critical paths in with progressively decreasing edge lengths since positions of points
on segments should only be determined using the longest incident edges.

In the algorithm above we ignored to deal with parallel segments. We need to deal separately with such
degenerate sequences consisting of parallel segments only, because they do not determine unique positions for
the points on the segments of the sequence. However, if one point on a segment in such a sequence is fixed, all other
points are fixed on the same line perpendicular to all segments. Therefore, after finding such an undetermined
critical path, we explore the problem recursively as usual, trying to find critical paths with shorter edges.
Whenever the algorithm fixes one of the points on the degenerate sequence, all other points are fixed at the same
time.

Notably, for any sequence that contains one or two fixed points, the critical path fixes at least one point on
a segment.Thus, during the enumeration, we explore in the worst case all possible ways to cover with paths a
forest defined on k segments and 2k fixed points. The enumeration is exponential in the number k of segments,
which is not surprising since we have shown the problem without fixed points is NP-hard. For constant k, the
problem is however polynomial in the number n of segments, as our running time analysis will show.

Consider the (multiple recursive) enumerations done by the algorithm. At each enumeration step the algorithm
enumerates all possible candidates for critical paths. Since, a critical path contains at most two fixed points,
one at each extremity, the enumeration considers only O(n2) paths for n fixed points. Since every recursive
enumeration is performed on a problem that has at least one less segment that the previous one, the recursion
tree has a depth of at most k. Therefore, the algorithm explores at most O(n2k) paths w.r.t. the number n of fixed
points and k segments in the original instance. Once all critical paths have been found, the algorithm uses the
result in [5] for fixed points which runs in O(nα(n)), the total complexity of the algorithm is in O(n2k+1α(n)).

5 Future Work

This work leads to many interesting algorithmic and complexity questions that are exciting and worth investi-
gating further.

We have shown NP-hardness results for the Bα problem if the uncertain regions are represented as point
pairs, line segments and squares. It will be nice to prove a similar result for other regions like disks. Is it possible
to use techniques from convex optimization to design approximation algorithms for the Bα problem for, say, line
segments or squares? From the perspective of fixed parameter tractability, we observed that the Bα problem is
in FPT when the instance consists of n − k fixed points and k pairs of points; the parameter is k. However, we
conjecture that the Bα problem for the case of line segments is W[1]-hard. Our exact algorithm presented, while
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polynomial for fixed k, is exponential in the number k of segments. We suspect that, despite the conjectured
parametrized intractability, the running time of the enumeration step in our exact algorithm can be greatly
reduced by using a Voronoi diagram.

Although we have been able to obtain several NP-hardness results for the Bα Problem, we do not have any
for the Wα Problem which, a priori, seems harder.

In the search for constant factor approximations, it would be nice to narrow the (
√

2, 2) gap established in
lemmas 3 and 4 for the multiplicative constant on the broadcast-from-center heuristic. Is it possible to fruitfully
investigate this problem experimentally? If we assume centers to be picked, say, uniformly at random in a square,
and points within the disks to again be picked uniformly at random, can we say anything probabilistically about
the average case? We have shown that the “cinch-up” heuristic is a constant factor approximation for the Bα
Problem for non-overlapping disks. As the number of disks, n, approaches infinity we have a family of examples
showing that it can be as bad as a 3/2-approximation. Is there a heuristic that multiplicatively approaches OPT
as n → ∞, or at least does better than “cinch-up”?
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6 Appendix

6.1 NP-hardness of Bα with line segments and point pairs

We consider the Bα problem for the simple case of non-overlapping uncertainty regions of vertically aligned pairs
of points, unit distance apart with integer coordinates. We study the decision version of Bα problem for α = 1,
i.e., we want to decide if G1 is connected for some choice of points, one for each uncertainty pair. By using a
reduction from Planar 3-SAT, we will show that this problem in NP-complete.

Later, we will observe that the same reduction also implies an NP-completeness result for the case of line seg-
ments. Moreover, we show that our NP-completeness result for the case of point pairs is, in fact, a gap-producing
reduction. This will imply that, unless P = NP , there is no polynomial time algorithm with approximation
ration smaller than

√
5/2 for this problem.

Overview of the Reduction. In our proof, we show a reduction from Planar 3-SAT, a 3-SAT problem with
the added condition that the input formula can be represented as a planar graph. Formally, Planar 3-SAT is
defined as follows. Let Φ = (X, C) be an instance of 3-SAT, with variable set X = {x1, . . . , xn} and clauses
C = {c1, . . . , cm}. Each clause consists of exactly three literals, each a variable or its negation. For such an
instance, we define a formula graph H(Φ) as follows: H(Φ) = (V, E) with vertex set V = X ∪ C and edge set
E = E1 ∪ E2, such that E1 = {(xi, xi+1)|i < n}, and E2 = {(xi, cj)|cj contains xi or xi}. A planar 3-SAT
instance is one whose corresponding formula graph H(Φ) is planar. The Planar 3-SAT problem is to determine
whether a planar 3-SAT instance Φ is satisfiable. Planar 3-SAT problem is known to be NP-complete [14].

We make use of the fact that, given a planar 3-SAT instance Φ with formula graph H(Φ), this graph has a
planar layout on a O(n) × O(n) grid [7, 17]. Further, in this layout, the vertices (variables and clauses) can be
drawn as horizontal line segments and edges as vertical line segments.

To reduce from Planar 3-SAT to an instance of Bα, where the uncertainty regions are pairs of points, we
make use of a number of gadgets. Specifically, given a layout of a Planar 3-SAT instance using line segments as
described above, we replace each horizontal line segment corresponding to a variable by a variable gadget, each
horizontal line segment corresponding to a clause by a clause gadget, and each edge by an appropriate vertical
sequence of uncertainty pairs. We will argue that there exists a choice of points in each of these uncertainty
pairs such that the connectivity graph for α = 1, G1, is connected if and only if the corresponding Planar 3-SAT
instance is satisfiable. We next describe the different gadgets in detail and how they may be connected.

The clause gadget. Figure 6 gives a schema that describes the functioning of a clause gadget. Each gate in the
schema represents the entry of a connection to a literal, with an open gate representing a contribution of ”true”.
If all gates are closed, then, as suggested by the schema, it is possible that the connectivity graph of the clause
gadget is connected, but it will be isolated from the rest of the graph. Also, as the schema suggests, if gates to
two literals xi and xj are both open, then connections are created between the clause gadget and the gadgets
for the literals, but no connection via the clause gadget is made between the literals.

The general form for clause gadgets allows adaptation to individual situations (e.g., the length of the horizontal
line segment representing a particular clause gadget in the representation of H(Φ) by line segments; how many of
the horizontal segments representing literals contained in the clause lie below the segment representing the clause
and how many above). Figure 5 shows an example of a clause gadget where, in the grid representation of H(Φ),
the clause was represented by a horizontal segment connected to one horizontal variable segment lying above,
and two variable segments lying below, the segment for the clause. The dimensions of the clause gadget can be
adjusted by adding more uncertainty pairs to the sequences between the connections to the variable gadgets, and
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Fig. 5. An example clause gadget. As shown, aside from vertical sequences of uncertainty pairs leading to variable gadgets,
there are no other uncertainty pairs in the vicinity of the clause gadget. The graph G1 can be connected only if at least
one of the green points is chosen. The choice of a green point is intended to mean that the attached literal contributes a
“true” to the clause.

likewise for distances between connections and distances between connections and the left and right sides of the
gadget. As a technical matter not indicated by the figure, it is also straightforward to modify the clause gadget
to change by one unit the y-coordinate of a connection to some particular variable gadget without moving the
entire gadget.

Consider the three uncertainty pairs with brown and green points in Figure 5. If all three of the brown points
are chosen, then it is easy to see that, while points can be chosen so that the connectivity subgraph arising from
pairs in the clause gadget can be made connected, no such subgraph can be connected to the rest of G1 for any
choice of points in the remaining uncertainty pairs. If a green point is chosen from a brown-green pair, then the
brown edges shown incident to the pair do not belong to G1.

Each of the three brown-green uncertainty pairs is connected to a variable gadget by a sequence of vertical
uncertainty pairs. The choice of a green point, shown in the schema as an open gate, is intended to mean that
the literal (a variable or its negation) connecting to this open gate contributes a ”true” to the clause. Later
subsections outline how (in case points can be chosen to make G1 connected) variable gadgets transmit truth
values and how consistency of truth assignments is assured.

The variable gadget. The variable gadget is shown in Figure 7. Let the uncertainty pair at the extreme left
of the variable gadget be the reference pair for this variable. We will adopt the interpretation that the choice
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bb bb bb

b b b

Fig. 6. Schema of the clause gadget. When at least one of the green switches in used, its gate is open and the entire clause
gadget can be connected to the rest of the graph.

of blue point in the reference pair means a setting of True to the variable and the choice of red point means a
setting of False to the variable.

The variable gadget consists of constructs of type I, II and III. The choice of any blue point in a construct
of type I or II forces the choice of blue points in this as well as in all the other constructs of type I and II inside
this variable gadget. The same is true for red points. In Figure 7, if the red point is chosen in the reference pair,
red arrows show the implications that force the choice of red points in all the type I and II constructs. The
function of the type III construct in the variable gadget is to allow this propagation.

Suppose that the variable associated with this gadget is x. If the literal x appears in a clause embedded
above the variable gadget, then the connection from the corresponding clause gadget to this variable gadget (to
be described in the next section) is made to the top of a construct of type I, i.e., a blue point is chosen in the
reference pair. If the literal x appears in a clause above the variable gadget, then the connection is made to the
top of a construct of type II, i.e., a red point is chosen in a reference pair. Similarly, if the literal x appears
in a clause embedded below the variable gadget, the connection from the clause gadget is made to the bottom
of a type II construct and the blue point is chosen in the reference pair. If the literal x appears in a clause
embedded below the variable gadget, the connection is made to the bottom of a type I construct and the red
point is chosen in the reference pair.

For any choice of points P from the uncertainty pairs, a necessary and sufficient condition for the subgraph of
the connectivity graph G1 of P restricted to a variable gadget to be connected is that the points in P represent
a consistent choice of truth value for this variable. This follows from the observation that a clause gadget cannot
connect two different variable gadgets.

We replace horizontal line segment in the embedding of the Planar 3-SAT instance by variable gadgets. Note
that the width of the I and II constructs can be adjusted by adding horizontally arranged uncertainty pairs.
The number of occurrences of constructs of type I, II and III depend on the number of clauses containing this
variable.

Linking the gadgets. We now explain how to represent the edges of the planar graph H(Φ), corresponding
to an instance Φ of Planar 3-SAT. In the embedding we are considering, edges are vertical line segments. They
represent two kinds of connections: (1) between a pair of variables, and (2) between a clause and a variable in that
clause. Figure 8 shows vertical constructs of uncertainty pairs that connect pairs of variable gadgets and clause
and variable gadgets. We observe the following properties of the two connectors: In a clause-variable connector,
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Fig. 7. An example variable gadget.

the choice of blue point in a clause gadget above a variable gadget implies the choice of blue point in the variable
gadget. The choice of red point in the clause gadget below a variable gadget forces the choice of red point in
the variable gadget. In the variable-variable connector, for any choice of points in the two vertically extreme
uncertainty pairs, there is a path using points in the shown uncertainty pairs that connects the two extreme
uncertainty pairs. The black uncertainty pair allows this connection. The n variable gadgets are connected using
n − 1 variable-variable connectors.

A minor technical remark: If we need to connect a clause to the top of construct I in one variable gadget and
the top of construct II in a different variable gadget, sometimes it is necessary to modify the switches for the
two variables in the clause gadget so that one switch is a unit distance above the other. This is possible due to
the flexibility inside the clause gadget. We postpone the details to the final version.

The Correctness of the Reduction. In a line segment embedding of planar graph H(Φ) corresponding to
a Planar 3-SAT instance Φ, nodes (clauses and variables) are horizontal line segments and edges are vertical
line segments. We have presented clause and variable gadgets to replace horizonal line segments and connectors
to replace vertical line segments. We will argue that the connectivity graph G1 of these uncertainty pairs is
connected if and only if the planar 3-SAT instance Φ is satisfiable.

If the planar 3-SAT instance Φ is satisfiable, let us consider the assignment of truth values to the variables of
the instance. When a variable is set to True, we choose the blue point in the reference pair of the corresponding
variable gadget. When it is set to False, we choose the red point. This will, in turn, lead to the appropriate choice
of points in the connectors and inside the clause gadgets. Let P be the set of points chosen and us consider the
graph G1 of P . In G1, the variable gadgets are all internally connected and connected to each other as a path via
the variable-variable connectors. As all the clauses are satisfied by the truth assignment, each clause is connected
to one or more variable gadgets through edge-disjoint paths. Therefore the graph G1 is connected.
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Fig. 8. (Left): A connector between clause and variable gadgets. (Right): A connector between variable gadgets.

Let P be any choice of points for which the corresponding graph G1 is connected. In G1, each clause gadget is
connected to one or more variable gadgets through edge-disjoint paths. Therefore, two different variable gadgets
can never be connected to each other through a clause gadget. This implies that all the variable gadgets have
to the internally connected and also connected to each other variable gadgets through a path of length n − 1.
This structure of G1 gives a a truth assigment for each variable depending on whether the blue or red points are
chosen inside the gadget. It is easy to see that this truth assignment satisfies the Planar 3-SAT instance φ.

By reduction from Planar 3-SAT, Bα for non-overlapping uncertainty regions that are pairs of vertically
aligned points one unit apart with integer coordinates is NP-hard.

6.2 Best approximation.

We observe in this section that there is no approximation algorithm, polynomial in the size of the input, with
a factor less than

√
5/2, unless P = NP . We have proved that there is a Euclidean spanning tree using edges

of length at most 2 if and only if there is a valid assignment for the Planar 3-SAT problem. We now examine
the case where there is no such assignment. In that case, for any choice of points, there must be an edge in the
minimum spanning tree of length more than 2. Since all points have integer coordinates, this edge has a length
of at least

√
5.

6.3 Uncertainty on line segments.

If we have uncertainty points on vertical unit segments, we can also prove the best-case α-shape problem is NP-
hard, using the same gadgets as presented for pairs and replacing each pair by a vertical unit segment. However,
hardness of approximation result does not hold, because we can use edges of length arbitrarily close to 1.

6.4 NP-hardness of the best-case α problem with square uncertainties

As in the previous proof, we reduce the problem Planar-3-SAT to the Bα-Problem with square uncertainties.
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Theorem 1. It is NP-hard to find an exact solution to the Bα-Problem for the case where the regions of uncer-
tainty are squares of edge length one.

Proof. Our reduction uses a structure similar to the previous proof. We begin with a grid layout of the formula
graph corresponding to a Planar 3-SAT instance.

Planar-3-SAT. The planar-3-SAT problem is a 3-SAT problem, with the added condition that if we create
a formula graph, variables on one side, clauses on the other side, such that a variable is linked to a clause iff
that variable or its negation appears in the clause, then the formula graph is planar. It is known that any planar
graph with n vertices can be embedded on a n2-by-n2 square grid with edges following the grid.

We need the following terminology.
Terminology. A point p is l-connected to a point q if the (Euclidean) distance from p to q does not exceed l.

A set S of points is l-connected if the maximum edge length of the minimum spanning tree of S does not exceed
l.

The reduction We now describe the variable and the clause gadgets and the connectors we use to link the
variables and clauses.

The variable gadget. For any variable, we create the gadget shown in Figure 9.
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b b

b

b

b

b

Fig. 9. The variable gadget

In this figure, we have six ‘path’ squares and a single ‘core’ square. Each pair of adjacent path squares have
coordinates that differ (in x and y) by (0, 4), (4, 0), or (3, 3). The core square is separated by each of its two
closest path squares by (3, 4) or (4, 3). The key observation to make is that there are only two possible ways to
place a single point within each square such that the points will be 5-connected. In one of these, the core square’s
point lies at its bottom left corner, so that it is 5-connected (by the Pythagorean theorem: 32 + 42 = 52) to only
one path square’s point, as indicated by the solid line. In the other, the core square’s point lies at its upper right
corner, so that it is 5-connected to a different path square, as indicated by the dotted line. Note that this choice
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of core square point propagates along the path squares, forcing the point within each path square to be in one
of two corners if they are to be 5-connected to the rest.

The clause gadget. For each clause, we create the gadget of Figure 10. In this gadget, we have a single core

b

b

b

bCbC××

×

b

b

bCbC

bC

××

Fig. 10. The clause gadget

square, and three sequences of ‘arm’ squares. Each arm is labelled with a (possibly negated) literal. Observe that
the core square can be 5-connected to only a single arm, and once this arm is selected, its squares’ points are
forced : they must lie in the corners closest to the core square in order for the core point to be 5-connected to the
rest of the points (along the solid lines). The points within the other arms’ squares are free, in the sense that
they can move to the corners connected along the dotted lines, since they do not need to connect to the core
point.

Linking the gadgets. Variable gadgets are linked to clause gadgets by using a path of squares (Figure 11).
Once a choice is made in the clause gadget of which arm is to connect the core square to the rest, the choice

is propagated along the link path to the variable gadget, where the boolean value of the clause arm (positive or
negative) must agree with the variable core square’s value in order for the clause core square to be 5-connected
to the rest. The points within the two arms of the clause that are not 5-connected to the clause core are free to
move closer to their respective variable gadgets, so that they will be 5-connected to them even if their boolean
values disagree.

A forced point must lie at a particular corner of its square in order to be 5-connected. Figure 11 shows how
the choice of corner can be changed, if necessary.
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Fig. 11. A path of squares

Sequences can be split using the gadget of Figure 12. If the value of a variable gadget connected to the left
side of this gadget forces the point within the leftmost square to be at its top left corner, this causes the rest
of the squares to be forced (along the solid lines) as shown. Similarly, any free points from the clause gadgets
(connected to the top right and bottom right squares) will propagate towards the variable gadget.

Correctness of the Reduction. As a planar-3-SAT instance can be represented as a bipartite planar graph,
we do so (this can be done in polynomial time). We then embed this graph on a on a n2-by-n2 square grid with
edges following the grid (this can be done in polynomial time). We then replace the variable vertices of the graph
by a variable gadget, the clause vertices by a clause gadget, and the edges by sequences of squares.

Any variable gadget and its associated sequences of squares can be 5-connected by a single tree, and the central
squares of the clause gadgets will be 5-connected to exactly one of those trees iff there is a valid assignment for
the planar-3-SAT instance. At this point, there are as many trees as variables. In order to connect this forest of
trees into a single 5-connected tree, we add ‘loose’ connections between the trees by using a sequence of squares
which allow the variable gadgets to be 5-connected to each other, regardless of the current values of the variables;
see Figure 13.

Finally, if there is an assignment satisfying the planar-3-SAT instance, there is a minimum spanning tree for
our construction using edges of length 5 and smaller. Symmetrically, any such tree gives a valid assignment for
the planar-3-SAT problem. Hence there is a valid assignment for the planar-3-SAT instance if and only if our
construction can be 5-connected in the best case.

6.5 Proof of Lemma 4

We are going to distribute an even number of unit disks with centers equally spaced along a very large (and
hence, relative to the unit disks, very flat) circle C. Let us call the distance between consecutive centers of disks
centered along the large circle L. We will add more disks, but L will remain the longest edge of a BSpT of the
disk centers. Additionally, let us pick ǫ ≪ L − 2.

The construction actually contains quite a large number of highly overlapping disks in addition to the disks
whose centers lie along C. See figure 14 for an approximate drawing. The drawing is approximate in several
respects. First of all, C is much, much larger than drawn, so that if the bottom of C is, say, tangent to the x-axis,
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Fig. 12. Splitting the path from a variable to two (or more) clauses
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Fig. 13. Connecting variable gadgets
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Fig. 14. The construction begins with even number of equally spaced unit disks with centers along a very large circle, C.
If the bottom of C is tangent to the x-axis, and the center of the bottom unit disk, D0, has y-coordinate equal to 0, then
the center-points of the first unit disks to the left and right of D0 along C, each have y-coordinate which is less than ǫ/3.
In addition to the disks along C, there is a sequence of disks going from D0 to its diametrically opposite unit disk with
centers lying along the connecting diameter. The center of these disks are all distance ǫ form one another. If we number
the disks along C in counter-clockwise order D0, ..., D2N−1, then we have a similar set of diametric disks extending from
D2, D4, ..., D2N−2. The odd numbered unit disks D1, D3, ..., D2N−1, with representative element that we shall call Di,
each have a set of unit disks running from Di to Di+2 with centers each ǫ from the next, but with the disks running in
almost circular patterns on the outside of C.

and the center of the bottom unit disk, D0 has y-coordinate equal to 0, then the center-points of the first unit
disks to the left and right of D0 along C, each have y-coordinate which is less than ǫ/3. In addition to the disks
along C, there is a sequence of disks going from D0 to its diametrically opposite unit disk whose centers lie along
the connecting diameter. The center of these disks are all distance ǫ, one from the next, along the diameter. If we
number the C-centered disks in counter-clockwise order, D0, ..., D2N−1, then we have a similar set of diametric
disks extending from D2, D4, ..., D2N−2. The key observation is that we can add such diametrically centered disks
in such a way that the center of disks extending from Dj to the center of C, are each more than distance L from
the center of any other Dk for k 6= j - thus the choice of D1 and D2N−1 with y-coordinate less than ǫ/3. On
the other hand, the odd numbered unit disks D1, D3, ..., D2N−1, with representative element that we shall call
Di, each have a set of unit disks running from Di to Di+2 with centers each ǫ from the next, but with the disks
running in almost circular patterns on the outside of C. An important point in this case, is that the disks start
out emanating from Di along a diametric line, and then bend around so that their centers are never within L of
Di+1.

We claim that for such an arrangement of unit disks, the maximum distance between locations ℓr ∈ Dr in
a BSpT can be as small as (and in fact slightly smaller than)

√
L2 + 4, where the set {Dr} consists not just of

the disks Di with centers along C, but all the other unit disks depicted in Figure 14 as well. If Di, Di+2 are
two consecutive disks in the cyclical ordering of C-centered disks with i odd, let {Dik

} denote the set of disks
running from Di to Di+2 outside of C. Further, if Dj, Dj+N are diametrically opposite C-centered disks with j
even, let {Djk

} denote the set of disks running diametrically between Dj and Dj+N . To verify our claim about
{ℓi} with maximum BSpT edge length slightly less than

√
L2 + 4, pick ℓi ∈ Di for even i to be the point in Di
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closest to the center of C and ℓi ∈ Di for odd i to be the point in Di furthest from the center of C. See Figure
15. Regardless of the choice of the ℓij

∈ Dij
it is clear that

⋃{D(ℓi; α)} ∪ ⋃{D(ℓij
; α)} is connected if 2α is the

ℓ0

ℓ2N−1

ℓ2N−2

ℓ1

ℓ2

Fig. 15. To verify our claim about {ℓi} with maximum BSpT edge length slightly less than
√

L2 + 4, we pick ℓi ∈ Di for
even i to be the point in Di closest to the center of C and ℓi ∈ Di for odd i to be the point in Di furthest from the center
of C. The distance between ℓi and ℓi+1 (in the cyclical ordering) is then just slightly less than

√
L2 + 4.

distance between consecutive locations ℓi, ℓi+1 (in the cyclical ordering), and that this distance is, as claimed,
just slightly less than

√
L2 + 4. Let us designate this distinguished choice of the ℓi ∈ Di by ℓ∗i , and the associated

α by α∗.
For these {Di} and {Dij

}, if there were any choice of {ℓi}, {ℓij
} making α any larger, then we would have to

pick one of the ℓi to the left or right of the diametric line through the center of C and Di. It is easy to check that the
result of such a choice is that there would be some cyclically ordered pair, ℓj , ℓj+1 whose distance d(ℓj , ℓj+1) <
d(ℓ∗j , ℓ

∗
j+1) = α∗. But then D(ℓj ; α

∗) ∪ D(ℓj+1; α
∗) connects ℓj , ℓj+1 and

⋃{D(ℓ2k; α∗)} ∪ ⋃{D(ℓ(2k)j
; α∗)}

connects the even-indexed ℓ2k and any associated choices for ℓ(2k)j
, while

⋃{D(ℓ2k+1; α
∗)} ∪ ⋃{D(ℓ(2k+1)j

; α∗)}
connects the odd-indexed ℓ2k+1 and any associated choices for ℓ(2k+1)j

. It follows that α ≤ α∗, contrary to

assumption, and so the fact that OPT can be as small as
√

L2+4
2 is established. The algorithm of Lemma 2 picked

α = L + 1, so picking L sufficiently close to 2 yields
L
2
+1√

L2+4

2

= L+2√
L2+4

sufficiently close to
√

2, completing the

proof.
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Fig. 16. Sequences of type I, II, III, IV and V respectively. The critical paths are shown in blue. Note that in the case of
type V, the critical path can be moved at will in the indicated range. For all other sequences, any different choice of blue
points on the segments results in at least one longer edge.
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Fig. 17. Sequence (E1, E2, E3) with outcomes of type α, β, γ, δ and ǫ respectively for the case that L is minimum such
that U2(L) ∩ E3 6= ∅. S1(L) is depicted by dashed lines. S1(L) ∩ E2, S2(L) and S2(L) ∩ E3 are shown in red. Note that
in the outcome of type 1, a smaller L would result in U1(L) ∩ E2 = ∅, and therefore U2(L) = ∅.




