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ABSTRACT
We address the problem of statically finding bugs due to con-
currency, and do so without reporting false positives. This
problem is important because false reports of concurrent
bugs are even less acceptable than those of sequential bugs.
(Typically programmers need to examine larger amount of
code in diagnosing the report of a concurrent bug than se-
quential one.) Avoiding false positives for concurrent bugs
is more difficult, because techniques like symbolic execution,
used for avoiding false reports of sequential bugs, become
prohibitively expensive for parallel programs. Our proposed
solution is pointer analysis accurate enough to report con-
current bugs without too many false positives. For our im-
plementation the trade-off between accuracy and efficiency
is driven by the needs of an algorithm for deadlock detection.

1. INTRODUCTION
It is often the case that static analysis needs to make trade-
offs among cost of the analysis, accuracy or precision of
the analysis, and the scope of program that is being ana-
lyzed. Static analysis of multi-threaded programs is more
challenging than sequential ones for several reasons. First
interleaving of threads greatly increases the number of exe-
cution paths. Second the presence synchronization, such as
locks and unlocks, can impact how program paths are ab-
stracted. Third detecting concurrent bugs on the average
requires larger scope than detecting sequential bugs.

For the past few years we have been developing a static
analysis tool called BEAM [1] for detecting software bugs.
It accepts source code in C, C++, Java; throughout the
paper our examples are all in the C language, using the
pthread synchronization primitives. We will be using the
terms “mutex” and “lock” interchangeably.

The BEAM tool strives for maximal accuracy so as to report

0The second author’s collaboration was done while he was
with Columbia University.

callee(data *p, data *q)
{
pthread_mutex_lock(p->m);
pthread_mutex_lock(q->m);
...

caller()
{

callee(x, y);
...
callee(y, x);

Figure 1: Is there a deadlock in the callee?

many true positives with few false positives. For that reason
we rely on symbolic execution in the case of sequential pro-
grams. For multi-threaded programs, however, unrestricted
symbolic execution can quickly explode the set of paths that
needs to be analyzed due to the presence of multiple threads
that need to be interleaved. One approach to this problem
is to precalculate sequences of instructions within which in-
terleaving with other threads can be ignored [6, 7, 16, 10].
A different approach [8] uses imprecise analysis, generating
many false positives, and then uses heuristics to rank the
findings according to likely validity.

In this paper we address the problem of path explosion by
relying on a more accurate pointer analysis, not on sym-
bolic execution. Our approach collects information from
each thread in isolation, and then combines the results to
detect concurrency bugs across multiple threads of control.
This is similar in spirit to [12].

This choice of pre-analyzing threads in isolation is related
to the more general question of what is a bug. For exam-
ple, consider Figure 1. In the whole program approach [9,
14], or the top-down approach [8], errors are normally as-
sociated with the actual failing statement; in Figure 1 that
would be the call pthread_mutex_lock(q->m), where execu-
tion might stall. In contrast, we follow the evidence-based
approach [2], which declares the callee deadlock-free, but
finds the caller in error. The reason is that two threads
executing the caller could invoke the callee with arguments
in reverse order. This approach is amenable to library anal-
ysis; in particular, we will present an algorithm that collects
information about libraries for detecting deadlocks in clients
using the libraries.

In any case, the chosen philosophy for what is a bug needs
to be matched with pointer analysis. The whole program
view requires whole program pointer analysis [13, 18]. That
has to identify possible aliases of p and q in the callee()

of Figure 1, and such relationship is established by callers.
In contrast, the evidence based approach requires pointer



analysis that propagates information from callees to callers
only [4].

The main focus of this paper is on fine-tuning pointer analy-
sis for detecting concurrency bugs, rather than on new ways
to detect such bugs. In the rest of this section we motivate
the need for accuracy of the pointer analysis. In Section 2 we
describe our approach to detecting deadlocks, and then the
rest of the paper describes pointer analysis accurate enough
for the task. Section 3 outlines the space of pointer analyses
from which we chose a particular analysis described in Sec-
tion 4. That choice is implemented in our tool and is used
for other purposes as well – MOD, alias, escape analyses;
but we found none of them as demanding in accuracy as
detection of concurrent bugs.

Mutex Ordering Problem The example of Figure 2, il-
lustrates two things: Lock variables are part of a structure,
which necessitates field sensitive analysis. Secondly, it is
important to respect the order of lock/unlock operations,
which calls for some form of flow-sensitivity in the analy-
sis. We will show pointer analysis that handles these two
problems without the expense of a full-blown flow-sensitive
analysis.

pthread_mutex_lock(a->m);

/* ... real work 1 ... */

if ( c) pthread_mutex_unlock(a->m);

/* ... real work 2 ... */

if (!c) pthread_mutex_unlock(a->m);

Figure 2: Mutex unlocked under several conditions

Conditional Mutex Problem A common programming
pattern arises when a locked mutex is unlocked under dif-
ferent conditions, see Figure 2. In such cases, when tracking
the relative ordering of lock variables we also need to take
conditions into account. It is important to ensure that, when
a mutex is unlocked under different conditions, such condi-
tions are mutually exclusive and exhaustive.

Mutex Across Procedures Problem It is often the case
that a mutex can be locked in one procedure and can get
conditionally unlocked before returning. This would hap-
pen in Figure 2 if the last line were missing. Such situations
typically happens when a procedure attempts to acquire a
lock, but under some exceptional circumstances it fails and
in that case releases the lock. This shows the need to prop-
agate the conditions of lock acquisition inter-procedurally,
and often also the need to relate the condition to the values
of a return code.

To summarize the main contributions of this paper are:
(1) A simple abstraction to model relationship among lock
variables and using the abstraction as the basis for detecting
deadlocks. The resulting algorithm is suitable for library
analysis.
(2) An efficient representation and manipulation of program
conditions.
(3) Identifying a pointer analysis with a balance between
accuracy and run-time performance, which is suitable for
reporting concurrency bugs.
(4) Preliminary empirical results to validate the choice of

analysis (3). While we did not find any deadlocks in any
production code, the analysis is accurate enough to avoid
false positives, and the accuracy comes with minimal loss of
run-time efficiency.

2. DEADLOCK ALGORITHM
As an example of a concurrent bug whose discovery requires
accurate pointer analysis we will discuss deadlock detection.
There is a relationship between our approach and the col-
lection of locksets, which can be dynamic [17] or static [8].
Those algorithms traverse a program in a forward fashion
(caller to callee), recording locks held. The forward traversal
facilitates disambiguation as to which global lock is pointed
to by a variable at any point of time. We are solving the con-
verse problem, namely library analysis. For each procedure
we calculate its summary, including its effect on a global
locklist. The entries on the locklist are not global lock ad-
dresses, but rather symbolic contents of global variables or
procedure parameters, independently of how they may be
set by a caller. We collect a list of locks instead of a set
of locks, because we use the list do derive a lock hierarchy,
namely the order in which locks are acquired. The calcu-
lated summary can then be plugged into callers to calculate
their summaries.

There are two complications influencing our algorithm. First
locks could be recursive, so not every cycle in a lock hierar-
chy indicates a deadlock. Secondly, in the C language locks
can be released in an order unrelated to the order of acquir-
ing them. Our approach is a static version of the following
dynamic algorithm to deal with those complications.

The dynamic algorithm observes lock operations and keeps a
list of acquired locks for each thread. The list may contain
several instances of the same recursive lock. Whenever a
lock is acquired, an instance of the lock is appended to the
list. Whenever a lock is released the last instance of that
lock is removed from the list.

To be specific, we implement lock instances as heap nodes
allocated whenever a lock is acquired; they are placed into
a doubly linked list (for easy removal). They are never dis-
carded. To form a lock hierarchy, each new lock instance
gets a hierarchy edge to its predecessor on the list; hierar-
chy edges remain even after a lock is released. Thus for any
procedure, at the end of its execution we get a set of lock in-
stances with hierarchy edges indicating which instances were
acquired while still holding others.

Note that all these manipulations are performed in a single
thread. The resulting hierarchy graph can be used for de-
tecting recursive acquisition of non-recursive locks. To find
deadlocks involving multiple threads we go to the second
step, which is independent of the method used to generate
the hierarchy among lock instances.

We form hierarchy edges between lock variables themselves.
There is a hierarchy edge induced from lock variable x to
y iff x and y each has an instance with a hierarchy edge
between them. See Figure 3 with four lock variables a, b, c, d

and their instances a1, a2, b1, c1, c3, d2, d3. Solid arrows are
hierarchy edges, a dotted line for each instance shows to
which lock it belongs. The hierarchy chain a → b → c is



Figure 3: Hierarchy among lock instances (square
nodes) inducing hierarchy among locks (round
nodes)

due to a1 → b1 → c1, which is within a single thread. If
there is no hierarchy path from a1 to c3 then the chain c3 →
d3 could be made in a separate thread. If all three chains
a1 → b1 → c1, d2 → a2, c3 → d3 are pairwise unreachable,
then we could have a deadlock in case the given procedure
were executed concurrently by three threads. Figure 4 is an
actual message issued by our tool explaining the deadlock.
The explanation is a sequence of 6 attempts of acquiring a
lock by three threads. After each of the 6 lines there is a
chain of calls leading to the lock operation. (In our example
each chain has only 1 call.)

Thread 1 acquires ‘c’ because

"f.c", line 18: calling ‘pthread_mutex_lock’

Thread 2 acquires ‘a’ because

"f.c", line 14: calling ‘pthread_mutex_lock’

Thread 3 acquires ‘d’ because

"f.c", line 10: calling ‘pthread_mutex_lock’

Thread 1 blocks acquiring ‘a’ because

"f.c", line 20: calling ‘pthread_mutex_lock’

Thread 2 blocks acquiring ‘d’ because

"f.c", line 15: calling ‘pthread_mutex_lock’

Thread 3 blocks acquiring ‘c’ because

"f.c", line 11: calling ‘pthread_mutex_lock’

Figure 4: Message issued for Figure 3

Up to now we have described the algorithm as dynamic, and
it could be such. But, as any dynamic approach, it would
be limited to those executions tried. Instead we perform
the algorithm statically. It traverses a call graph bottom
up; loops in the call graph imply iteration till convergence.
The result on any given procedure will include the hierarchy
graph of lock instances. This graph is propagated to callers
when forming their lock hierarchy. In addition, the lock hier-
archy for each procedure can be used for deadlock detection
exactly the same way as if it were obtained dynamically.

This kind of approach to deadlock detection, or concurrent
bugs in general, has several implications. First of all, the
bottom up approach implies that information computed can-

not be in terms of global locks, but rather in terms of local
pointers to unknown locks. This implies the need for pointer
analysis, in contrast to the top-down approach of [8].

The pointer analysis itself need not be aware of threads.
The reason is that it is used to accumulate the hierarchy of
lock instances in a single thread. (The second step of inter-
thread analysis does not require pointer analysis.) Therefore
we could use any pointer analysis for sequential programs,
provided it is suitable for libraries. In the next section we
will outline such a general pointer analysis.

The pointer analysis will be used for the usual purposes of
alias, MOD, escape analysis. In addition, lock operations
will be translated directly into corresponding transforma-
tions of the locklist, as if the locklist were an explicit data-
structure in the program. The procedure summary built by
pointer analysis for each procedure will then contain not only
updates to explicitly declared variables, but also updates to
the locklist, and hence the lock hierarchy.

3. POINTER ANALYSIS SPACE
It is well known [11] that the accuracy of pointer analysis
has tremendous impact on “client analysis”, whether it is for
optimizing code or detecting bugs or re-factoring code. One
needs a balance between the precision of pointer analysis and
the cost of doing it, and this balancing should take into con-
sideration the needs of the client analysis. In our previous
work [4, 5] we defined a space of pointer analyses suitable
for such balancing. In this section we leave aside deadlock
detection to briefly review those aspect of the space needed
to explain our choice of the next Section – choice of pointer
analysis driven by the needs of the client of Section 2.

3.1 Dimensions of Pointer Analysis
Our pointer analysis [4] uses a data structure called Assign-
Fetch Graph (AFG) for representing pointer/alias informa-
tion. The input into pointer analysis is set a of flow graphs
obtained from a given program. Our flow graph looks like a
traditional control-flow graph with the following important
properties.
1) Besides control flow the graph also contains all the data
operations.
2) All loops are converted into tail-recursive procedures.
This results in a separate flow graph for each loop as well as
each procedure. Each flow graph is acyclic, and the state-
ments are in a partial order.
3) All memory accesses are broken down into two primitives:
assign and fetch.
4) For each operation there is a condition for executing it,
represented by an edge of the flow graph.

The result of pointer analysis is an AFG that summarizes
pointer information for each flow graph. An AFG for a pro-
cedure contains all of the side-effects that the procedure
could have on a caller, and so one can obtain pointer re-
lations among locations visible to a caller. An interesting
aspect of AFG is that it can model various kinds of sum-
mary information in a unified manner depending on a de-
sired trade-off between accuracy, run-time complexity, and
scope. To capture the right level of accuracy, in our previous
work we identified three orthogonal dimensions: statement
ordering, conditions, and strong updates as shown in Fig-



ure 6. They are illustrated using the code fragment of Fig-
ure 5. The objective of the analysis is to determine under
what conditions will y contain which value.
Analyses that ignore statement ordering (e.g., flow insensi-
tive analysis) would obtain the same result even if the three
statements were rearranged.
Analyses that ignore conditions would obtain the same result
even if the conditions in Figure 5 changed. Analyses that
do not ignore conditions might obtain that y is assigned 0
under condition c ∧ e and it is assigned 1 under condition
d ∧ e.
The above is an example of a result obtained by ignoring
strong updates. Analyses that do consider strong updates,
in addition to statement ordering and conditions, would ob-
tain the result that y is assigned 0 under condition c∧¬d∧e

and it is assigned 1 under condition d ∧ e.

if (c) x = 0;

if (d) x = 1;

if (e) y = x;

Figure 5: One assignment conditionally kills another

When designing a pointer analysis, there is no need to chose
extreme points along any of the three dimensions; intermedi-
ate points are the key to achieving the right trade-off. There-
fore the space of possible analyses can be represented as a
3-dimensional cube as in Figure 6. There is no numeric scale
associated with any of the axes; they only represent qual-
itative comparison. For sake of illustration, Figure 6 also
shows the position of three commonly used analyses – flow-
insensitive, flow-sensitive, and path-sensitive. Note that the
flow-sensitive point is not at the bottom of the cube. This
is because flow-sensitive analysis does not completely ignore
conditions – it considers the two branches of an if-statement
to be mutually exclusive. The corner of the cube just be-
low the flow-sensitive analysis represents analysis that would
treat conditional branches no differently than branches of a
parallel construct.

As one moves away from the origin (flow-insensitive analysis)
accuracy increases, but not necessarily run-time. In partic-
ular, it was shown in [4] that moving along the statement-
ordering axis increases accuracy while decreasing run-time.
Therefore there is no need to consider analyses outside the
bold lined side in Figure 6. In the next section we will de-
scribe the point chosen for our tool, marked in Figure 6 as
“BEAM analysis”. It is more accurate than flow-sensitive in

Figure 6: Space of possible pointer analyses

if (c) x = 0;
if (e) ... = x;

Figure 7: Assignment of x followed by a fetch of x

Figure 8: Assignment and fetch with aliased sources

treating conditions, but less accurate in strong updates.

3.2 Construction of Assign-Fetch Graph
Construction of Assign-Fetch Graph is the same indepen-
dently of a choice of accuracy; that choice plays a role only in
determining which assignment can affect which fetch. Nodes
in an AFG represent values, edges represent contents of ad-
dress nodes. There is a straightforward correspondence be-
tween a flow graph and an AFG. For each fetch operation
of a flow graph there is a fetch edge in its AFG, whose sink
node represents the value fetched. For each assign operation
of a flow graph there is an assign edge in its AFG, whose
sink node represents the value assigned. For example, see
Figure 7. The solid arrows in Figure 7 are obtained from the
flow graph. The dashed line is calculated by pointer analy-
sis and represents aliasing between the fetch of x (labeled f)
and the value 0. Analysis that considers conditions would
label the assign with the condition c and the fetch with the
condition e as obtained from the flow graph. It would then
calculate the condition c∧e for the alias edge between f and
0.

A general situation is in Figure 8. Assume that previous
calculation discovered that u and v alias. Here u and v are
not necessarily addresses of variables, but results of fetches
and therefore they may alias. That triggers a new alias
between the contents f of u and the value p assigned to v.

The sinks of an assign and a fetch edge alias if the assign
can affect the fetch, written A(assign, fetch). The relation
affect depends not just on the two given edges, but also on
the rest of the graph. For example, in Figure 8 one might
calculate
A(assign, fetch) = C(assign) ∧ C(fetch) ∧ C(u, v),
where C(assign) is the condition of the assign, C(fetch) is
the condition of the fetch, and C(u, v) is the condition of
aliasing between u and v.

The relationship affect is in general not computable, and
therefore different analyses are derived by different approx-
imations. The choice of an approximation for affect deter-
mines the accuracy of the analysis. The next section de-
scribes our choice of an approximation.

As mentioned in Section 2 we rely on pointer analysis to



generate the lock hierarchy. That requires that lock acqui-
sition and release operations trigger the same actions that
the dynamic algorithm of Section 2 would perform.

When a call to a procedure acquiring a lock is being trans-
lated to the AFG, the call normally has an argument that
is a pointer to a lock. That triggers the following additions
to the AFG.
First a new heap node representing an instance of the lock
is created. Second the AFG gets all the assignments and
fetches that would be performed by appending the new in-
stance to a global locklist. Thirdly a hierarchy edge is added
from the new instance to the previous item on the locklist.
The hierarchy edge is a payload edge. Payload edges are not
interpreted by pointer analysis, they are just copied when
their sources or sinks alias to other nodes. This is a gen-
eral mechanism we use to make pointer analysis propagate
client’s information.
When a call to a procedure releasing a lock is being trans-
lated into the AFG, we add the assignments and fetches that
would be performed by removing from the locklist the most
recent instance of the lock. The hierarchy edges remain and
become part of the procedure’s summary.

4. POINTER ANALYSIS CHOICE
This section describes the actual implemented analysis, marked
as “BEAM analysis”, in Figure 6. It represents a certain
compromise between efficiency and accuracy. The objective
is an analysis as efficient as possible, while providing the ac-
curacy needed for multi-threaded programs as explained in
Section 1.

4.1 Statement order
As mentioned previously there is no advantage in compro-
mising on the full partial order of statements. In addition,
respecting statement order is essential, as explained under
“Mutex ordering problem” of Section 1. This section de-
scribes how we represent that order efficiently.

The representation assigns a certain quantity rank to each
operation edge. We will define a relation ⊑ on ranks so that
the following property holds. (For two operations in a flow
graph we write op1 ⊑ op2 to mean that op1 precedes op2

in every execution.) Consider any two memory accesses op1

and op2 in the flow-graph, and let e1, e2 be the corresponding
edges in the AFG.

if op1 ⊑ op2 then rank(e1) ⊑ rank(e2) (1)

if rank(e1) ⊑ rank(e2) then op1 ⊑ op2 (2)

The method described next ensures (1) for any flow graph,
and it ensures (2) for planar control flow, which includes all
practical programs.

We perform two topological sorts on the flow-graph of a
given procedure. As topological sorting is allowed to make
arbitrary choices at branch points (if-statements, switch-
statements), our two sorts will make those choices differently
– one sort will visit the branches of a conditional statements
in left-to-right order, the other will do so in right-to-left or-
der. Each of the two sorts will assign an order number to
each operation of the flow-graph. The rank of an operation
is then the pair of those two order numbers. The relation ⊑

is defined by
[l1, r1] ⊑ [l2, r2] iff l1 ≤ l2 and r1 ≤ r2, i.e., one operation
precedes another if it precedes in both topological sorts.

The ranks of two edges can then be used in the decision
whether an assignment edge can affect a fetch edge. If

rank(fetch) ⊑ rank(assign) (3)

then the fetch cannot happen after the assign, so there can
be no effect. In the usual case when all branching is due
to conditionals, as opposed to parallel execution, an even
stronger property holds: It is necessary that

rank(assign) ⊑ rank(fetch) (4)

for the assign to affect the fetch. If neither (3) nor (4)
holds then the two edges lie on different branches, and nei-
ther precedes the other topologically. Semantically an as-
signment could affect a fetch on a different branch only if
the branching represents parallelism, not conditionals.

4.2 Conditions
Section 1 (under“Conditional mutex problem”) explains why
it is necessary to take conditions into account. It can be
done to different degrees, as illustrated by the following two
examples.

f(unsigned a)

{

if (a >= 2) {...}

else {...}

if (a >= 5) {...}

else {...}

}

(f)

g(unsigned a, unsigned b)

{

if (a + b > 0) {...}

else {...}

if (a > 0) {...}

else {...}

}

(g)

Figure 9: Functions with four topological paths, but
only three feasible paths

Traditional pointer analysis algorithms will consider all the
topological paths in a program, as in Figure 9. In Section 1
we saw that this is inadequate for analysis of multi-threaded
programs. Therefore we had experimented with letting our
pointer analysis use the theorem prover that is part of our
BEAM tool [3]. That lets pointer analysis consider only the
three feasible paths in the functions of Figure 9. However,
that approach is too expensive computationally. Therefore
we adopted a more efficient compromise, which proved ad-
equate for analysis of multi-threaded programs. That com-
promise allows our pointer analysis to consider only the three
feasible paths of Figure 9(f), but it considers all four topo-
logical paths of Figure 9(g). This section then describes this
handling of conditions.

As mentioned above the input into pointer analysis is a flow
graph. A condition, such as a + b > 0, is represented in the
flow graph by a pair – an edge and a range. In our example
the edge would represent a+b and the range would be [1,∞].
The edge representing a + b comes from an addition node
whose inputs represent a and b. In our compromise for han-
dling conditions we ignore the source of the edge a + b and
treat it as if it were independent of the edge representing a.



Figure 10: Two conditions represented as cubes in
2-dimensional space

This makes our handling of conditions more efficient than
full path-sensitive approach, because it avoid the expense of
a theorem prover for arithmetic and other operations.

This compromise allows a representation of conditions that
is efficient for certain frequent manipulations, such as con-
junction of two conditions. For each condition edge in the
flow graph, we collect all the integer ranges the edge is tested
against. In the example of Figure 9(f) a is tested against
the ranges [2,∞] and [5,∞]. That divides the entire range
[0,∞] of possible values for a info three subranges: [0, 1],
[2, 4], [5,∞]. The three subranges are assigned a bit posi-
tion in a bit vector of length 3. For example, 010 represents
the condition a ∈ [2, 4], and 101 represents the condition
a ∈ [0, 1] ∪ [5,∞].

In a procedure there are many values like a, each tested
against several possible ranges. Each such value is assigned
a bit vector as above. All the bit vectors are then concate-
nated into one long bit vector according to an arbitrary but
fixed ordering of all the values. For example, suppose that
a program, besides a contains a signed variable i, which is
tested for being in range [−∞, 0] or in range [1,∞]. And
suppose that the ordering of values is a, i. Then the bit vec-
tor 10110 represents a ∈ [0, 1]∪ [5,∞] and i ∈ [−∞, 0]. The
bit vector 11111 represents no information about a or i (both
are allowed any value). The bit vector 11100 represents a
contradiction because i is allowed no value.

We can visualize conditions by considering each bit string
as a cube in a n-dimensional space, where n is the number
of values involved in all conditions of a procedure. For ex-
ample, Figure 10 shows a 2-dimensional space for the two
values a and i. A condition is a rectangle, or in general an
n-dimensional cube. (Geometrically speaking it can be ac-
tually a union of several disjoint cubes, just like [0, 1]∪[5,∞]
is a union of two disjoint intervals. But from the point of
view of logical operations a set of cubes behaves like a single
cube.)

Below we will describe three operations including union (dis-
junction) and intersection (conjunction). While intersection
of two cubes is always a cube, that is not true about a union.
The result of several conjunctions and disjunctions then be-
comes an irregular shape as in Figure 11. We cannot rep-
resent it by a cube, so we approximate it from above and
below.

Thus each operation edge in an AFG is assigned a pair of
cubes [u, l], i.e., a pair of bit vectors. The cube u is the
upper bound on the true, but unrepresentable, condition;

Figure 11: A general condition is an irregular shape
(solid lines) approximated by an upper bound cube
(dashed lines) and a lower bound cube (dotted lines)

while l is the lower bound.

There are three operations that we need to define on condi-
tions. For each the upper bound of the result must be an
over-approximation of the true result, while the lower bound
must be an under-approximation.

[u1, l1] ∧ [u2, l2] = [u1 ∧ u2, l1 ∧ l2] (5)

[u1, l1] ∨ [u2, l2] = [u1 ∨ u2, l1 ∨l l2] (6)

[u1, l1] \ [u2, l2] = [u1 \u l2, l1 \l u2] (7)

Conjunction (5) is the simplest, because the intersection of
two cubes is always a cube. It can be carried out by bitwise
AND on the bits representing the cubes. For example, con-
sider a program condition 2 <= a && i > 0. The condition
2 <= a is represented by the bit vector 01111. (Out of the
first three bits allocated for a two are on, and both bits allo-
cated for i are on, representing no constraint on i.) Similarly
the condition i > 0 is represented by 11101. Their bitwise
AND 01101 is then the representation of 2 <= a && i > 0.

On the other hand, a union (6) of two cubes is not neces-
sarily a cube. The upper bound can be obtained by simple
bitwise OR on the two upper bounds. The lower bound, rep-
resented by the operation ∨l, does not have such a simple
implementation. A conservative under-approximation of the
lower bound would pick one of the two given lower bounds to
become the lower bound of the union. Our approach is less
conservative, recognizing several common situations where
the union of two cubes is a actually cube, yielding tighter
bounds in the most common situations.

Conjunction and disjunction are the only operations needed
to represent all the conditions of the program. (Negation is
not necessary because of the special way conditions are rep-
resented in the flow graph.) Those two operations are also
sufficient for calculating the effect A(assign, fetch). More-
over, the upper bounds alone are sufficient for that.

The need for lower bounds comes only if we want strong
updates, as described in the next section. For that we have
the operation of relative set complement (7). As is the case
with disjunction, removing one cube from another need not
yield a cube. We need a separate approximation \u for the
upper bound and \l for the lower bound. The lower bound
is simpler – it is sufficient to reduce only one dimension of
l1, chosen as as to maximize accuracy; and that operation
can be performed by bitwise AND and bitwise complement.
The upper bound \u involves similar heuristics as for ∨l.



Figure 12: Under what conditions does the fetch
node alias to 0 and 1?

4.3 Strong updates
Strong updates refer to the fact that a later assignment over-
writes (kills) a previous assignment into the same variable.
Analysis without strong updates would assume that the vari-
able may contain values assigned in earlier as well as later
assignments. That is inadequate for our purposes as illus-
trated by Figure 2. Locking a mutex is represented by as-
signments involved in adding a lock instance to the global
locklist. Unlocking is represented by assignments that are
supposed to restore the original state of the locklist. With-
out strong updates it would appear that unlocking does not
completely undo the effect of locking.

We will first illustrate the computation on the simple exam-
ple of Figure 5. The AFG representation is in Figure 12.
The assignments of 0 and 1 are labeled “killer” and “victim”
respectively, because the assignment x = 1 may kill the as-
signment x = 0. Recall from Section 3 that the objective
is to calculate under what conditions y will contain 0, un-
der which it will contain 1, and under which it will retain
its original value. That is, we need to calculate the aliasing
conditions for the fetch node f , which represents the r-value
of x in the assignment y = x.

First consider the condition A0 of the fetch being affected
by either assignment as would be calculated by analysis ig-
noring strong updates.
A0(victim, fetch) = C(victim) ∧ C(fetch) = c ∧ e

A0(killer, fetch) = C(killer) ∧ C(fetch) = d ∧ e

In our example both conditions are exact, in the sense that
upper and lower bounds are identical.

Now we calculate the effect A taking strong updates into
account. Since nothing can kill the assignment x = 1,
A(killer, fetch) = A0(killer, fetch) = d ∧ e.

When calculating the condition of aliasing to 0, we need to
consider the possibility that the assignment killer may kill
the assignment victim because the killer lies between the
victim and the fetch. That is,

rank(victim) ⊑ rank(killer) ⊑ rank(fetch). (8)

The fetch is affected by the victim, provided it would be
affected even without the killer (i.e., A0(victim, fetch)),
and secondly that the fetch is not affected by the killer.
Thus we can write

A(victim, fetch) = A0(victim, fetch) \ A0(killer, fetch)
(9)

The calculation (9) evaluates to c ∧ ¬d ∧ e.

In general, strong updates are taken into account when-

ever calculating A(victim, fetch) for any pair of assignment
victim and any fetch edge. First we calculate the condi-
tions A0 without strong updates. Then for each assignment
victim, we calculate A(victim, fetch) by repeatedly apply-
ing (9) for every killer assignment satisfying (8).

A pointer analysis with strong updates needs to address an
issue with convergence of inter-procedural analysis. If the
number of pointer relations inside a callee increases, then
more assignments may be killed in the caller, potentially
decreasing the number of pointer relations in the caller.
That would violate the monotonic increase needed for con-
vergence.

We deal with the issue of convergence when analyzing a
strongly connected component of a call graph. When embed-
ding a callee summary in a caller, there is a process of trans-
lating conditions coming from the callee into conditions in
the caller. During this process callees from the same strongly
connected component as the caller receive special treatment.
Any condition from the callee gets its lower bound replaced
by the empty cube. That prevents any edge from such callee
from killing any assignment in the caller. No such changes
are needed for conditions in callees outside the strongly con-
nected components, because our inter-procedural analysis
proceeds bottom-up through the call graph.

5. EXPERIMENTAL RESULTS
We have applied our implementation to the AIX kernel and
to the Parsec benchmarks [15], without reporting any dead-
lock in either. While such benchmarks drove the accuracy
of the pointer analysis, its sufficiency is based on manual
inspection of the summaries, and the lack of false positives.
However, we did not perform manual deadlock detection to
see if there are false negatives.

In this section we will illustrate the trade-off between ac-
curacy and run-time of our pointer analysis using the open
source examples of Table 1. This is to show the costs asso-
ciated with increased accuracy.

The column“lines”gives the line count (excluding comments
and blank lines). The remaining columns give run times in
increasing order of precision. The column “flow insens.” is
equivalent to Anderson style flow insensitive analysis, which
excludes everything described in Section 4. The column “or-
der sens.” includes the effects of Section 4.1 only. The col-
umn “condition sens.” includes the effects of Section 4.1 as
well as Section 4.2. The column “kill sens.” includes every-
thing described in Section 4.

lines flow order condition kill
insens. sens. sens. sens.

Gzip 5,317 0:11 0:11 0:13 0:13
Ispell 6,445 0:13 0:14 0:16 0:16
Pcre 11,639 9:05 1:23 1:45 1:53
Make 15,054 2:27 1:26 1:56 1:55
Bison 19,318 1:48 0:54 0:56 0:56
Tar 21,651 1:21 1:11 1:18 1:20
Balsa 106,716 memory 2:37 2:53 2:53

Table 1: Run-times with different levels of precision

To understand the experimental results, we need to explain



the analysis flow of the BEAM tool. It is performed in sev-
eral steps listed below. The run-times of Table 1 include
steps 1) - 6), but not step 7).
1) Parse source code.
2) Build flow graphs for all procedures. These flow graphs
are build under very conservative assumptions, as neither
MOD nor alias analysis is available.
3) Based on the flow-graphs from step 2) perform inter-
procedural pointer analysis as described in this paper.
4) Using the results of 3) simplify the flow graphs. This in-
volves computing MOD and alias information.
5) Discard all the inter-procedural results, and redo inter-
procedural analysis, including the pointer analysis described
in this paper.
6) Report those errors whose determination is based on
pointer analysis alone. This includes the deadlock detec-
tion described in this paper.
7) Report those errors that use data-flow analysis and sym-
bolic execution.

The above benchmark runs differ from our normal produc-
tion runs in one way. Some of the benchmarks consist of
several files. Normally we build the flow graphs in step 2)
for procedures in one file at a time. For the purposes of this
paper we combined all the source files into one, which caused
out-of-memory condition for Balsa under the least accurate
pointer analysis.

Increased precision of pointer analysis also has effect on
the search for sequential bugs in step 7), although that is
not the subject of this paper. Step 7) performs expensive
symbolic execution and theorem proving, whose run-time
swamps the time spent in pointer analysis. The effect of
larger precision is to increase or decrease the number poten-
tial bugs requiring the expensive checking, which causes a
wide variation in run-time. In terms of the number of (se-
quential) bugs reported the picture is a little clearer. Adding
strong updates (Section 4.3) on top of condition-sensitive
analysis (Section 4.2) had no affect on the bugs reported in
our benchmarks. Also adding order-sensitive analysis (Sec-
tion 4.1) on top flow-insensitive analysis had little effect;
in our benchmarks one false positive was eliminated. On
the other hand, adding condition sensitivity increased the
number of detected bugs substantially. The reason is our
conservative suppression of errors in the face of uncertainty,
which was reduced by more precise MOD analysis.

6. CONCLUSIONS
We have presented a pointer analysis that is accurate enough
for detecting certain concurrency bugs without overwhelm-
ing the user with false positives, and without the need for
symbolic execution. Its application to deadlock detection,
which handles pthread and the AIX libraries, is now in pro-
duction use.

The main strength of the pointer analysis is its ability to
handle statement ordering, program conditions and strong
updates, and do so without the usual expense of flow-sensitive
analysis. The experimental results show that the increase in
accuracy comes with very small penalty in run-time, and
may even improve run-time.
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