
RC24997 (C1005-018) May 17, 2010
Computer Science

IBM Research Report

Model-Based Dependency Analysis in Service Delivery
Process Management

Feng Liu, Qian Ma, Krishna Ratakonda*, Hao Wang, Liang Liu, Ying Chen
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100193

P.R.China

*IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

你

Abstract—Build up well-defined and optimized service
process is the key to deliver good service quality and service
satisfaction. An effective method of dependency analysis in the
service delivery process is the core to construct an optimized
process. However, with increasingly complicated services, there
is the large amount of the tasks elements with extreme complex
dependency in the service process. Under this situation, set up
correct relationship among tasks becomes time consuming and
error prone. In this paper, we propose a model-based
dependency analysis to automatically build up the dependency
relationship among tasks in the service delivery process. It
addresses the problem in analyzing dependency firstly and our
approach is given. Based on the dependency analysis, we also
propose several advanced analysis features on the process to
guide user to optimize the process via reducing the process cost.
Also a tool adopting our approach has been implemented and
introduced. Based on the tool, a case study about the test service
delivery process is illustrated to show the results.

I. INTRODUCTION

ncreasingly, with the severe competition for customers, the
service quality and the service satisfaction has been paid

more and more attentions[1]. One effective way to improve the
customer satisfaction is that provide good service quality. If a
service is delivered following a well-defined and optimized
process, it must be helpful to improve the service quality and
service satisfaction for the customer. Now the key issue is
that how to build up the service delivery process in a process
management system.

Process management [2] is an important concept on many
domains not only in software development but also in the
service delivery. A well-defined and optimized process can
help customer to reduce the cost and enhance the productivity.
And eventually, it can definitely improve the quality of the
product as well as accelerating deliver to the market.
Generally, the basic element in the process is the task which
performs the detail activity step by step defined by the
process. A core problem in how to construct the tasks and
build up to a well-defined process is to analyze the
dependency relationship. In a common simple process, most
relationships are straightforward and can be set up manually.
Even in a little more complex process it also can be accepted
by leveraging the knowledge from domain expert. But with

increasingly complex service process and dramatically
increased of the number of task scale, the relationship in the
process becomes ever more complicated. The manual way to
configure the task dependency relationship becomes
unacceptable with time consuming and error prone. The
existing methods to capture the dependency are focusing on
using fault injection which is usually used in a distributed
system

Manuscript received March 6, 2010.
Feng Liu, Qian Ma, Hao Wang, Liang Liu, Ying Chen are with the IBM

Research – China, Beijing, 100193, China. e-mail: {liufcrl,
maqian,wanghcrl,liuliang,yingch}@cn.ibm.com.

Krishna Ratakonda is with the IBM Thomas J. Watson Research Center,
Hawthorne, New York, US. (e-mail: ratakond@us.ibm.com)

[3][4]. These methods can discovery the dependency
and aid in problem diagnosis among the different component
in distributed application environment. It can solve the
problem in distribute system environment but can’t suite for
the service delivery process management. Another existing
approach is scenario-driven to trace dependency analysis
proposed in [5]. It only focuses on software development
process which based on the software model and software
engineering. Also it hardly suit for a more general service
delivery process.
 In this paper, we propose an approach to automatically
analyze the dependency relationship in the service delivery
process which is based on process model. First of all, we
would propose a process model to describe the process and
related element within the process. After the model definition
the approach overview and algorithms will be given to
automatically build up the dependency relationship in the
process. And based on the dependency relationship, some
advanced analysis features on the process would be proposed
to help and guide user to optimize and manage the process.

 The rest of this paper is organized as follows. In section
2, we will introduce the process model we adopted and the
formal description of the dependency relationship. And in
section 3 the approach detail to automatically build up the
dependency relationship will be given as well as related
algorithms will be illustrated. In the section 4 we will briefly
depict the architecture and implementation of the tool based
on the approach we proposed. And a case study about the
testing service process will be illustrated in the section 5. And
the related works and conclusion will be summarized in the
section 6 and 7 correspondingly.

II. APPROACH OVERVIEW

A. Process Model
Currently, there are many kinds of process model in the

process modeling domain [6][7][8]. In this paper, we would like
to propose a general process model to present the service
delivery process as shown in the figure 1. To simplicity, the
elements we would like to involve into this simplified model

Model-Based Dependency Analysis in Service Delivery Process
Management

Feng Liu, Qian Ma, Krishna Ratakonda, Hao Wang, Liang Liu, Ying Chen

I

include process, task, input and deliverable. Other elements
which are irrelevant to the dependency analysis have been
ignored in this simplified model.

1) Process
Process is the root model to present whole process. It

includes some common attributes such as process name,
owner and description. In addition to these basic attributes,
the process model should know which tasks are under it. So a
children task list attribute is added to process to present the
total tasks in this process.

2) Task
Task is the basic element in this process model to present

the basic operation unit. It defines the works which has been
assigned to a particular team member and the beginning and
end date of this task. In addition to these basic attributes, we
also define the two types of link in task to present the input
and output relationship which correspondingly link to the
input and deliverable artifact.

The type of input link presents to the input artifacts which
are required by the task. The inputs should be ready before
the task can be started.

The type of deliverable link presents to the output artifacts
which are delivered by the task. These deliverable delivered
by this task at same time are the inputs to the downriver tasks.

3) Input
Input is a type of artifact which presents the required

artifacts by the task. Generally, there are initial inputs from
the external system to the process to begin this process. And
other internal inputs into tasks are also the deliverables by the
previous tasks. The key attributes in input model are tag and
attachment. The attachment is the real document or any
material of the artifact. For example, the input into the task
“Write testing design document” maybe an empty testing
design template document. After processing by the task, it
should deliver a completed testing design document as its
deliverable.

To help to build the task dependency based on the inputs
and deliverables, we introduce “tag” mechanism. The

functionality of the “tag” will be illustrated in following
section.

4) Deliverable

Fig. 1. A Simplified Process Model

Deliverable is a type of artifact which presents the output
by the working task to other task. The attributes set in
deliverable are same as input as described above.

B. Dependency Formal Definition
In our tooling platform, the process is abstracted as a model

tree such as work breakdown structure (WBS). But from the
abstract perspective, the process is consists of tasks and is
constructed as directed graph.
Definition 1: Given that tx represents one task in the process,
the tasks and their dependencies relationship are depicted as a
directed graph while each task is represented as vertex and
the intra-task dependency as the directed edge. The directed
graph Process Graph (PG) is defined as:

),(EVPG = , where all tasks} , ∈= ttV |{

vvuvu tVttttE ∧∈><= ,|,{ depends on }ut
PG is basic abstract process diagram without weight

information. We would define more completed process
diagram with weight information on the edge future.
Definition 2: Given that PG and tv and tu represents two tasks
which have dependency relationship in PG, and wvu
represents the weight of the edge from tv to tu which the
weight value is equal as the estimate of the tv. The weighted
directed graph Weighted Process Graph (WPG) is defined as:

),(wEVWPG = , where all tasks} , ∈= ttV |{

vvuvuw tVttwttE ∧∈><= ,|,,{ depends on

wtu ∧ is the estimate value of }ut
WPG is PG with weights information on the edges. It will

be used for analyzing some advanced features on the process.
Definition 3: A task dependency path (TDP) is defined as:

Vtt vu ∈∀ , , if Vttt n ∈∃ ,...,, 21 , then

∧>∈<= EttwheretttttTDP uvnu 121 ,),,,...,,,(

EttEtt vn >∈<∧∧>∈< ,..., 21
TDP represents a task link chain in PG which can be either

with weight or without weight information.
Definition 4: Convert PG to an undirected process graph
(UPG). A connected component of UPG is a sub-graph in
which any two vertices are connected to each other by paths.
This connected component is defined as a Connected
Sub-Graph (CSG). All CSG of the PG should satisfy:

nCSGCSGCSGPG UUU ...21=
Definition 5: A Critical Task Path (CTP) in WPG is defined
as:
 iTDPCTP = , where has

.

iTDP

)max(
,,,

∑
>∈<∈ iTDPjiiTDPji EttVtt
ijw

III. DEPENDENCY ANALYSIS

A. Build Dependency Relationship in Process
Before the dependency relationship has been built up, the

process graph only include tasks nodes and related inputs and
deliverables but not link among the tasks. We propose a
method which leverages the inputs and deliverables artifacts
to analyze the task dependency in the process.

The meaning of task dependency is that the downstream
task needs some deliverables from its previous task as its
input. So these two tasks should be built a link to denote the
dependency link in the PG. In the process, there are lots of
artifacts as inputs and deliverables and related with various
tasks. So how to identify which input and deliverable should
be built a link is a key issue.

For example, in the testing service process there are two
tasks: 1) review and confirm test strategy and 2) determine
build strategy. The owner of the task 1 should review and
approve the test strategy document if this document is
meeting requirements. After the task 1, the task 2 should take
the approved test strategy document as input and write the
master test plan document via referring approved test strategy
document. This relationship is shown in figure 2.

In this case, we should identify two test strategy artifacts:
one is deliverable of the task 1 and other is input of the task 2.
These two artifacts contribute a logic relationship between
these two tasks – dependency. But there are probably many
artifacts to present various status of the “test strategy” in the
whole process either as inputs or deliverables. We need to
know which one is correct artifact to set up the dependency
link.

To identify correct pair of the artifacts, we would introduce
the “tag” mechanism within inputs and deliverables. The
“tag” is an additional attribute of the input and deliverable. It
represents the status and stage of the artifact. Every input and
deliverable should be attached a “tag” in addition to artifact
name. We leverage the combination of the tag and the artifact
name to identify correct pair of the input and deliverable.

Back to our above sample, the process would be changed
as figure 3.

According to combination of the artifact name and the tag,

we can setup a link between these two tasks and build up the

dependency in PG. Related algorithms will be illustrated in
next section.

B. Related Algorithms
1) Dependency Analysis

Based on the definition above, an algorithm to analyze the
tasks dependency in the process can be obtained. The
pseudo-code of the algorithm is listed as follows.

Input: V , all inputs and deliverables artifacts

Output: E
Algorithm: Dependency_Analysis
List inputSet = new List();
List outputSet = new List();
For each vertex t in V {
 For each t.input in t
 Put (t.input, t.id) into inputSet;
 For each t.deliverable in t
 Put (t.deliverable, t.id) into outputSet;
}
For each inputRecord in inputSet {
 For each outputRecord in outputSet {
 If(inputRecord.first.name == outputRecord.first.name
 &&inputRecord.first.tag==outputRecord.first.tag){
 Task tu = inputRecord.second;
 Task tv = outputRecord.second;
 Put <tu, tv> to E;
 }

}
}
Return E;

Fig. 2. Sample Tasks with Inputs and Deliverables

 This algorithm takes a complex data structure to store
input or deliverable artifact and its related task. Every node in
this list is constructed one structure of the artifact and its task.
After find a correct pair of input and deliverable, the
algorithm construct a link using two tasks related with input
and deliverable and put this link to the edge set E.

2) Build up WPG
Leveraging the edge set E we can build up the WPG which

is the abstract process graph with weight information on the
edge.

Input:),(EVPG =

Output:)(WPGadjMatrix
Algorithm: Buildup_WPG
Int[][] adjMatrix = new int[][];
Initialize adjMatrix;
For each edge <tu, tv> in E {
 Int w = tu.weight;
 adjMatrix[u][v] = w;
}
Return adjMatrix;

Fig. 3. Sample Tasks with Tagged Inputs and Deliverables
In this algorithm the adjacency matrix is used to present the

process graph. Every element on the position (u, v) in the
adjacency matrix represents the weight of the link from tu to tv.
The value of the weight shows that the estimate effort to
finish the task tu. If there is no edge between tu and tv, the

element in the adjacency matrix is 0.
3) Critical Tasks Path (CTP) Analysis

Base on the WPG and definition above, several
value-added analysis features can be performed. CTP
analysis is a valuable feature on the business process
management to tell user what is total estimate effort and
which tasks are critical nodes. It can guide user to optimize
critical tasks to reduce total effort of the whole process.

Input:),(wEVWPG =
Output: CTP
Algorithm: Critical_Task_Path_Analysis
List CSGSet = new List();
List CTPSet = new List();
CSGSet = Compute_All_CSG (WPG);
For each CSGi in CSGSet{
 CTPi = Compute_CTP(CSGi);
 Put CTPi into CTPSet;
}
Int maxEffort = 0;
For each CTPi in CTPSet {
 If(CTPi.totalEffort > maxEffort)
 targetCTP = CTPi;
}
Return targetCTP;

Compute_All_CSG (WPG)

For each task in V {
 Vi = all reachable vertices start from task
 },,|,{ EtvtuVitvtutvtuEi >∈<∧∈><=
 Put CSGi=(Vi, Ei) into CSGSet;
}
Return CSGSet;

Comput_CTP(CSGi)
 List CTP = new List();
 For each t in VCSGi {
 st = compute earliest start time for t;
 lt = compute latest start time for t;
 if(st == lt)
 put t into CTP;
}
Return CTP;
Normally, the process only has one connected component.

But this algorithm assumes a more general case in a process
diagram: it may be partly disconnected. So the algorithm tries
to find all connected components firstly and compute CTP for
every CSG. Then it is according to compare the total estimate
effort for every CSG to find the CTP which has max total
estimate for the whole process. And the task nodes on this
CTP are critical tasks for the process.

IV. PROCESS MANAGEMENT TOOL

A. Architecture
A process management tool has been developed based on

the Eclipse platform. Leveraging this tool the user can input

and build up the process, analyze the dependency within the
process, optimize the task distribution and calibrate the task
workload.

The architecture of the process analysis component is
depicted as the figure 4 below.

The user should provide all tasks and inputs and
deliverables information into the system via input UI. The
process dependency graph will be automatically built up after
tasks dependency analysis. Based on the process graph and

estimate information, the critical tasks path can be calculated
and reported in a graphic UI. It can guide user to calibrate and
optimize the process to improve the efficiency and save more
efforts.

B. Tool Implementation
In detail on the implementation of the tool, we build a

group of plug-ins based on the Eclipse platform. The process
model has been defined using EMF and a process work
breakdown structure editor is provided for inputting tasks
information and creating input and deliverable artifacts.

In addition to input process UI, the tool also contributes a
menu action UI to trigger analysis component and a report UI
to show the analysis results. Based on the report UI, user can
check critical tasks path and calibrate the estimate for every
task according to the analysis results then recalculate.

Fig. 4. Architecture of the Process Analysis Tool

Both UI and analysis component are implemented using
Java JDK 1.5. SWT and BRIT are used for implementing
report UI. Some screenshots of the tool will be shown in case
study section as follows.

V. CASE STUDY

A. Case Scenario
We would like to use the software testing service process

as an example to illustrate how the tool works on analysis for
the process. The software testing service process include
many tasks which cover every testing phases such as test
planning, test design and test execution. The test artifacts
such as test strategy document, test design document, etc.,
have been as inputs and deliverables and flow in the process.

The left-top section is the process management explorer.
The user can create new process and trigger the analysis
action on specific process. Also the process analysis tool
provides an editor to create tasks with inputs and deliverables.
After creating these tasks elements, the tool construct the
process as a work breakdown structure in the process editing
area as shown in figure 5 below.

After tasks information preparation, we can start the
dependency analysis to build up the relationship in the
process and execute more advanced analysis features on the
process. The result graph of the dependency analysis is
shown in figure 6.

B. Advanced Analysis Features
Based on the process graph analysis, the tool also provides

the functionality to analyze critical task and the critical paths.
The analysis result will be shown in report UI component as
follows figure 7 and figure 8.

This analysis report shows that the critical tasks list and the
ratio of the critical tasks in total tasks. In the task list, user can
calibrate the estimate for every task and the updated result can
be recalculated and displayed automatically. Following the
critical task list view, a report pie chart presents how many
critical tasks in the total.

Fig. 7. Report UI on Critical Tasks

Fig. 5. Process Editing UI to Input Tasks

Fig. 8. Report UI on Critical Task Paths

Fig. 6. Result Graph of Process Dependency Analysis

The diagram in figure 8 shows the critical task path using
Gantt chart. Because there may be not only one critical path in
a process, this view gives all critical paths in the process. The
x-coordinate represents date and the y-coordinate represents
the task id. Also the length of the task node presents its
estimate.

VI. RELATED WORKS
There are several research approaches on process

construction which our works is related. The famous process
frameworks to guide construct process are RUP and OMG.
These process frameworks provide a group of methodology
and guidance to model the process in a conceptual level.

Other more detail level approach to construct the process is a
scenario-driven way proposed in [11]. And an industry
process construction approach is introduced by Rachel
Cooper in [12]. These methodology and approaches either
provide guidance on modeling process or detail method to
construct the process.

With respect to the dependency analysis, a main research
direction is focusing on the fault injection. This approach
captures the dependency in distributed system via injecting
fault into the related components. The advantage of this
method is that it has ability to dynamically discovery
dependency. But in service delivery process, there is no
evidence dependency among tasks like as application
components in distributed system. We should trace the
artifacts flowing in the process to build up the dependency.
So fault injection method hardly applies into dependency
analysis in the service delivery process.

VII. CONCLUSION AND FUTURE WORKS
In this paper, a model-based dependency analysis approach

for service delivery process has been proposed. This method
can automatically build up the dependency relationship
among tasks and help to improve the efficiency and quality of
the service delivery process. Based on the dependency
analysis, some advanced analysis features on the process also
been proposed to guide user more clearly understand which
tasks are critical in the process and how to reduce time cost
for whole process.

Several extension directions can be planned in future
works. First of all is about the model extension. In this paper
we just propose a simplified process model to present the
process. Actually, in a service delivery process should
include more complex level model to present the real business
requirements. For example, we should consider separating
process into several phases instead of directly to tasks.
Because most service delivery processes include more than
one stage which includes a group of tasks. Divide process to
multiple levels model is more close to real process. The
related issues are how to group the task to the phase and how
to build up the dependency among phases according to the
tasks dependency.

Another is that how to optimize the algorithm to build up
the dependency more effectively. Especially if we extend the
model of the process to multiple levels, we should consider
improving the algorithm to enable it to adapt more complex
process model.

REFERENCES
[1] N Seth, SG Deshmukh, P Vrat, “Service Quality Models: A Review”,

International Journal of Quality & Reliability Management, Vol. 22 No
9, 2005, pp. 913-949

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, “Business
Process Management: A Survey”, Proceedings of the 1st International
Conference on Business Process Management, volume 2678 of LNCS

[3] Saurabh Bagchi+, Gautam Kar, Joe Hellerstein, “Dependency Analysis
in Distributed Systems using Fault Injection: Application to Problem
Determination in an e-commerce Environment”, 12th Intl. Workshop

on Distributed System: Operation and Management DSOM’2001
Nancy France, October 15-17, 2001

[4] A. Brown, G. Kar, A. Keller, “An Active Approach to Characterizing
Dynamic Dependencies for Problem Determination in a Distributed
Application Environment,” IEEE/IFIP International Symposium on
Integrated Network Management, pp. 377-390, 2001.

[5] Alexander Egyed, “A Scenario-Driven Approach to Trace Dependency
Analysis”, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 29, NO. 2, FEBRUARY 2003 1

[6] Pnina Soffer, Yair Wand and Maya Kaner, “Semantic Analysis of Flow
Patterns in Business Process Modeling”, Lecture Notes in Computer
Science, 2007

[7] Recker, Jan C. and Rosemann, Michael and Indulska, Marta and Green,
Peter, “Business Process Modeling: A Comparative Analysis”, Journal
of the Association for Information Systems, 10(4). pp. 333-363.

[8] Alexander Dreilinga, Michael Rosemannb, Wil M.P. van der Aalstc,
and Wasim Sadiq, “From conceptual process models to running
systems: A holistic approach for the configuration of enterprise system
processes”, Decision Support Systems Volume 45, Issue 2, May 2008,
Pages 189-207

[9] Theodora Kourti and John F. MacGregor, “Process analysis,
monitoring and diagnosis, using multivariate projection methods”,
Chemometrics and Intelligent Laboratory Systems Volume 28, Issue 1,
April 1995, Pages 3-21

[10] Graham Winch, “Models of manufacturing and the construction
process: the genesis of re-engineering construction”, Building Research
& Information, Volume 31, Issue 2 March 2003 , pages 107 – 118

[11] Julio Cesar Sampaio do Prado Leite, Graciela D. S. Hadad, Jorge
Horacio Doorn and Gladys N. Kaplan, “A Scenario Construction
Process”, Requirements Engineering, Volume 5, Number 1, 2000.7.

[12] Rachel Cooper, Michail Kagioglou, Ghassan Aouad, John Hinks, “The
Development of a Generic Design and Construction Process”

http://www.emeraldinsight.com/Insight/ViewContentServlet?Filename=/published/emeraldfulltextarticle/pdf/0400220903.pdf
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-4N43RHR-1&_user=10&_coverDate=05%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1236056072&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8da54740690f5b0fc76ae82e4cce5018#vt1#vt1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-4N43RHR-1&_user=10&_coverDate=05%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1236056072&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8da54740690f5b0fc76ae82e4cce5018#aff1#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-4N43RHR-1&_user=10&_coverDate=05%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1236056072&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8da54740690f5b0fc76ae82e4cce5018#vt2#vt2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-4N43RHR-1&_user=10&_coverDate=05%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1236056072&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8da54740690f5b0fc76ae82e4cce5018#aff3#aff3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-4N43RHR-1&_user=10&_coverDate=05%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1236056072&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8da54740690f5b0fc76ae82e4cce5018#vt3#vt3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-4N43RHR-1&_user=10&_coverDate=05%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1236056072&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8da54740690f5b0fc76ae82e4cce5018#aff4#aff4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-4N43RHR-1&_user=10&_coverDate=05%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1236056072&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8da54740690f5b0fc76ae82e4cce5018#vt4#vt4
http://www.sciencedirect.com/science/journal/01679236
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235878%232008%23999549997%23689763%23FLA%23&_cdi=5878&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=e9f2875aecf2ca7078f81fd6d09a212a
http://www.sciencedirect.com/science/journal/01697439
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235232%231995%23999719998%23345467%23FLP%23&_cdi=5232&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=5b53361171f842708ed31b5dff6dc02a
http://www.informaworld.com/smpp/title%7Edb=all%7Econtent=t713694730
http://www.informaworld.com/smpp/title%7Edb=all%7Econtent=t713694730
http://www.informaworld.com/smpp/title~db=all~content=t713694730~tab=issueslist~branches=31#v31
http://www.informaworld.com/smpp/title~db=all~content=g713762955
http://www.springerlink.com/content/102830/?p=85c3cf931f1c402689118e9c6fd96ec5&pi=0

	I. INTRODUCTION
	II. Approach overview
	A. Process Model
	B. Dependency Formal Definition
	III. Dependency analysis
	A. Build Dependency Relationship in Process
	B. Related Algorithms
	1) Dependency Analysis
	2) Build up WPG
	3) Critical Tasks Path (CTP) Analysis

	IV. Process management tool
	A. Architecture
	B. Tool Implementation

	V. Case study
	A. Case Scenario
	Advanced Analysis Features

	VI. Related works
	VII. Conclusion and future works

