
RC25003 (W1005-133) May 27, 2010
Computer Science

IBM Research Report

There’s Something Stuck In My Shoe!

Larry Koved
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

There's Something Stuck In My Shoe!
Reflections on the adoption of fine and course grained authorization frameworks

 Larry Koved
IBM T.J. Watson Research Center
Yorktown Heights, New York 10598

koved@us.ibm.com

ABSTRACT
A usable system has many layers. There is the end-users’
experience through web sites, interactive voice response systems,
ATMs, etc. Below these interfaces are the tools and technologies
to create and operate these systems. Security of deployed systems
is often dependent on the functionality and usability of these
underlying technologies. This paper focuses on usability issues
surrounding these underlying security technologies and our
attempts to transfer these into products. Specifically, technology
related to Java 2 Standard Edition (J2SE), Java 2 Enterprise
Edition (J2EE) and Web 2.0 mashup security.

General Terms
Security, Human Factors, Standardization, Languages.

Keywords
Technology Transfer, Java Standard Edition, J2SE, JSE, Java
Enterprise Edition, J2EE, JEE, Eclipse, IDE, Static Analysis,
Netscape Navigator, Applet, Permission Analysis, SWORD4J,
Mashup Security, OpenAjax Alliance Hub 2.0, Secure Mashups,
SMash.

1. INTRODUCTION
Creating secure software systems is a challenge for most
developers, architects, system administrators and others involved
in the creation, deployment and operation of systems. Much of the
software currently deployed, whether for the internet,
departmental usage or cloud based software services, is
increasingly built on top of complex software frameworks,
middleware components, 3rd party software and deployment
configurations. Experience with securing composition of these
software elements has had mixed results. Securing of such
systems is often as complex, or more complex, than the
applications themselves. We have seen this phenomenon in the
deployment of Java-based systems and browser-based mashups.
This paper will describe some of our experiences with securing
such systems, and our attempts to deploy usable solutions to
securing these systems.

2. JAVA STANDARD EDITION
In the early days of Java, Netscape Communications adopted Java
to provide client-side functionality not previously possible in web
browsers. The result was the Applet programming model
[Applet] where Java code could be downloaded from one or more
web sites and executed in the browser. The marketing slogan was
Write Once, Run Anywhere [WORA]. From a security
perspective, the challenge was to limit code access to sensitive
resources, including networking, file I/O, and runtime specific
functionality [Dean96]. The initial thought was to assign a
security principle to each class that was in the application,
otherwise known as the "code source" -- the origin of the code
(e.g., host) and/or a digital signature [Gong98]. "Stack
introspection" identified which principles were currently
executing, and authorization decisions were based on the
intersection of the authorizations (Permissions) associated with
the executing principles [Gong98, Pistoia04].

Netscape defined a "capability" framework whereby the logic to
assign construct an authorization policy database was embedded
within the deployed application. Authorization policies for the
principles were typically built up through user interaction via
pop-up windows. In effect, the end-user became the security
policy administrator. Because the Java runtime would
periodically change as security vulnerabilities were identified and
patched, authorization policy changes would be needed. To the
surprise of and end-user, a web site that was working one day
could stop working right after Java security patches were
installed. Frequently the application developer would not be in a
position to (rapidly) update the authorization policy pop-up code
to account for the new authorization requirements. This became
an annoying and frustrating aspect of using Netscape’s Java.

As Netscape was leaving the Java business, IBM proposed to
JavaSoft1 that a static analysis tool be created to identify the
authorization requirements / policies for Applets and Java 2
Standard Edition (JSE). The purpose was to identify the
authorization requirements prior to executing the Applet, or other
J2SE application, and distribute the proposed authorization policy
with the code (e.g., in the JAR file [JAR]). The Applet
framework in the browser, rather than in the application code,
could then prompt for allowing / denying the Permissions based
on pre-computed authorization requirements.2

1 During the early days of Java, JavaSoft was a business unit in Sun Microsystems

that focused on the development and distribution of the Java™ technology.
2 The alternative would be to use dynamic analysis whereby the authorizations

would be captured during runtime, e.g., in the SecurityManager, and generate a
policy file from running the test cases. An example of this is jChains [jChains].
The merits and drawbacks of static and dynamic analysis are outside the scope of
this paper.

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee.

Security & Privacy Usability Technology Transfer: Emerging Research
(SPUTTER) Workshop, at the Symposium On Usable Privacy and
Security (SOUPS) 2010. July 14, 2010, Redmond, WA, USA.

Creating an very accurate Java Permissions static analysis tool
that was not overly conservative and complete turned out to be a
hard task [Koved02]. Java permissions require one or two String
values that (1) specify the protected resource, and (2) the required
operations (e.g., read, write, update, etc.) are non-trivial string
analysis computations. Lack of path-sensitive analysis could
result in over specification of authorization requirements. Also,
significant parts of the Java runtime is written in C or C++, which
is a non-trivial exercise to incorporate into a Java code analysis.

We did have modest success with several IBM products using our
static analysis technology. Our “technology transfer” was largely
based on running the core permission analysis algorithms
[Koved02] and producing textual reports (flat files and HTML)
for the development groups building the products. These reports
described required specific authorization requirements. While the
reports were sufficient for the products to enable the Java code-
based authorization system, product performance could suffer and
the security analysis process was very time consuming.

The biggest challenges in the security enablement process was in
identifying places in the application code where calls to
AccessController.doPrivileged() were required, and to verify that
these calls were being done safely. Correct doPrivileged()
placement can require substantial time to trace the call paths to
verify (1) the control flow path is likely to be traversed by the
application, and (2) no tainted data will slip through and violate
the intended security policy. This also would require some
refactoring of the source code for the call to doPrivileged(). We
recognized that working from textual reports probably limited
wider-scale adoption of the static analysis technology at that
time.3

In 2000, for server based Java code, security of composite
software from multiple sources/origins was not a pressing
concern. Code was not being dynamically downloaded from the
internet into servers. The prevailing assumption was that all
component software would need to be trusted when run in a
server. This was no different than earlier, non-Java, applications
run in servers. As a result, server-side products were not seeing a
clear benefit from adopting the code-based Java security model.

However, in about 2003-2004, Java-based desktop applications
were being built. The Eclipse Rich Client Platform (RCP) [RCP,
McAffer] was intended to provide an underlying runtime to
support them. A number of commercial products have been built
on this platform. RCP includes the OSGi layer [OSGi], which
supports the Java Standard Edition (JSE) authorization model.
We took our static analysis technology for Java permissions
[Koved02], integrated it into the Eclipse Integrated Development
Environment for Java (IDE) to ease many of the time consuming
parts of the Java permission analysis. This integration provided
inline notification of authorization requirements, and with a few
clicks of the mouse, the developer could update the Java
authorization policy [alphaWorks, Habeck08]. This tooling also
supported a number of other security analyses and limited code
refactoring to enhance code security.

3 This was prior to wide-scale deployment of the Eclipse IDE, so there were multiple

choices for source code editing and debugging. Once Eclipse became IBM’s
primary Java development environment, the choice for our tool integration
became obvious for subsequent projects.

Our goal was to get Eclipse RCP updated so that we could turn on
the OSGi code-based authorization so that RCP applications could
use the Java security sandbox to isolate untrusted code (e.g.,
Eclipse plug-ins). Since Eclipse is an open source project, the
tools needed to be freely available. We met this requirement by
making our tool, SWORD4J, available via IBM’s alphaWorks
web site [alphaWorks]. Using SWORD4J [Habeck08], we did
analysis of most of Eclipse RCP and its dependent components to
gauge the effort required to do the permission analysis. We did
this work iteratively, each time identifying additional manual
operations and time consuming steps that could be further
improved through automation. In the end, we had substantially
reduced the time required to perform the analysis. However, the
real “technology transfer” hurdles were not technical.

We needed to convince the Eclipse Equinox project [Equinox]
that (1) there was a business need, (2) its importance relative to
other possible projects, (3) the cost of maintaining the security of
the RCP code after the changes were made was reasonable, (4)
identify who would make the initial and future code changes to
maintain security and policies, (5) there would be support for
SWORD4J (or similar tooling) to support this activity on an
ongoing basis, and (6) the runtime overhead with and without
Java runtime authorization turned on would not be unacceptable
to the Eclipse RCP development community.

We built a “secure” version of Eclipse RCP and ran performance
benchmarks. The performance numbers were generally very
good, although there was modest performance overhead in a few
components. We created educational material to describe the
Java 2 security model, work required to update Eclipse RCP and
dependent components. The big challenge was in getting the
developers signed up to do the initial work and the ongoing
maintenance. While it was feasible for IBM to build the initial
version of securing the code, ongoing maintenance would need to
be done by the component owners. There were some
organizational changes, and this effort lost steam.

2.1 Technology Transfer Lessons Learned
We were working with a ‘standard’, Java. We operated under the
naïve assumption that system developers would put in the extra
resources to make their technologies ‘secure’. This was true for
systems that needed to conform to a standard (e.g., J2EE
compliance) or had customers who wanted systems that were
more secure. We had worked closely with the JavaSoft team and
understood the technology very well. The original target for Java
security had been Applets, which generally were relatively small.
Perhaps everyone involved in the Java security technology
development underestimated the effort to enable JSE security in
large commercial-scale systems.

We had very good working relationships with some of our early
customers based on prior work. That helped with the initial
‘technology transfer’ effirts. In the absence of that relationship, it
may have been much harder to have affected the transfer given
the cost and technical challenges in effectively deploying JSE
security.

Our attempts to transfer the technology to Eclipse RCP were not
successful to the extent that we wanted due to the requirements
for ongoing support, not just the initial development effort. Each
successive round of open source developers to develop and
maintain RCP would need to learn JSE security. In addition,
significant resources would have been required to test / validate

security each time there was a new build of RCP. The Eclipse
development teams typically worked in six week sprints, so
addressing security on such short windows would have required
significant resource expenditure, even for small changes to the
code base.

Tools to make a security model more usable can not overcome
fundamental attributes of the core security technology. JSE
security may be technically elegant, but is expensive to
implement and maintain in real applications.4 Without
SWORD4J it is technically challenging and time consuming.
There are many steps to secure an application. Without tooling,
some of the steps may not be feasible in a reasonable amount of
time, and they are very tedious (e.g., taint analysis for XSS, CSS,
SQLI vulnerabilities). With appropriate tooling, it is less time
consuming, but still challenging. These same lessons apply to
web application development and many other domains. If the
security technology you are trying to transfer is cost prohibitive
with respect to the resources available (people, skills, compute
resources, etc.) and the perceived need (e.g., necessary
conformance to a standard), technology transfer is far less likely
to happen.

3. JAVA ENTERPRISE EDITION
As opposed to Java Standard Edition, Enterprise Edition (EE)
[JavaEE, Pistoia04] was a multi-company collaboration. Unlike
with Java Standard Edition, there was no need to address code
composition authorization. In addition, significant deployment
aspects of EE applications are driven by declarative statements
(deployment descriptors) that described the operational
environment of the code, including security. Use of declarative
security was a positive step since the Netscape experience with
embedded code for security pop-ups and shifting authorization
requirements for the runtime had been a negative experience. The
challenge here was around defining principles and subjects for
authorization. Confidentiality and integrity, also declaratively
specified, would nominally be handled by SSL. For the purposes
of this paper we’ll use Enterprise Java Bean (EJB) [EJB,
Pistoia04] security as the example. Once the Java EE
specification was defined, it would need to be adopted by all
vendors that wanted to be “compliant”.

The biggest questions were about the principles and resources to
be protected. Choices for resources included object, such as an
Enterprise Java Bean (EJB), a method in an EJB, or the data upon
which the EJB operates. Declaratively defining authorization
requirements on an EJB or one of its methods is straightforward.
Defining declarative security on the data is more challenging. For
example, there are some authorization decisions that can only be
made based on data values, not functions. A typical example is
authorization to withdraw funds from a bank account. A principle
may be authorized for the withdraw funds method, but should not
be allowed to withdraw funds from any account.

A decision was made to define authorization with respect to
operations (EJB methods). The negative effect has been that data-
centric authorization requires application specific authorization
code. Embedding authorization logic in the applications makes
the applications more brittle with respect to policy requirement

4 We have described securing an RCP application when you don’t have supporting

tools versus when you are using SWORD4J [Koved07, Habeck08].

changes, as we had seen with the Netscape security model. Also,
in practice, course-grained authorization policies typically are
defined for these applications, thus violating the principle of least
privilege [Saltzer74]. As we had done with JSE Permissions
[Koved02], we developed a static analysis algorithm to determine
the JEE authorization policies [Pistoia05]. Unfortunately this was
not a customer problem of great interest since it did not cover data
access authorization, just function access authorization. In
practice it was easier to define very course grained authorization
policies for J2EE applications.

4. Technology Transfer Lessons Learned
A wise (non-security) sage once told me that the way to get a
technology into products and have broad impact is to get it into
the standard. (The corollary is “be careful what you wish for”!).

Our J2EE security technology transfer was ‘successful’. We had
very good working relationships with the JEE standardization
community. Our security proposal made it into the standard.
Security concerns were addressed. As with JSE security, JEE
security ended up being focused on access to function rather than
the data. That shortcoming has reflected negatively on JEE
security and has not yet been addressed at the standards level.

The details of usability JEE security is largely left up to the
vendors implementing JEE. It will largely depend how well you
can work with the folks who create the security tooling to get the
right use cases and think through the complexity of deploying
declarative security. Again, the most important issue is to think
through, model and validate (where possible) the number of steps
required to secure an application, as well as the complexity and
cognitive load associated with each step. Authorization, integrity
and confidentiality are just a few aspects of the security puzzle.
The other aspects (XSS, CSS, SQLI, etc.) are as challenging, if
not more so.

In retrospect the usability of the technology can be questioned
since there are so many security vulnerabilities discovered in web
applications. Although a recent (2010) WhiteHat study of web
applications [WhiteHat] found that JSP applications (JSP is a
subset of JEE) have roughly the same level of security in practice
as many other web application programming models.

5. WEB 2.0 MASHUP SECURITY –
SMash / OAA Hub 2.0
An important software trend for web applications is ‘mashups’:

In web development, a mashup is a web page or application
that uses or combines data or functionality from two or many
more external sources to create a new service.5

Mashup security was virtually non-existant when we started this
work. The “best practices” for building mashups described how to
deliberately bypass security. As a result, there was significant
negative press about mashup security. Because of the investment
that IBM was planning in this area, it was important to address the
security requirements and change the perception about mashup
insecurity.

5 http://en.wikipedia.org/wiki/Mashup_%28web_application_hybrid%29

We started working with the OpenAjax Alliance6 (OAA), an
industry standards group addressing the software development
requirements for interoperable components in support of mashups.
There was a proposal to use mechanisms similar to Java Standard
Edition (JSE) security for composite software applications in the
browser. Based on our experience with JSE security, we strongly
recommended against taking that approach. Rather than fine-
grained security policies as found in JSE and functional security
as found in JEE, we focused instead on course-grained
mechanisms that would address information flow security. We
proposed using strong isolation of components with well defined
intermediated inter-component communication. Our proposal
was to use a mediated pub-sub model for all inter-component
(cross-domain) communication, where authorization policies
could be deployed in the pub-sub mechanism, and focus on
information flow policies [DeKeukelaere]. Pub-sub is a well
known programming model that has been in use for many years.
In addition, many programmers have had extensive experience
with Microsoft COM [COM] and CORBA [CORBA], so they are
familiar with writing code to communicate with program
interfaces.

OAA is made up of over 100 organizations, including most of the
large software vendors. Within OAA there are task forces to
address specific technical areas. The Security Task Force was
formed to address mashup security requirements. This task force
had a small active group of participants from several companies,
with varying levels of security expertise. We focused on
understanding the existing programming models used by the
developers of these mashup applications. A key objective was to
minimize the number of new concepts and code that would be
needed for these developers to adopt secure programming
practices. If possible, the communication mechanisms would be
secure by default and efficient enough that programmers would
want attempt to bypass security due to performance or functional
limitations.

Our proposal meshed very well with the existing OAA inter-
component communication mechanism, OpenAjax Hub 1.0
[Hub1.0], which was already based on a pub-sub model. We
designed and developed the secure communication mechanisms
and API’s [Hub2.0, DeKeukelaere]. The API’s for the mashup
developers was a small extension to the existing API’s, thus
meeting the goal of reducing the number of new concepts and
code needed to secure mashups.

5.1 Technology Transfer Lessons Learned
Again, we worked closely with the standards group. We defined
the scope of security requirements with the task force,
interlocking with the other work groups and proposals in the
organization. For mashup security we chose to focus more on
information flow security. We were able to piggy back on existing
API’s and extend a few to cover the cross-domain communication
requirements. Many of the security mechanisms are not visible to
the programmers.

To be successful, we needed the technology to be adopted by
products and/or open source code. So, in parallel, we initiated
discussions with several products and services that were building

6 http://www.openajax.org

mashup-based tools and systems. Fortunately their customers
were asking for mashup security.

As noted earlier, getting the technology into the standard implies
that others will implement (or adopt) the technology. In this case,
we released an open source a reference implementation on
SourceForge [HubSource]. OpenAjax Hub 2.0 has been adopted
by IBM products and seems to be on track for adoption by other
OpenAjax Alliance members. There is ongoing work to
incorporate OpenAjax Hub 2.0 into OpenSocial [OpenSocial]
since OpenSocial lacks cross-domain security mechanisms.

6. FINAL THOUGHTS
As with all research, security technology transfer is difficult.
Having significant supporters can make a huge difference.
Although, no matter how much ‘support’ you may get, the
complexity of the security technology may sink your best efforts.

Understand your customer and the target deployment
environment. What goals are your customers trying to achieve?
Are there security models that can provide a simple security
abstraction? How well does that abstraction mesh with the other
of the tasks that need to be performed by your customers?

Usability of security technology occurs at many levels. If the
underlying security models are complex, and if that complexity
can not be abstracted away, then the security technology may not
be well understood or appreciated by the target community. This
can significantly inhibit adoption by those whom you are
targeting.

As Alan Kay said, “Simple things should be simple, complex
things should be possible.” Consider the number of steps needed
to configure and deploy security. Are these steps consistent and
in alignment with or well integrated into the other tasks need to
configure and deploy applications? Keep in mind that the person
configuring and deploying the applications may not be the
person(s) who developed the code. How do these communities
(developers, deployers, and operators) communicate security
requirements, assumptions and concerns?

How many steps are required to secure an application? Many
(most?) deployers and operators are not security savvy. If there
are many steps, you may be asking the security naïve to make
decisions about which they lack a well formed base or mental
model to draw upon. It may be best to offer secure defaults.
Remember Alan Kay.

Having focused on making security and privacy fit into the
environment, making it simpler to understand, configure and
deploy, you should have a simpler story to ‘sell’ to your
customers – the developers and product organizations.

Cultivate relationships with your customer community. They are
the ones you need to adopt your technology. If you have a clear
security and privacy story that fits well with their mental model of
the deployment environment, they can carry the story out to their
customers to validate that it meets their customer’s requirements.
You need them to validate that your ideas are on target, and have
them give you useful feedback on how to adapt and refine your
technology. They can be your best allies. Or they totally dismiss
you if they don’t feel that you understand their (and their
customers’) needs.

Visit your customer’s customers. Understand their security and
privacy needs. Even more importantly, understand their business

and how technology fits into their business. Then you can
evaluate where security and privacy fits into their business model.
Is your technology a “cost of doing business”, or providing value-
add to their customers? If you are a cost, you will have a harder
sell (unless mandated by standards, regulation or law). If you can
identify a value-add to the customer, you are no longer a “cost”
that strictly needs to be minimized.

7. ACKNOWLEDGEMENTS
Many people contributed directly or indirectly to the technologies
described in this paper, including Sumeer Bhola, Marina
Biberstein, David Boloker, Ian Brackenbury, Suresh Chari, Hyen
V. Chung, Don Ferguson, Matthew Flaherty, Frederik De
Keukelaere, Jon Ferriaolo, Don Ferguson, Aaron Kershenbaum,
Eric Li, Jeff McAffer, Bilha Mendelson, Tony Nadalin, Nataraj
Nagaratnam, Adam Peller, Marco Pistoia, Sara Porat, Jay
Rosenthal, Naohiko Uramoto, Sachiko Yoshihama, Mary Ellen
Zurko, members of the OpenAjax Alliance and the Security Task
Force, members of the Eclipse Equinox project, my former
managers who supported the work reported here, and others
whom I have inadvertently omitted (I apologize!).

8. REFERENCES

[alphaWorks] http://www.alphaworks.ibm.com/tech/sword4j

[Applet] http://java.sun.com/applets/

[COM] http://www.microsoft.com/com/

[CORBA] http://www.omg.org/gettingstarted/corbafaq.htm

[Dean96] D. Dean, E. Felten, D. Wallach, Java Security: From
HotJava to Netscape and Beyond. Proceedings of the
1996 IEEE Symposium on Security and Privacy, IEEE
Computer Society, Berkeley, May 1996.

[EJB] http://java.sun.com/products/ejb/

[Equinox] http://www.eclipse.org/equinox/

[DeKeukelaere] Frederik De Keukelaere, Sumeer Bhola, Michael
Steiner, Suresh Chari, Sachiko Yoshihama: SMash:
secure component model for cross-domain mashups on
unmodified browsers. Proceedings of the 17th
International Conference on World Wide Web, WWW
2008, Beijing, China, April 21-25, 2008.

[Gong03] Li Gong, Gary Ellison, Mary Dageforde, Inside Java™
2 Platform Security: Architecture, API Design and
Implementation (2nd Edition). Prentice Hall, June
2003, ISBN 0201787911.

[Gong98] L. Gong, R Schemers, Implementing Protection
Domains in the Java™ Development Kit 1.2.
Proceedings of the Network and Distributed System
Security Symposium, NDSS 1998, San Diego,
California, USA.

[Habeck08] Ted Habeck, Larry Koved, Marco Pistoia,
SWORD4J: Security WORkbench Development
environment 4 Java. IBM Research Report RC24554,
IBM T.J. Watson Research Center, Yorktown Heights,
New York 10598, May 2008.

[Hub1.0]
http://www.openajax.org/member/wiki/OpenAjax_Hub
_1.0_Specification

[Hub2.0]
http://www.openajax.org/member/wiki/OpenAjax_Hub
_2.0_Specification

[HubSource] http://sourceforge.net/projects/openajaxallianc/

[JAR]
http://java.sun.com/docs/books/tutorial/deployment/jar/i
ndex.html

[JavaEE] http://java.sun.com/javaee/

[jChains] http://www.jchains.org/

[Koved02] Larry Koved, Marco Pistoia, Aaron Kershenbaum,
Access rights analysis for Java. Proccedings of the 17th
ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications
(OOPSLA), Seattle, Washington, 2002.

[Koved07] Larry Koved, Ted Habeck, Making Security
Accessible to Programmers: Lessons Learned. IBM
Research presentation, 2007.

[McAffer] Jeff McAffer, Jean-Michel Lemieux, Eclipse Rich
Client Platform : Designing, Coding, and Packaging
Java™ Applications. Addison-Wesley Professional,
October 2005, ISBN 0321334612.

[OpenSocial] http://code.google.com/apis/opensocial/

[OSGi] http://www.osgi.org, http://www.eclipse.org/osgi/

[Pistoia04] Marco Pistoia, Nataraj Nagaratnam, Larry Koved,
Anthony Nadalin, Enterprise Java™Security: Building
Secure J2EE™Applications. Addison-Wesley
Professional, February 2004, ISBN 0321118898.

[Pistoia05] Marco Pistoia, Robert J. Flynn, Larry Koved,
Vugranam C. Sreedhar, Interprocedural Analysis for
Privileged Code Placement and Tainted Variable
Detection. ECOOP 2005 - Object-Oriented
Programming, 19th European Conference, Glasgow,
UK, July 25-29, 2005, Proceedings. Lecture Notes in
Computer Science 3586 Springer 2005, ISBN 3-540-
27992-X

[RCP] http://wiki.eclipse.org/index.php/Rich_Client_Platform

[Saltzer74] Jerome H. Saltzer and Michael D. Schroeder, The
protection of information in computer systems. Fourth
ACM Symposium on Operating System Principles,
October 1973, Communications of the ACM 17, 7, July
1974.

[WhiteHat]
http://www.whitehatsec.com/home/resource/stats.html

[WORA]
http://www.computerweekly.com/Articles/2002/05/02/1
86793/write-once-run-anywhere.htm

