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ABSTRACT
As biotechnologies improve, coupled with falling costs, more and
more genomic data becomes available fostering a renewed interest
in understanding recombinational dynamics at unprecedented lev-
els. In this paper, we survey the field for established as well as ex-
ploratory methods for handling the challenging task of untangling
recombinations in observed data. These include ways to measure
the effects of recombinations as well as infer the recombination
events (crossover) themselves. We next track the progress made in
model (or phylogeny) based approaches as they have the potential
for ushering in the recombinome, the set of all the crossover points
along the chromosome in a given organism.

General Terms
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1. INTRODUCTION
As next generation sequencing and other related biotechnolo-

gies, including robotic technologies, improve in leaps and bounds,
more and more data become available, paving the way for interest-
ing genome-wide analysis. The improvements in the last decade
have made high throughput sequencing very inexpensive, increas-
ing accessibility to the technologies which in turn lead to building
of extensive data repositories [19]. Not only does the volume of
data increase, but so does its resolution. i.e., the genomic data of
not just a generic member of the species, but that of a specific mem-
ber is becoming available at unprecedent levels. Thus the trend is
towards understanding the variations/relationships within a species
at increasing levels of detail.

The relevant genetic events that are responsible for these ge-
nomic variations can be broadly classified into two: (a) duplica-
tion and (b) genetic exchange events. Single nucleotide polymor-

∗The term was coined by Jaume Bertranpetit.

phisms (SNP), short tandem repeats (STR) and copy number varia-
tions (CNV) are examples of effects of the genetic processes of the
first category. Recombinations and gene exchange events are in the
second category of genetic processes. Since the second category
has the effect of shuffling the DNA material through generations,
the detection of these events in a given set of extant units is quite
challenging. However, almost the entire genome (at least more than
98%) of the organisms are subjected to these confounding shuffling
genetic events. Thus there is little respite from these processes in
any genome-wide analysis.

Any approach to understanding recombinations studies the foot-
prints that past genetic events have left on the genome. Curiously
enough, we must presuppose mutation events in the chromosome to
study, understand or measure recombination events. As an extreme
case, if there were no mutations (and no other such detectable du-
plication events), all recombiantions would go undiscovered for all
practical purposes. In literature, mutations are assumed to occur
under an infinite sites model. The simple implication is that no two
mutations occur at the same site (assuming that the genome strand
is of infinite length). This is a considerable simplification but this
model is widely accepted, applicable to most of the genome (highly
mutative sites like CpG islands being an exception). An important
implication is that there are no back or parallel mutations: this im-
plies that if a site mutates say from A to a, then across subsequent
generations, only the descendants of this site (and none others) will
display the mutated value of a. For this discussion we assume SNP
datasets: as mentioned earlier SNPs are genetic variations of a sin-
gle nucleotide base. SNPs are the most abundant and well studied
form of genetic variation which have gained immense popularity in
genetic studies due to the continuing improvements in the under-
lying biotechnology and decreasing costs. A further simplification
is usually made: all SNP loci harbor only two allelic (biallelic)
variations. Triallelic human SNPs are known but much less com-
mon [14].

Recombination processes play a vital role in shaping the genome.
Although every genetic events actually occurs at the level on an in-
dividual, the focus of the studies is on the impact of the genetic
recombination, as well as its detection, at a population level. Thus
it is helpful to understand the processes in the context of the evo-
lution of a population. For this, we observe the units (or mem-
bers) at each generation and study the flow of genetic material from
a unit in one generation to another in the next generation. Thus
there is a need to characterize the populations. For simplicity in an
ideal population the generations are non-overlapping and of con-
stant size. Further the units display random mating and no selec-
tion (see Section 2.2). Such a population is called a Wright Fisher
population. While these characteristics of a population may ap-
pear non-realistic at first glance, these assumptions are reasonable



Figure 1: The solid (blue) dots represent one gender, say males
and the hollow (red) dots represent the other gender (females)
in a population. Each row is a generation with the direction on
edges indicating the flow of the genetic material from one gener-
ation to another and the four extant units (solid black dots) are
at the bottommost row. Only the genetic flow that contributes
to the four extant units, in the last 10 generations, is shown
here.

for the purposes of the study of the genetic variations at the pop-
ulation level. In fact, models with varying population size and/or
overlapping generations can be reparameterized for an equivalent
Wright-Fisher Model. Also, diploids (organisms with two copies
of a chromosome) can be treated as haploids (one copy) for the pur-
poses of studies at population levels (see texts such as [13, 21]). A
simple example of genetic flow in populations across generations
is shown in Fig 1 (taken from [32]). A recombination event occurs
during the meiotic process, hence this is captured in this picture,
when two parents give forth to an offspring. With even further sim-
plification, we can assume that the genome of a unit is the result of
the recombination of the two parent units. A mutation event may
occur during the transmission of the genetic material from a par-
ent to the offspring. Now given, say the SNP data of only the four
extant units of Fig 1, the task is to unravel their recombinational
history.

We categorize the various approaches to studying this genetic
history into two: (1) recombination profiles and (2) recombination
landscapes. In both the input is the SNP data of n(> 1) distinct ex-
tant units. Clearly, nothing of interest can be inferred when n = 1.
The first category studies the telltale impression of recombination
events left on the n chromosomal segments as a recombination rate
profile. Its central idea is based on the correlation of a pair (or
more) of SNPs on the n units: this is quantified as linkage dis-
equilibrium. This measure gives the relative extent of recombi-
nations along the chromosomal segment, as can be inferred from
the n units. This has been the traditional approach to studying re-
combinations in practice and still continues to hold the attention of
researchers.

The second category of approaches, attempts to identify the indi-
vidual recombination events. We call the sum total of each recom-
bination event’s location on the chromosomal segment (the where)
as well as the participating ancestral lineages (the who) as the re-
combinational landscape. It is indeed the network of Fig 1: a rel-
evant substructure is called the Ancestral Recombinations Graph
(ARG) in literature. As an illustrative example, Fig 2 shows an
ARG of Fig 1. However, an oddity that may not escape the astute
reader is regarding the size of the ARG. In other words, does there
exist a single common ancestor to all the extant units? In most cases

Figure 2: An ancestral recombinations graph (ARG) as a much
less resolved graph of the entire ancestry information of Fig 1.

there exists a common ancestor (termed the Grand Most Common
Recent Ancestor or GMRCA). when this structure is studied as a
mathematical object [11, 32]. It is unrealistic to reconstruct the
fully resolved ARG and this has also been demonstrated through
mathematical modelings [32]. However, any subset of recombina-
tional landscape is of immense interest and this is currently an area
of intense research.

Towards recombinomics.
An important consequence of the quest for the recombinational

landscape is a step in the direction of “El Dorado” of recombination
(or crossover) events in the chromosome in a population. We mean
by recombinome the total set of all the recombination events on
the chromosome, possibly with the additional information about
parental segments as well. The challenge however is in accurate
inferencing, at the algorithmic level, of the crossovers.

2. EVOLUTIONARY PERSPECTIVE
Although most of the discussions here apply to all diploids, we

focus our attention on humans. The human genome consists of
twenty three pairs of chromosomes which contain (nearly) all of
our genetic code, with one member of each pair inherited from each
parent. Of these, twenty two pairs are autosomes and the members
of the twenty third pair are sex chromosomes. The gender in hu-
mans is determined by the male Y chromosome. Thus a male has
non-homologous XY pair and the female has homologous XX pair.
Further, each paired chromosome, i.e., autosomes and X chromo-
somes in females, is a recombination of the parent’s corresponding
homologous pair. The male Y chromosome does not recombine
outside two tiny pseudoautosomal regions, where some X-Y re-
combinations still occur. The pseudoautosomal regions are located
at the tips of the chromosome and together comprise about 5% of
the Y chromosome. The male X chromosome is inherited entirely
from the female parent but is still a recombining chromosome. All
together the haploid human genome comprises of more than 3 bil-
lion base pairs, more than 99% of which is recombining in males.
The female nuclear genome is longer than the male, and is all re-
combining. The only exception in both males and females is the
mitochondrial DNA, which is primarily all non-recombining.

Loosely speaking, recombination is nature’s mechanism of defin-
ing the offspring genome, of fixed size as typical of the species, by
shuffling that of both the parents. Genetically it is the process by
which a strand of DNA breaks and then joins a different molecule.
Without digressing any deeper into cell biology, it is interesting
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Figure 3: Recombination increase diversity by allowing off-
springs to inherit different allele combinations from those in
their parents.

to note that the underlying biological processes are vital for the
integrity of the genome (via their segregation during gamete for-
mation). A breakdown in this process could lead to aneuploidy [1],
the gamete gaining or losing one or more chromosome: this is often
fatal at the embryonic stage.

2.1 Genetic diversity
Genetic diversity is important for the adaptability and survival of

a population in response to new environment factors, as well as its
resistance to threats such as new diseases. Recombination plays a
key role in increasing the genetic variability within a population.
Without this, the next generation would inherit a near replica of the
previous generation chromosomes For example, consider Fig 3, L1
and L2 are two loci on the same chromosome. L1 harbors two alle-
les A and a; similarly L2 has B and b. In the parental chromosomes
’A’ always co-occurs with ’B’, and ’a’ with ’b’. For simplicity, as-
sume that this pattern is reflective of the entire population. Then,
in the absence of recombination between these loci, the offsprings
can only inherit the parental allelic combinations (either ab or AB)
from either parent. Hence there are only three possible chromo-
some pairs (the order of chromosomes does not matter in a pair).
Genetic recombination leads to offsprings inheriting different al-
lele combinations than those in their parents. Thus it is vital to not
only increasing the genetic diversity within a population but also
help evolve the progenies faster to adapt to favorable combination
of allelic variations.

2.2 Natural selection
An individual’s genetic makeup plays an important role in deter-

mining his or her physiological response to various environmental
factors and susceptibility to different diseases. Individuals winning
the genetic lottery, and inheriting the favored allele, will tend to
reproduce at a higher rate. The reasons could be epidemiological,
resistance to an early onset disease; biological, improved fertility
rate; or simply sublime, higher success in selecting a mate. But the
population impact is that the favored allele will pass on to the next
generation at a higher rate. Eventually, after many generations, it

may achieve a complete sweep and the other allele at this locus will
disappear.

A recently mutated allele under strong positive selection rapidly
increases in frequency and may quickly reach fixation (frequency
of 100% in the population). A frequent derived allele can be old and
neutral, or young and selected. In the former case the increase in
frequency can be attributed to genetic drift, and both the ancestral
and derived allele will have similar haplotype background. In the
later case, the haplotype around the selected derived allele would
be passed on to the next generations at a faster rate than incidence
of recombination. There would be a decrease in variability in the
region. The increased homozygosity can thus be used as evidence
of recent positive selection [37]. Nagylaki showed that unless a
pair of loci are strongly linked or alleles are under strong selec-
tion, at an evolutionary level recombination prevails in destroying
the linkage disequilibrium (see Section 3 for definition of linkage
disequilibrium) [31].

Consider the case when there are two genetically neighboring
loci undergoing selection with the respective favored alleles present
in a disjoint set of haplotypes. In case of the previous example Fig 3
assume A and b are the advantageous alleles at the two loci. Under
conditions of no or low recombination, these favored alleles would
be competing against one other, until one prevails and achieves fix-
ation, while the other despite its fitness advantage disappears from
the population. This is known as the Hill Robertson effect. It al-
lows deleterious alleles to hitchhike a neighboring favored allele
and gain fixation in low recombination regions. In general, with a
reasonable frequency of recombination between the the two loci,
a combination of favored allele (in our example Ab) would appear
in the population. This haplotype blend the selective advantage at
both sites and hence has an advantage over all other combinations.
Felsenstein was among the first to show through a simulation study
the negative impact of Hill Robertson effect on the fitness of the
population [8].

2.3 Genome Wide Aggregate Analysis
While the advantage of an evolutionary model based analysis

is the obvious one of offering a biological explanation for the ob-
served data, sometimes ignoring the annoying details of reality to
simplify analysis can also be useful. The autosomal regions un-
dergo crossing over in all generations, yet since the recombinant is
still homologous to the two parental ones, it is not outrageous to
ignore the genetic shuffling events.

At any one locus most of the variability stems from intra popu-
lation differences. However, aggregating across multiple loci may
and sometimes does reveal broader inter population structures [5].
Principal Component Analysis is a popular unsupervised dimen-
sionality reduction method which can be used straight out of the
box [35]. It summarizes the data by projecting it onto a lower
dimensional subspace of maximal variability. The first few prin-
cipal components have been shown to correlate with coalescence
time between the underlying populations [25]. Another approach
is to directly estimate the allele frequencies at every locus, in each
hypothetical population, using Bayesian methods[6]. Both these
methodologies ignore the finer role of recombination by painting
the genome in broader strokes.

3. RECOMBINATION PROFILE

Linkage disequilibrium.
Non-random association between alleles at different loci within

the same chromosome is termed as linkage disequilibrium (LD).
A mutation at a site is perfectly correlated with alleles at neigh-
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Figure 4: Recombination over successive generations break
down the length of the haplotype inherited from the ancestral
sequence, thereby introducing new alleles at the neighboring
loci.

boring loci co-inherited from the same ancestor, until successive
recombination over multiple generations introduce other alleles at
these loci and reduce the correlation (see Fig 4). The speed of this
breakdown will vary with the physical distance from the new allele.
By the very nature of the dependence of the linkage disequilibrium
value on allele frequencies, in general, mutation increases while
recombination decreases linkage disequilibrium.

Linkage disequilibrium between a pair of loci can be quantified
using various measures. The most basic definition computes devi-
ation from independence.

D = pAB − pApB ,

where pAB is the probability of alleles A and B co-occurring on
the same chromosome, and pA and pB are probabilities of occur-
rence of the respective allele. It can be shown with some algebraic
manipulation that D decreases with each successive generation as

D(t + 1) = (1− c)D(t),

where c is the recombination frequency between the two loci. Lewon-
tin suggests normalization of D by its maximum absolute value [23].
Another commonly used statistic is r2 which relates to D as

r2 =
D

pApapBpb
.

r2 has gained popularity because it relates to the Chi-square statis-
tic as χ2 = Nr2, where N is the number of samples used to esti-
mate the probabilities. This helps compute the significance of the
correlation and is very useful in studying indirect correlation while
using one marker as a proxy for another in Genome Wide Associa-
tion Studies (GWAS). In fact a key focus on linkage disequilibrium
studies in the past decade can be attributed to the success and inter-
est in GWAS. Linkage disequilibrium allows scientists to identify
a representative subset of known genetic variation which can be ef-
ficiently genotyped using microarrays [4]. Without it, all known
variants would have to be typed, making these association studies
cost prohibitive.

Linkage disequilibrium carries evidence of the interplay of var-
ious evolutionary forces. The major factors impacting LD in any
segment of the genome include mutation rate, recombination rate,
natural selection and demography.

Again recent mutations tend to increase the linkage disequilib-
rium values while recombinations reduce it. Strong selection leaves
its imprint on the haplotype surrounding the favored allele. But se-
lection affects only a small number of loci. Changing in demog-
raphy, on the other hand, impacts the whole genome. Individuals
migrating from a genetically different gene pool, inject new alle-
les and haplotypes; thus increasing the diversity. The new alleles
(and haplotypes) increase LD in a manner similar to a recent muta-
tion. Newly founding populations, such as the initial migration of
humans out of Africa, carry only a subsample of the source popu-
lation haplotypes. Population bottlenecks such as natural disasters
or epidemics act in a similar manner reducing the set of haplotypes.
Drastic reduction in population size tends to increase LD [39].

3.1 Recombination rate estimates
The frequency of recombination varies across the genome [2].

Most recombination events occur within narrow regions (of about
1-2kbp) known as recombination hot spots. Although the numeric
definition varies across studies, the general idea of a recombina-
tion hot spot is a narrow region where frequency of recombina-
tion is significantly higher than the surrounding haplotype. Cer-
tain sequence motifs have been identified which tend to co-occur
at a higher rate within hot spots [29]. But the molecular mecha-
nisms leading to meiotic crossovers is poorly understood. Hot spot
positions and strength change at an evolutionary time scale. At a
species level, no commonality has been found in their locations be-
tween human and chimpanzee genomes [44]. But how much of this
shift happened in the more recent expansion of humans across the
globe is open to debate. Graffelman et al found significant vari-
ability in recombination rate estimates among a diverse set of pop-
ulations [10]. The differences tend to be lower among populations
within the same continent, suggesting that variation in recombina-
tion frequency may be contributing to the diversity of the popula-
tions.

Despite their hotness, hot spots account for about 60% of meiotic
recombination; the remaining 40% are spread across the genome.
The rate of incidence of recombination across the genome can be
inferred by (a) Pedigree analysis of familial data, (b) Statistical
methods using population data and (c) Sperm typing.

3.1.1 Pedigree Analysis
The classical way to study co-inheritance of alleles is through

pedigree analysis of familial data. Knowledge of parental and off-
spring genotypes allow inference of the switch in haplotype pat-
terns to identify individual meiotic recombination events. How-
ever, unlike plant species, humans do not allow the liberty of mat-
ing appropriate genotypes at will, and the number of offsprings is
severely limited. This limits the resolution of recombination place-
ment. Furthermore statistical methods, presented in the next sec-
tion, may be tweaked to incorporate available progeny information.
Thus the use of pedigree analysis for fine scale human recombina-
tion rate estimates is very restricted.

3.1.2 Statistical estimates
Rapidly improving microarray technology has driven down the

genotyping costs, making SNP datasets more abundant as well as
popular. Many statistical methods have been developed to manip-
ulate high density genome wide SNP datasets to estimate recombi-
nation rates at an unprecedented resolution. These coalescent based



methods compute the population recombination rate between every
consecutive pair of SNPs along a chromosome. Population recom-
bination rate ρ related to per generation recombination rate c as

ρ = 4Nec.

where Ne is the effective population size of a Wright Fisher popu-
lation which exhibits the same genetic drift. Wright Fisher repro-
duction model is a basic population genetics model with simplistic
assumptions including constant population size, non-overlapping
generations, and random mating. Despite these unrealistic assump-
tion, it generates a fairly representative structure of population se-
quences suitable for most population genetics problems. Methods
for estimating ρ can be broadly binned into three categories [41].

Moment Estimators.
Moment estimators first quantify complex sequence variation us-

ing a few summary statistics. Pairwise difference between sequences[16],
number of distinct haplotypes, and estimated minimum number of
recombination [42] have proven to be useful candidates. The value
of ρ which maximizes the likelihood of the statistic(s) is then es-
timated. The computationally expensive maximum likelihood step
hence deals only with the summary statistics, allowing moment es-
timators to scale to a large number of haplotypes. However the
ease of computation comes at the cost of high variance and strong
reliance on coalescence model assumptions.

Full likelihood methods.
Full likelihood approaches on the other hand use all available

data. They compute the likelihood of the observed data under an as-
sumed coalescence model. Computationally intensive simulations
are conducted to infer the probability space of the model parame-
ters, including mutation and recombination rate, which best fit the
observed data [7]. The computational cost of the numeric simu-
lations restricts the scalability of these methods to even moderate
sized datasets.

Approximate likelihood approaches.
Approximate likelihood methods tradeoff some of the high ac-

curacy by approximating the parameter likelihood surface. This is
done by either ignoring the low frequency less informative markers
or taking a subset of markers at a time. Hudson conducted the sem-
inal study to utilize this composite likelihood approach [17]. He
first calculated the pairwise likelihood between all pairs of markers
using simulations assuming an infinite site model. These likelihood
are then multiplied to compute the composite likelihood. McVean
et al. extended this idea by allowing recurrent mutations [26].
Li and Stephens introduced a distinctly different approach [24].
They study all loci simultaneously by approximating the condi-
tional probability of haplotypes. Many other coalescence based
methods have also been proposed which share the commonality
of the coalescence, yet differ in model assumptions and/or the nu-
meric method to estimate the likelihood. In general, Markov Chain
Monte Carlo (MCMC) algorithms which churn their way to param-
eter estimates, and Importance Sampling methods which recurse
over potential ancestral states, have proven useful. Recombination
estimates computed by different methods, using the same data, tend
to agree. But there is some discrepancy. All likelihood estimates
are based on simulations. Theoretically results computed using the
same method should always converge to the same value. Practically
this does not always happen due to the limited number of iterations.

The statistical recombination rate estimates have gained immense
popularity. They use readily available SNP data; and the approx-
imate methods scale reasonably well to chromosome wide anal-

ysis. Despite the variability in estimates, they provide a useful
tool to compare recombination rates across different genomic re-
gions in the same population; and also to compare genetic variabil-
ity across populations. Deviation from coalescence model helps
identify interesting genomic regions, which may reflect complex
demographic history or carry evidence of strong selection. But
these estimates must be taken with a grain of salt; they have some
well known limitations. Firstly, they are sex averaged. It is known
that recombination occurs 1.6 times more frequently during female
meiosis. Coalescence models ignore the role of sex in recombi-
nation. Secondly, population recombination rate does not translate
directly to individual recombination rate. Effective population size
Ne is reflective of a complex demographic history. Its estimate
would vary across the genome, specially in admixed populations.
Thirdly, the results of these methods is a statistical average which
provides no information on individual recombination events. And
finally, recombination rate estimates would suffer from any ascer-
tainment bias present in the selection of SNPs.

3.1.3 Sperm Typing
Sperm typing is the gold standard in identifying meiotic recom-

bination events. In principle the idea is very simple. First males
sufficiently heterozygotic in markers in region of interest are iden-
tified. Then individual sperms from their semen sample are iso-
lated and polymorphic markers typed in each sperm independently.
The results are statistically analyzed to exclude potential contami-
nation, and to compute average recombination rate across the sam-
ples. Since each sample contains more than three hundred million
sperms, the resolution is potentially infinite. In practise however
isolating and typing each sperm is an extremely laborious manual
procedure. Studies using sperm typing have thus restricted to nar-
row regions of intense interest [3].

The results of sperm typing tend to agree with likelihood based
estimates [20]. However linkage disequilibrium reflect the historic
imprint of recombination on the genome and sperm typing repre-
sents the current recombination rate. If a recombination hot spot
has evolved recently, its evidence will vary between the past and
present, and hence there will be a discrepancy in the estimates. A
key limitation of sperm typing is that it is obviously male specific.

4. RECOMBINATIONAL LANDSCAPE
Population recombination rate estimates provide an invaluable

tool to analyze the comparative behavior of recombination across
the genome. However they reveal little to no direct information
on individual recombination events. Recall that we call the sum
total of each recombination event’s location on the chromosomal
segment (the where) as well as the participating ancestral lineages
(the who) as the recombinational landscape. It is difficult to infer
an individual phylogeny based on a statistical population averages.
Sperm typing does identify individual events, but the phylogeny of
these events terminates in the petri dish.

In human phylogenetic studies recombination have generally been
treated as a nuisance to be avoided because of the complexity it
brings to the genetic sequences. Genetic crossovers bring together
sequences with different phylogenetic histories. And the task of un-
twining these phylogenies is nontrivial. Thus classically the anal-
ysis of human phylogeny is done using non-recombining loci, Y
chromosome and mitochondrial DNA. These loci undergo uniparental
inheritance and harbor higher inter-population variance compared
to the rest of the genome [22]. But Y chromosome consists of
58Mbp and mitochondrial DNA only 16kbp. Together they com-
prise about 2% of the haploid human genome. Can these loci alone
paint the complete human phylogenetic landscape? Most autoso-



mal population structure studies circumvent recombination by us-
ing a statistical aggregate of allele variations [6, 35]. Based on the
role of mutation and recombination, phylogeny models can be di-
vided into three categories.

4.1 Uniparental Model
The uniparental models consider mutations as the lone source of

genetic variation. In the absence of recombination, relatedness of
two sequences is estimated by their similarity. Since the sequences
have evolved uniparentally the underlying phylogeny can be repre-
sented by a tree. The tree may be rooted, in which case the root of
the tree represents the most recent common ancestor (MRCA) of
the extant sequences being studied. Each leaf represents a unique
extant sequence. The internal nodes may represent an extant se-
quence or a hypothetical ancestor.

Algorithms to infer uniparental phylogeny can be broadly classi-
fied as clustering based or search based methods. Clustering based
methods recursively group sequences, a pair at a time. The criteria
for selection of the pair varies. The simplest of these methods, un-
weighted pair-group method with arithmetic mean selects the most
similar sequences in each iteration. Search based methods con-
sider all possible trees that fit the data and select the one which best
fits their optimization criteria; maximum parsimony and maxmi-
mum likelihood are two popular criterion. Phylogeny estimation
using non-recombining loci is a very well studied and developed
field [15]. Despite the plethora of literature and variation in techni-
cal and theoretical details, there is a broad consensus on the results
inferred by these methods.

4.2 Mosaic Model
Mosaic model assumes that the individuals being studied are

sampled from a recently founded population. This population ini-
tially comprised of a small number of founding individuals and the
founding event is so recent that no mutation has occurred in the loci
being studied. Thus each extant sequence can be represented as a
mosaic of the unknown founding sequences. The minimum mosaic
problem is defined as, given a set of set of extant aligned sequences
in a population, and the number of founders kf , find the set of
founders and the mosaic with minimal number of breakpoints [45].
The complexity class of the problem has not been resolved, but no
known algorithm solves it in polynomial-time.

The mosaic model is the polar opposite of the uniparental model.
It assumes no role of mutation, with recombination being the lone
source of variability among the sequences. But mutations do occur
at a variable rate across the human genome (2.3×10−8 per base per
generation on average). Absence of mutation makes the minimum
mosaic problem very restrictive, limiting it’s application to shallow
ancestry in low mutation regions of the genome only.

4.3 Ancestral Recombination Graph Model
Ancestral Recombination Graphs (ARGs) incorporate the best of

both worlds. It allows for the interplay of mutation and recombi-
nation events [11]. Phylogeny is depicted by a network (Fig 5).
The leaves of the network represent extant sequences and the inter-
nal nodes constitute hypothetical ancestors. The root of the ARG
represents MRCA. The directed edges show the direction of flow
of genetic material. There are three types of events represented in
the network. Coalescence events occur, when going backwards in
time, the phylogenies of two or more distinct sequences converge.
Mutation events occur when genetic material, while being passed
on to the descendants, undergo point mutation at one more loci.
And recombination events occur when the inherited sequences is
a concatenation of a prefix and suffix of the breakpoint, inherited
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Figure 5: The root of the Ancestral Recombination Graph rep-
resents the Most Recent Common Ancestor. The indicated mu-
tation passes the ancestral haplotype with a point mutation at
the fourth locus. The breakpoint of the highlighted recombina-
tion is between the second and third loci. The haplotype is a
concatenation of the prefix and suffix of the breakpoint inher-
ited from the left and right parent respectively. The coalescence
event combines phylogenies of its descendants.

from two different ancestors.
If the true ARG is known recombination rates can be calculated

by simply counting the recombination events in each interval. The
role of different sequence motifs in triggering or facilitating recom-
bination can be directly analyzed. Disease genes can be efficiently
identified by tracing back the common ancestry of case samples to
causal mutations.

5. INFERRING ANCESTRAL RECOMBINA-
TION GRAPHS

All past recombination events do not leave a trace in the extant
sequences. Recombination between near identical sequences can
never be detected. Furthermore, newer recombination overwrite the
imprint left by the past ones; making it impossible to reconstruct
the complete true phylogeny [32]. However it is possible to infer
a phylogeny consistent with the underlying sequence data under an
assumed simplistic model of evolution.

5.1 Minimal ARGs
The minimal ARG problem is defined as, given a set of n sam-

ples genotyped at m loci, infer the ancestral recombination graph
which minimizes the number of recombination. Wang et al showed
the generalized problem to be NP complete under the infinite sites
model [43]. They proposed an efficient solution to a restrictive
version of the problem that allows for only node disjoint recombi-
nation cycles. Gusfield et al solved this limited problem in poly-
nomial time [12]. Song and Hein solved the generalized problem
by expressing the data as a sequence of trees along the chromo-
some [40]. They efficiently searched the subspace of all compat-
ible trees using the so-called subtree prune and redraft operations
to construct the ARG with minimal number of recombination. The
algorithm takes super-exponential time and the published imple-



mentation can analyze up to 9 samples only.

5.2 Bounds on number of recombinations
Since the minimal ARG cannot be inferred for a reasonably sized

data, practical methods have been developed to estimate a bound on
the minimum number of recombination required. This helps gauge
the efficacy of a heuristic solution. Evidence of recombination be-
tween any two loci can be gleaned, under the infinite site model,
using the four gamete test (FGT). FGT simply states that given a
pair of biallelic loci, all four allele combinations cannot occur with-
out recombination.

Hudson and Kaplan developed the first method to compute a
lower bound on minimal number of recombination [18]. Myers and
Griffiths improved this bound by introducing a composite method
which integrates local recombination bounds via dynamic program-
ming [30]. The local bounds were computed as R ≥ H − S − 1,
where H and S are the number of unique haplotypes and loci re-
spectively. Song et al improved the local lower bounds by mapping
the problem to set cover and solving it via Integer Linear program-
ming [40]. They further developed a heuristic to create compatible
ARGs which attempt to minimize the number of recombination.
The algorithm is repeated multiple times and the ARG with the
minimum of number of recombination chosen. This provides an
upper bound on the minimum number of recombination. If the two
agree minimal ARG has been identified.

5.3 Plausible ARGs
Computing the exact minimal ARG is cost prohibitive. Heuris-

tic solutions make random choices and may not always converge to
the same solution. Even worse, the minimal ARG may not reflect
the true phylogeny. Minichiello and Durbin addressed these limi-
tations while identifying mendelian disease causal loci [28]. They
proposed a statistical analysis of multiple plausible ARGs. They
used a heuristic approach, with a preference for coalescence over
recombination, to infer multiple ARGs compatible with the under-
lying data. Marginal trees are extracted for each ARG at each locus,
and the correlation between descendants of each edge and the dis-
ease status computed. The maximum correlation at each locus is
averaged over all ARGs and the statistical significance computed
using a permutation test. The impact of the bias for coalescence
is not analyzed. Furthermore the number of compatible trees for a
reasonable sized data is very large and computational restrictions
limit the number of sampled ARGs.

5.4 Approximate minimal ARG
Parida et al proposed a model IRiS which exploits SNP patterns

to construct compatible phytogenetic networks [34]. The algo-
rithm starts off with dividing the SNPs into blocks. Consecutive
blocks with no evidence of recombination within them are merged
into segments. The phylogeny in each segment can thus be repre-
sented by tree. The trees are then merged pairwise using a bottom
up approach to construct a consensus network which is compati-
ble with phylogenies in each underlying tree. The proposed DSR
(dominant-subdominant-recombinant) algorithm is generalized to
allow for networks containing both mutation and recombination
events. The computational time is polynomial in the size of the in-
put networks. Furthermore the algorithm guarantees that the num-
ber of recombination introduced during network merger are within
an approximation factor ε; which is a well behaved function of the
size and topologies of the input networks [33].

6. TOWARDS RECOMBINOMICS: IDENTI-
FYING PAST RECOMBINATIONS

The concept of recombinational junction was first introduced by
Fisher [9]. He proposed that meiotic crossover between dissim-
ilar haplotypes creates a unique junction. This junction may be
inherited by the descendants of the individual and bears witness to
their shared ancestry. Thus it can be used as a phylogeny marker.
This novel concept has not been utilized in phylogenetics because
of the computational difficulty in identifying past recombinations.
Although many different methods have been proposed to detect re-
combination from DNA sequences [36]. Most of these methods are
aimed at placing possible breakpoints or detecting single recombi-
nant sequences. Furthermore these methods do not scale well to
modern day data sets.

Mele et al used IRiS to detect historical recombination events
by estimating local ARGs along the chromosome[27]. The results
were aggregated using a sliding window approach, with varying
block sizes, to identify placement and descendants of past recombi-
nation with high degree of confidence. Extensive simulations were
conducted using COSI [38] to validate this methodology. More-
over, the inferred recombination placement correlated strongly with
recombination rate estimates observed by sperm typing and esti-
mated by statistical analysis. The recombination information for
each sample was combined in a manner similar to point mutations
in the so called recotypes. They showed that recotypes provide
unique information on the shared history of populations. Since
newer recombination are continuously overwriting the evidence of
the past, older recombination are harder to detect; and sensitivity
was higher for the recent past (last ten thousand years). Further-
more analysis of real data indicated that recombinational diversity
estimated using recotypes is robust to ascertainment bias present in
the underlying SNP selection.

7. CONCLUSION
The study of recombinations is an active field. There is a plethora

of literature available on the wet-lab, computational and statisti-
cal analysis of recombination. Recombination bring together se-
quences with their own unique pasts and the task of extracting
the unknown phylogeny from its trace in extant sequences is non-
trivial. The computability of even simplistic models involving re-
combination is very challenging; which paves the way for approx-
imate and heuristic solutions. The advent of cheap high density
microarray SNP technology has improved our knowledge of the
human genome tremendously. There is renewed interest in under-
standing recombinational dynamics at a much deeper level. How-
ever the size of these genomic databases is growing faster than
Moore’s law [19] challenging the limits of current methodologies.
With the thousand dollar personalized genome on the near horizon,
the availability and unprecedented resolution of this deluge of data
will not only bring the scalability issue to the fore, but it will also
improve our understanding of the relationships between sequence
variability and recombination incidences. Nearly all recombina-
tion analysis challenges are still open problems on the lookout for
better solutions. Nevertheless, the march towards the elusive re-
combinome still looks promising.
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