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Abstract

We show that every facet-defining inequality of the convex hull of a mixed-integer polyhedral set
with two integer variables is a crooked cross cut (which we defined recently in [3]). We then extend this
observation to show that crooked cross cuts give the convex hull of mixed-integer sets with more integer
variables provided that the coefficients of the integer variables form a matrix of rank 2. We also present
an alternative characterization of the crooked cross cut closure of mixed-integer sets similar to the one
about the equivalence of different definitions of split cuts presented in Cook, Kannan, and Schrijver [4].
This characterization implies that crooked cross cuts dominate the 2-branch split cuts defined by Li and
Richard [6]. Finally, we extend our results to mixed-integer sets that are defined as the set of points (with
some components being integral) inside a general convex set.

1 Introduction

Given a polyhedral mixed-integer set

P = {(x, y) ∈ Zn1 × Rn2 : Ax + Gy = b, y ≥ 0},

where A,G and b have m rows and rational components, let PLP denote its continuous relaxation. For fixed
π1, π2 ∈ Zn1 , and γ1, γ2 ∈ Z, we define the sets

D1(π1, π2, γ1, γ2) = {x ∈ Rn1 : π1x ≤ γ1, (π2 − π1)x ≤ γ2 − γ1}, (1)

D2(π1, π2, γ1, γ2) = {x ∈ Rn1 : π1x ≤ γ1, (π2 − π1)x ≥ γ2 − γ1 + 1}, (2)

D3(π1, π2, γ1, γ2) = {x ∈ Rn1 : π1x ≥ γ1 + 1, π2x ≤ γ2}, and (3)

D4(π1, π2, γ1, γ2) = {x ∈ Rn1 : π1x ≥ γ1 + 1, π2x ≥ γ2 + 1}. (4)

Note that Zn1 ⊆
⋃

k∈{1,2,3,4} Dk(π1, π2, γ1, γ2); we denote the latter set by D(π1, π2, γ1, γ2). We define
the extension of D(π1, π2, γ1, γ2) as D̄(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : x ∈ D(π1, π2, γ1, γ2)} and
call this set a crooked cross (CC) disjunction for Zn1 ×Rn2 , and call the set Rn1+n2 \ D̄(π1, π2, γ1, γ2) the
CC set associated with the disjunction. We similarly define extensions of the sets in (1)-(4), and call each
such extension an atom of the disjunction D̄(π1, π2, γ1, γ2).

If a linear inequality is valid for PLP ∩ D̄k(π1, π2, γ1, γ2) for k = 1, . . . , 4 then it is called a CC cut
for P obtained from the disjunction D̄(π1, π2, γ1, γ2), see [3]. Note that multiple cuts can be derived from
the same disjunction. As P ⊆ Zn1 × Rn2 ⊆ D̄(π1, π2, γ1, γ2), CC cuts are valid for all points in P . In [3],
we showed that CC cuts dominate the “2-branch split cuts”, defined in Li and Richard [6], when the matrix

1



A has full row-rank. A consequence of the results in this paper is that this dominance relationship holds for
arbitrary A.

Define PCC(π1, π2, γ1, γ2) as the convex hull of PLP ∩ D̄(π1, π2, γ1, γ2), i.e.,

PCC(π1, π2, γ1, γ2) = conv

 ⋃
i∈{1,2,3,4}

PLP ∩Di(π1, π2, γ1, γ2)

 .

By definition, this set equals the convex hull of points in PLP not contained in the CC set associated with
the disjunction D̄(π1, π2, γ1, γ2), and is the set of points in PLP satisfying all CC cuts from this disjunction.
The CC closure of P , denoted by PCC , is the set of points in PLP that satisfy all CC cuts obtained from all
possible disjunctions for P . Clearly,

PCC =
⋂

π1,π2∈Zn1

⋂
γ1,γ2∈Z

PCC(π1, π2, γ1, γ2).

2 Mixed-integer sets with two integer variables

As noted in [3], CC cuts generalize split cuts [4], which are defined by Cook, Kannan, and Schrijver as
inequalities valid for PLP ∩ {(x, y) : πx ≤ γ} and PLP ∩ {(x, y) : πx ≥ γ + 1} for some π ∈ Zn1 and
γ ∈ Z. Thus the CC closure of P is contained in its split closure. Moreover, it is known that when n1 = 1,
the split closure of P is integral. We next prove a similar result for the facet-defining inequalities of P when
n1 = 2.

Lemma 2.1. If n1 = 2, then any valid inequality for conv (P ) is a CC cut and consequently PCC =
conv (P ).

Proof. Let cx + dy ≥ f be a valid inequality for conv (P ) and let S ∈ R2+n2 be the points in PLP that
violate this inequality. That is,

S = {(x, y) ∈ R2+n2 : cx + dy < f, Ax + Gy = b, y ≥ 0}.

If S is empty, then the inequality cx + dy ≥ f is valid for PLP and therefore it is a CC cut. We therefore
assume that S 6= ∅ and let Sx = projx(S) denote the projection of S in the space of x variables. As
cx + dy ≥ f is valid for P , S does not contain any integral points, that is, Sx ∩Z2 = ∅, and therefore Sx is
a convex lattice-free set in R2. As all maximal convex lattice-free sets in R2 are contained in CC sets (see
[3]), Sx is contained in some CC set C = R2 \D(π1, π2, γ1, γ2).

Consider the CC set C̄ obtained by extending C. As Sx ⊆ C, we have S ⊆ C̄ and therefore cx+dy ≥ f
is valid for PLP \ C̄. In other words, cx + dy ≥ f is a CC cut for P .

When n1 = 2 and m = 2, the convex hull of P is given by the two-dimensional (2D) lattice-free cuts
[2], and also by CC cuts. Lemma 2.1, therefore, generalizes the latter result to arbitrary m. It is, however,
still an open question if CC cuts strictly dominate 2D lattice-free cuts or not. A possible way to answer
this question is to study facet-defining inequalities for P when n1 = 2 and m > 2 and investigate if they
can always be derived as lattice-free cuts for a two-row relaxation of P . We refer the reader to [3] for a
discussion on 2D lattice-free cuts for general mixed-integer sets.
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3 An alternative characterization of the CC closure

Cook, Kannan, and Schrijver [4] gave an alternative definition of split cuts: they observe that the class of
split cuts for P is equivalent to the class of inequalities valid for PLP ∩ {(x, y) : πx ∈ Z} for all integral
vectors π. We next present an alternative characterization of the CC closure of P similar to the result on
split cuts above.

Let
PΠ =

⋂
π1,π2∈Zn1

conv
(
{(x, y) ∈ PLP : π1x ∈ Z, π2x ∈ Z}

)
.

Theorem 3.1. For a polyhedral mixed-integer set P , PCC = PΠ.

Proof. For fixed π1, π2 ∈ Zn1 , let

Pπ1,π2 = conv
(
{(x, y) ∈ PLP : π1x ∈ Z, π2x ∈ Z}

)
(5)

and consider a point p ∈ Pπ1,π2 . Clearly, p is a convex combination of points pk = (xk, yk), k ∈ K, such
that pk ∈ PLP and π1x

k, π2x
k ∈ Z for all k. Then for any choice of γ1, γ2 ∈ Z, it is clear that pk does not

belong to the CC set associated with the CC disjunction D̄(π1, π2, γ1, γ2), as it belongs to one of the atoms.
In other words

pk ∈
⋂

γ1,γ2∈Z
PCC(π1, π2, γ1, γ2)

for all k ∈ K and therefore, p ∈
⋂

γ1,γ2∈Z PCC(π1, π2, γ1, γ2). Consequently,

Pπ1,π2 ⊆
⋂

γ1,γ2∈Z
PCC(π1, π2, γ1, γ2) (6)

for any fixed π1, π2 ∈ Zn1 . Therefore

PΠ =
⋂

π1,π2∈Zn1

Pπ1,π2 ⊆
⋂

π1,π2∈Zn1

⋂
γ1,γ2∈Z

PCC(π1, π2, γ1, γ2) = PCC .

We will now prove the reverse inclusion, PCC ⊆ PΠ, by showing that PCC ⊆ Pπ1,π2 , for every choice
of π1, π2 ∈ Zn1 . To prove this, note that Pπ1,π2 is the projection of the set conv (S) on the x, y variables
where S is defined as

S = {(x, y, z) : (x, y) ∈ PLP , z ∈ Z2, z1 = π1x, z2 = π2x}.

As S is a mixed-integer polyhedral set with only two integer variables, by Lemma 2.1, conv (S) equals SCC .
We will next show that PCC ⊆ projx,y(SCC) = projx,y(conv (S)).

Consider a CC cut for S, say
α1z1 + α2z2 + cx + dy ≥ f, (7)

derived from a CC disjunction D̄(µ1, µ2, γ1, γ2) on the z variables. Substituting out the z variables, we
obtain the inequality

(α1π1 + α2π2 + c)x + dy ≥ f (8)

which is valid for projx,y(SCC). This inequality is a CC cut for P obtained from the CC disjunction
D̄(π′1, π

′
2, γ1, γ2) in the x, y space, where

π′1 = µ1

(
π1

π2

)
, π′2 = µ2

(
π1

π2

)
.
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To see this, consider an atom of the disjunction D̄(µ1, µ2, γ1, γ2), say

D̄4(µ1, µ2, γ1, γ2) = {(x, y, z) : µ1z ≥ γ1 + 1, µ2z ≥ γ2 + 1}.

By definition, inequality (7) is valid for SLP ∩ D̄4(µ1, µ2, γ1, γ2). Suppose inequality (8) is not valid for
the atom D̄4(π′1, π

′
2, γ1, γ2). By definition, there is a point (x̂, ŷ) such that

(x̂, ŷ) ∈ PLP , π′1x̂ ≥ γ1 + 1, π′2x̂ ≥ γ2 + 1 and (α1π1 + α2π2 + c)x̂ + dŷ < f.

Consider the point (x̂, ŷ, ẑ) defined by setting ẑ1 = π1x̂ and ẑ2 = π2x̂. Clearly, this point satisfies

(x̂, ŷ, ẑ) ∈ SLP , µ1ẑ ≥ γ1 + 1, µ2ẑ ≥ γ2 + 1 and α1ẑ1 + α2ẑ2 + cx̂ + dŷ < f,

which is a contradiction. Thus inequality (8) is a CC cut for P .
As every valid inequality for projx,y(conv (S)) is implied by a nonnegative linear combination of CC

cuts (7) for S, we can conclude that a valid inequality for projx,y(conv (S)) is implied by a nonnegative
linear combination of CC cuts (8) for P .

Let t be a fixed integer, and consider a disjunctive cut obtained by modifying the sets in (1) and (2) as
follows:

Dt
1(π1, π2, γ1, γ2) = {x ∈ Rn1 : π1x ≤ γ1, (π2 − tπ1)x ≤ γ2 − tγ1}, (9)

Dt
2(π1, π2, γ1, γ2) = {x ∈ Rn1 : π1x ≤ γ1, (π2 − tπ1)x ≥ γ2 − tγ1 + 1}. (10)

Such cuts are referred to as parametric cross cuts in [3]. Note that when t = 1, parametric cross cuts are
just CC cuts, and when t = 0, they reduce to the 2-branch split cuts of Li and Richard [6] (also referred to
as cross cuts in [3]). Let P t(π1, π2, γ1, γ2) be the set of points in PLP that satisfy all parametric cross cuts
derived from the above disjunction. Observe that

Pπ1,π2 ⊆
⋂

γ1,γ2∈Z
P t(π1, π2, γ1, γ2),

where Pπ1,π2 is defined in (5). Therefore, arguing as in the proof of Theorem 3.1, one obtains that

PΠ ⊆
⋂

π1,π2∈Zn1

⋂
γ1,γ2∈Z

P t(π1, π2, γ1, γ2).

Therefore, we have the following corollary of Theorem 3.1.

Corollary 3.2. PCC equals the set of points in PLP that satisfy all (i.e., for any t) parametric cross cuts for
P . In particular, PCC is contained in the 2-branch split closure of P .

4 Mixed-integer sets with simple structure

We next extend Lemma 2.1 to show that CC cuts are sufficient to define the convex hull of the mixed-integer
set P for n1 > 2 provided that the coefficients of the integer variables form a matrix of rank 2.

Theorem 4.1. If rank(A) = 2, then any facet-defining inequality for conv (P ) is a CC cut and consequently
PCC = conv (P ).
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Proof. We will show that conv (P ) = PΠ, and by Theorem 3.1 the result will follow. Clearly conv (P ) ⊆
PΠ. We will next show the reverse inclusion.

As A is rational, we can assume, without loss of generality, that A,G are scaled such that A is an
integral matrix. As rank(A) = 2, there exists a unimodular matrix U ∈ Zn1×n1 with the property that
AU =

[
T 0

]
where T ∈ Zm×2 and has rank 2; see [7]. Let

Q = {(z, y) ∈ Zn1 × Rn2 : AUz + Gy = b, y ≥ 0}.

As only the first two columns of AU are nonzero, it follows that the variables z3, . . . , zn1 are not restricted in
any way. Rewriting Ax+Gy = b as AUU−1x+Gy = b, it follows that there is a one-to-one correspondence
between the points in PLP and QLP via the mapping (x, y) → (U−1x, y), whose inverse mapping is
(z, y) → (Uz, y). We denote the latter mapping by h. Furthermore, as U is unimodular, the same one-to-
one correspondence holds between the integral points in P and Q as well.

Consider a point (x̄, ȳ) ∈ PΠ. Let π1 and π2 stand for the first and second rows of U−1, respectively.
By the definition of PΠ, (x̄, ȳ) is in the convex hull of points in PLP satisfying π1x ∈ Z, and π2x ∈ Z. In
other words,

(x̄, ȳ) =
t∑

i=1

λi(xi, yi) where
t∑

i=1

λi = 1, and λi ≥ 0 for i = 1, . . . , t,

(xi, yi) ∈ PLP and π1x
i ∈ Z, π2x

i ∈ Z for i = 1, . . . , t.

Therefore,

(U−1x̄, ȳ) =
t∑

i=1

λi(U−1xi, yi) ∈ QLP , and (U−1xi, yi) ∈ QLP for i = 1, . . . , t. (11)

Now let (zi, yi) = (U−1xi, yi) for any i ∈ {1, . . . , t}. As π1x
i, π2x

i ∈ Z for all i, the first two components
of zi are integral, but the remaining components may not be integral. But the vector consisting of all but the
first two components of zi can be expressed as a convex combination of integral vectors in Zn1−2. In other
words,

(zi, yi) =
si∑

j=1

µj
i (w

ij , yi) where
si∑

j=1

µj
i = 1 and wij ∈ Zn1 , µj

i ≥ 0 for j = 1 . . . , si, (12)

and the first two components of wij equal the first two components of zi. Now each vector (wij , yi) is
a point in Q. Combining equations (11) and (12), we conclude that (U−1x̄, ȳ) is a convex combination
of some (integral) points q1, . . . , ql ∈ Q. Therefore h(U−1x̄, ȳ) = (x̄, ȳ) is a convex combination of
h(q1), . . . , h(ql); but the latter collection of points is contained in P , and thus (x̄, ȳ) ∈ conv (P ).

5 Some extensions

We next consider implications of our results in three different settings. First consider a mixed-integer set
Q = {x : Ax ≤ b, x ∈ Zn} such that A = [v T ], where T is a totally unimodular m × (n − 1) matrix,
and v is an arbitrary integer vector, and A and v have m rows. Further, let b be integral. Eisenbrand, Oriolo,
Stauffer, and Ventura [5] observe that conv (Q) equals the split closure of Q. Now assume that A has two
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columns with integral components (assume they are the first two columns of A) such that the remaining
columns of A form a totally unimodular matrix. Rewriting Ax ≤ b as Ax + Iy = b, y ≥ 0 where I is an
m×m identity matrix, we can conclude from Theorem 3.1 that CC cuts give the facet-defining inequalities
of

Q′ = conv ({x ∈ Rn : Ax ≤ b, x1, x2 ∈ Z}) .

On the other hand, for arbitrary integers t1 and t2, the points x satisfying Ax ≤ b, x1 = t1, x2 = t2 form
a polyhedron with integral vertices (in all components), i.e., Q′ = conv (Q). Therefore, all facet-defining
inequalities of conv (Q) are CC cuts. Consequently, QCC = conv (Q). More generally, if in the mixed-
integer set P , A consists of two columns with integral components, the remaining columns of [A G] form a
totally unimodular matrix and b is integral, then the above observation implies that PCC = conv (P ).

Our results can also be applied to the generalization of the two-row continuous group relaxation studied
by Andersen, Louveaux, and Weismantel [1], where some of the continous variables have upper bounds in
addition to lower bounds of zero. As the number of integer variables in this set is two, all facet-defining
inequalities are given by CC cuts.

Finally, consider a set of the form

P = {(x, y) ∈ Zn1 × Rn2 : (x, y) ∈ C}, (13)

where C is a general convex set. In this setting PCC and PΠ can be defined as before. Now observe that
the proofs of Lemma 2.1 and Theorem 3.1 do not use the polyhedrality of the continuous relaxation of P .
Therefore we obtain the following result.

Proposition 5.1. For P given by (13):

1. If n1 = 2, then PCC = conv (P );

2. PCC = PΠ.

Finally note that Theorem 4.1 can also be generalized to the mixed integer convex programming setting.
Consider P given by

P = {(x, y) ∈ Zn1 × Rn2 : (Ax, y) ∈ C}, (14)

where A ∈ Zm×n1 and C is a general convex set. In this case, again note that the proof of Theorem 2.1 does
not use the polyhedrality of the continuous relaxation of P . Thus, we obtain the following result.

Proposition 5.2. Let P be given by (14). If rank(A) = 2, then PCC = conv (P ).
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