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Stochastic Analysis and Optimization
of Multiserver Systems

Mark S. Squillante

Abstract. Motivated by emerging trends and applications such as autonomic comput-
ing, this paper presents an overview of some research in the stochastic analysis and
optimization of multiserver systems. Our primary focus is on multiserver systems in
general, since this research provides the mathematical methods and results that have
been and will continue to be used for the stochastic analysisand/or optimization of ex-
isting and future multiserver systems arising in a wide variety of application domains
including autonomic computing.

Mathematics Subject Classification (2000).Primary 60G20, 65K10, 93E03; Sec-
ondary 60K25, 68M20, 90B15, 90B36, 90C30.

Keywords. Stochastic analysis, stochastic optimization/control, multiserver systems,
multidimensional stochastic processes.

1. Introduction

In the beginning there was the single-server queue. And the queue was in its simplest
form, and void of known results. And man studied the single-server queue to let there
be light upon this darkness. And man derived its mathematical properties and applied
these results to the design, analysis and optimization of computer systems and networks.
And the derivations of these mathematical results and theirapplications proved to be
fruitful and they multiplied. And the book of Cohen[16], from the family of Temple priests
(kohanim), was the authoritative text on this subject, often referred to as the bible of the
single-server queue, presenting and deriving some of the most fundamental results in the
area. And man saw that the single-server queue was good, bothin theory and in practice.

Those who know the author will not require any explanation that the above anal-
ogy is intended to make a serious point, and those who do not know the author should
understand that no disrespect is intended inany way. Our intention here is to highlight
the important role that the single-server queue often played in the genesis of the stochas-
tic analysis and optimization of multiserver systems in practice. As a specific example,
from the earliest days of computing up until the last decade or so, there was a continual
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debate among computer architects about whether improved performance in computer de-
signs should be achieved through increasing the speed of a single centralized processor
or through the use of multiple processors, with the decisionalways being made in favor
of the single-server design approach (with the exception, of course, that multiserver com-
puter systems were indeed built, but they were in the vast minority and were built for
other reasons) [76]. Many of the most important reasons for this consistent design choice
were based (consciously or not) on the mathematical properties and optimization results
obtained for the single-server and multiserver queueing systems under the type of sched-
uling policies (relatively simple timesharing) and workloads (not involving heavy-tailed
service time distributions) found in the computer systems of the day. The more recent
switch to multiserver computer designs by computer architects over the past decade or
so, with multiple processors on each of the multiple chips comprising the computer, has
been the result of constraints due to physics and power consumption and changes in the
objective function rather than the fundamental propertiesestablished for single-server and
multiserver systems [76].

On the other hand, the interest in and development of multiserver systems has moved
far beyond its initial role as a natural alternative design to single-server systems. New and
emerging trends in technology and a wide variety of applications have created a signifi-
cant increase in both the level and breadth of interest in thestochastic analysis and opti-
mization of multiserver systems. One particularly important recent and emerging trend in
technology and applications, as well as the focus of the present book, is autonomic com-
puting. An autonomic computing system is a complex computing environment comprised
of many interconnected components that operate at different time scales in a largely in-
dependent fashion and that manage themselves to satisfy high-level system management
and performance requirements. Autonomic computing systems are also dynamic envi-
ronments in which optimal self-management decisions must be made continually over
time and at multiple time scales. Fundamental problems involved in achieving the goals
of autonomic computing concern a general mathematical framework that provides the
underlying foundation and supports the design, architecture and algorithms of the de-
cision making components employed throughout the autonomic computing system. At
the most basic level, such autonomic computing environments are general multiserver
systems of various forms which reflect the increasing complexity of current and future
computing systems. Hence, a fundamental aspect of the desired mathematical framework
is the stochastic analysis and optimization of multiserversystems in general, where au-
tonomic computing as well as other emerging trends have created a significant increase
in the complexity and diversity of the multiserver systems of interest with respect to the
analysis and optimization of such stochastic systems.

We therefore consider in this paper some fundamental approaches, methods and
results comprising a mathematical framework for the general stochastic analysis and op-
timization of multiserver systems over time, including thecomplexities and difficulties
at various time scales of autonomic computing and other emerging trends in technology.
While stochastic analysis and optimization each play a predominant role, it can be diffi-
cult some times to separate these aspects of the desired mathematical framework to a great
extent. In many cases, the stochastic optimization of a multiserver system can be based on
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a stochastic analysis of the multiserver system over which the optimization is performed.
Similarly, once one derives a stochastic analysis of a multiserver system, it can be quite
natural to then want to perform a stochastic optimization ofthe multiserver system upon
gaining insights through this analysis.

The overwhelming breadth and depth of the relevant researchliterature on the sto-
chastic analysis and optimization of multiserver systems prohibits an exhaustive exposi-
tion, and thus we do not even attempt to do so. We do attempt to consider a broad range
of approaches, methods and results that have been and will continue to be used in the
stochastic analysis and optimization of existing and future multiserver systems, as mo-
tivated by autonomic computing and other emerging applications. However, this paper
considers only a very small fraction of the relevant research on the stochastic analysis and
optimization of multiserver systems. We focus on explicit mathematical models, and in
particular stochastic models, of general multiserver systems. Even within this context, a
number of important areas are not covered at all, such as the vast research on many server
systems motivated by call centers and other service operations management systems; see,
e.g., [35]. Once again, the subject matter is simply far too broad and deep for us to pro-
vide an exhaustive exposition. Finally, we refer the interested reader to two very nice
survey papers [12, 1] and the references therein for additional research studies related to
the stochastic analysis and optimization of multiserver systems.

The paper is organized as follows. We first summarize the general multiserver model
and some mathematical definitions and results used in the paper. Instead of being spread
throughout the paper, we centralize this material in Section 2 for easier reference. The
next two sections primarily consider exact methods and results, where Sections 3 and 4
focus on boundary value problems and stability, respectively. Section 5 considers both
exact and approximate approaches, whereas approximationsbased on limiting regimes
are considered in Section 6. A few issues related to decentralized control and dynamics
are briefly discussed in Section 7, followed by some concluding remarks.

2. Technical Preliminaries

2.1. Generic Model Description

We consider a generic multiserver system consisting ofS servers in which customers
arrive according to an exogenous stochastic processA(t) with mean interarrival time
λ−1 = E[A] and customer service times on servers = 1, . . . , S follow a stochastic
processBs(t) with meanµ−1

s = E[Bs]. In multiclass instances of this generic multiserver
system, customers of classc = 1, . . . , C arrive according to an exogenous stochastic
arrival processAc(t) with mean interarrival timeλ−1

c = E[Ac] and classc customer
service times on servers = 1, . . . , S follow a stochastic processBsc(t) with meanµ−1

sc =
E[Bsc]. We allowE[A] = ∞ andE[Ac] = ∞, in which case the corresponding exogenous
arrival process is not considered, and we allowE[Bs] = ∞ andE[Bsc] = ∞, in which
case the corresponding service process is not considered. LetQi(t) denote the number of
type-i customers in the multiserver system at timet, and letQ(t) = (Qi(t))i∈Q be the
corresponding number in system vector (often the queue length vector process), where
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the indexi can represent a server or customer class or combination of both with the
set of such indices denoted byQ. DefineQ = {Q(t) ; t ≥ 0} to be the corresponding
multidimensional stochastic number in system process for the multiserver system. Further
assumptions can be, and typically are, imposed on the above stochastic processes, but
we instead focus on a generic multiserver system and consider the stochastic analysis
and optimization of these systems in general, leaving it to the references to provide the
additional assumptions associated with any specific results.

A wide variety of structural organizations and topologies exist for such generic mul-
tiserver systems and this continues to grow. These organizations and topologies include a
single queue of customers being served by a set of servers, through a single-tier of multi-
ple servers that service multiple queues of different classes of customers, up to a network
of single-server queues or multiserver queues in either of these forms under arbitrary
organizations and topologies, as well as every possibilityin between and any possible
combination. The servers can be homogeneous or heterogeneous. Upon completing the
service of a customer, the server follows a scheduling policy to determine which customer
to serve next, including the possibility of remaining idle even when customers are waiting
as the policy need not be work conserving. Upon completing its service at a server, the
customer follows a routing policy to determine whether it leaves the system or moves to
one of the system queues to receive service, possibly switching to another customer class.
Once again, we make no specific assumptions about the scheduling or routing policies
employed in the multiserver system, leaving it to the references to provide additional as-
sumptions associated with any specific results. Our interests in this paper span the entire
spectrum of multiserver systems in general and most of the statements in the paper will
correspond to this entire spectrum of multiserver organizations and topologies. Any state-
ments intended for a specific organization or topology should be clear from the context.

2.2. Mathematical Definitions and Results

In this section we briefly summarize some mathematical definitions and results used
throughout the paper. These mathematical methods and results can play an important
role in the analysis and optimization of multiserver systems, as we shall see in subse-
quent sections; they can equally play an important role in the analysis and optimization
of multidimensional stochastic models in general. Many technical details are omitted and
we refer the interested reader to the references provided. Let R+ (R+) andZ

+ (Z+) de-
note the set of positive (nonnegative) reals and integers, respectively, and definee to be a
column vector of proper order containing all ones.

Consider a discrete-time Markov processXo = {Xo(t) ; t ∈ Z+} on a countable,
multidimensional state spaceX . The definition of a corresponding Lyapunov function can
be stated as follows. A nonnegative functionΦ : X → R+ is aLyapunov functionif there
exist someγ > 0 andB ≥ 0 such that for anyt ∈ Z

+ and anyx ∈ X , with Φ(x) > B,

E[ Φ(Xo(t + 1)) |Xo(t) = x ] ≤ Φ(x) − γ.

Refer to, e.g., [62, 29] for additional technical details.
Consider a discrete-time Markov processXo = {Xo(t) ; t ∈ Z+} on a countable,

multidimensional state spaceX =
⋃L

i=1
Xi with transition probability matrixTo having
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the form

To =




Po
11 Po

12 · · · Po
1L

Po
21 Po

22 · · · Po
2L

...
...

...
...

Po
L1

Po
L2

· · · Po
LL


 , (2.1)

wherePo
ik has dimension|Xi| × |Xk|, i, k = 1, . . . , L. The matrixPo

ik defines the transi-
tions from states inXi to states inXk, i, k = 1, . . . , L, andL denotes the number of block
partitions ofTo. Define forxi,j ∈ Xi, j ∈ {1, . . . , |Xi|}, i = 1, . . . , L,

π(xi,j) , lim
t→∞

P[Xo(t) = xi,j ],

πi , (π(xi,1), π(xi,2), . . . , π(xi,|Xi|)),

π , (π1, π2, . . . , πL).

The limiting probability vectorπ is the stationary distribution of the stochastic process
Xo, which we assume to be irreducible and ergodic and thus the stationary distribution is
uniquely determined by solving the global balance equationsπTo = π and the normal-
izing constraintπe = 1.

Consider a continuous-time Markov processX = {X(t) ; t ∈ R+}, on a countable,
multidimensional state spaceX =

⋃∞
i=0

Xi with infinitesimal generator matrixT having
the form

T =




B00 B01 0 0 0 . . .
B10 B11 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

...
...

. . .




, (2.2)

whereB00, B01, B10, Ak:k=0,1,2, have dimensions|XB | × |XB|, |XB| × |XN |, |XN | ×
|XB|, |XN |× |XN |, respectively, withXB =

⋃N−1

i=0
Xi. The matrixA2 defines the transi-

tions from states inXi to states inXi−1, i ∈ {N+1, N+2, . . .}, A0 defines the transitions
from states inXi to states inXi+1, i ∈ {N, N + 1, . . .}, and the off-diagonal elements of
A1 define the transitions between states withinXi, i ∈ {N + 1, N + 2, . . .}. Define for
xi,j ∈ Xi, j ∈ {1, . . . , |Xi|}, i ∈ Z+,

π(xi,j) , lim
t→∞

P[X(t) = xi,j ],

πi , (π(xi,1), π(xi,2), . . . , π(xi,|Xi|)),

π , (π0, π1, π2, . . .).

The limiting probability vectorπ is the stationary distribution of the stochastic process
X, which we assume to be irreducible and ergodic and thus the stationary distribution is
uniquely determined by solving the global balance equationsπT = 0 and the normaliz-
ing constraintπe = 1. From standard matrix-analytic analysis, the stationary distribution
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π has a matrix-geometric form given by

πN+n = πNRn, n ∈ Z+, (2.3)

0 = (π0, π1, . . . , πN)

(
B00 B01

B10 B11 + RA2

)
, (2.4)

1 = (π0, π1, . . . , πN−1) e + πN(I − R)−1
e, (2.5)

whereR is the minimal nonnegative matrix that satisfiesR2A2 +RA1 +A0 = 0. Refer
to, e.g., [67, 68, 56] for additional details.

Consider a continuous-time Markov processX = {X(t) ; t ∈ R+}, on a countable,
multidimensional state spaceX . The fluid limit of this process is associated with the
almost sure convergence of the scaled processX̃n(t) = Xn(nt)/n asn → ∞ such that

X̃n → X̃, u.o.c., as n → ∞.

Similarly, thediffusion limitof the stochastic processX is associated with the weak con-
vergence of the scaled processX̂n(t) = Xn(nt)/

√
n asn → ∞ such that

X̂n d−→ X̂, as n → ∞.

Refer to, e.g., [15, 93] for additional technical details.
Consider a sequence of multiserver systems, indexed byn = 1, 2, . . ., where the

nth system operates under the control policyK
n, in the heavy traffic limit (commensurate

with diffusion scaling of the associated underlying stochastic processes) asn → ∞. Let
Jn(Kn) be the expected cost for thenth multiserver system under the control policyK

n.
Then a control policyKn,∗ is calledasymptotically optimalif for any feasible policyKn,
we have

lim inf
Jn(Kn)

Jn(Kn,∗)
≥ 1, asn → ∞. (2.6)

This definition indicates that the costJ∗ = limn→∞ Jn(Kn,∗) is the best cost one can
achieve asymptotically and that this asymptotically minimal cost is achieved by the se-
quence of control policies{K

n,∗}. Refer to, e.g., [7] for additional technical details.

3. Boundary Value Problems

The stochastic analysis and optimization of multiserver systems often involve the analy-
sis of Markov processes defined on countable, multidimensional state spaces. This general
class of multidimensional problems is notoriously difficult to solve exactly with analytic
solution methods. In fact, these multidimensional aspectsof the stochastic process under-
lying the multiserver system is one of the major sources of complexity and difficulty in the
stochastic analysis and optimization of multiserver systems. On the other hand, a number
of general approaches have been developed to solve certain instances of two-dimensional
multiserver systems.

In one well-known example of the so-called two coupled processor model [27], it
has been shown that the functional equations for the two-dimensional generating function
of the joint queue length distribution can be reduced to a Riemann-Hilbert boundary value
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problem, making it possible to exploit results from the general theory of boundary value
equations and singular integral equations. Systematic anddetailed studies of this general
approach and its use in the stochastic analysis and optimization of distinct multiserver
systems can be found in [19, 28]. Some additional applications of this approach include
shortest queue routing, fork-join queues, the so-called2 × 2 switch, two-dimensional
random walks, and the M/G/2 queue. We refer the interested reader to [19, 18, 28, 1] and
the references cited therein, noting that other related general approaches are discussed
in [1].

Another application of this approach is the classical longest queue model in which
a single server always serves the longest of two queues with ties broken in a probabilistic
manner. The relevant functional equation for a version of the longest queue model is re-
duced to a Riemann boundary value problem in [17], which alsoincludes a derivation of
the solution of this boundary value problem. Another version of the longest queue model
is considered in [30] and [95], where the former determines the limiting probabilities for
a corresponding Markov process by solving a functional equation for the generating func-
tion obtained from the relevant balance equations and the latter determines these limiting
probabilities directly from the balance equations. More recently, an explicit solution for
the stationary distribution of the longest queue model has been obtained in [90] based on
a matrix-analytic analysis, in terms of versions of (2.3) – (2.5), where explicit expressions
for the elements of theR matrix are determined through the solution of a corresponding
lattice path counting problem derived using path decomposition, Bernoulli excursions and
hypergeometric functions. The results in [90] also supportthe multi-server version of this
longest queue model, and further provide explicit solutions for the stationary distribution
of a general class of random walks in the quarter-plane (namely, Z

2
+ [28]).

4. Stability and Throughput

The stability of multiserver systems represents importantissues in the stochastic analy-
sis and optimization of such systems. Stability is also directly related to the maximum
throughput of multiserver systems, which is often an important performance objective for
the design and optimization of these multiserver systems. Moreover, the rate at which the
maximum throughput of a multiserver system scales with respect to the number of servers
S asS → ∞ is another important topic of both theoretical and practical interest for the
analysis and optimization of multiserver systems.

The stability of multiserver systems has been a fundamentalaspect of the stochas-
tic analysis of these systems from the very beginning, with the stability conditions also
providing the maximum throughput of the system. In recent years, the issue of stability
has received a great deal of attention, especially with respect to single-class and multi-
class queueing networks. This recent interest was piqued byseveral studies showing that
the traditional stability condition, namely that the nominal load at each queue/server is
less than unity, is not sufficient for a large class of multiserver systems under various
scheduling policies. (For example, mutual blocking among the servers can cause such in-
stabilities; see, e.g., [53, 13] and the references cited therein.) A wide variety of methods
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and results have been developed to address the stability of multiserver systems, and we
refer the interested reader to [62, 29] and the references therein for a thorough treatment
of much of this research. Of particular interest is the unified approach via fluid limits
developed in [22], generalizing the related earlier work in[78], based on the key result
that a queueing network is stable if the corresponding fluid limit network is stable in the
sense that the fluid network eventually reaches zero and stays there regardless of the ini-
tial multiserver system configuration. This approach and related extensions have played
an important role in determining the stability conditions of multiserver systems, and the
design of optimal scheduling policies, especially since the analysis can focus on the fluid
limit of the multiserver system rather than the more complexstochastic system.

Due to the explosive growth in wireless technology and applications, the asymptotic
rate at which the maximum throughput of wireless networks scales with respect to the
size of the networkS has become an important theoretical and practical issue. A random
multiserver model of static wireless networks was used in [37] to show that the max-
imum throughput per source-destination pair isO(1/

√
S) asS → ∞. Also presented

is a Θ(1/
√

S log S) throughput scheme, which has been generalized to a parametrized
version that achieves the optimal throughput-delay tradeoff for maximum throughputs of
O(1/

√
S log S) [24, 25, 26]. See [48, 54, 57] for further extensions of the original model

and their analyses. The focus has recently turned to the asymptotic scalability of wireless
networks under constant-size buffers at each server of the multiserver system, for which
it has been shown that there is no end-to-end protocol capable of achieving the maximum
throughput ofO(1/

√
S) asS → ∞ [46, 47]. However, it is also shown that there ex-

ists a protocol which achieves the asymptotic maximum throughput ofO(1/
√

S log S)
with constant-size per-server buffers and which has to employ a local buffer coordination
scheduling scheme.

The methods and results used to determine the stability conditions, and in turn max-
imum throughput, of multiserver systems have also been extended to obtain a broader
set of performance metrics through important connections between the stability and the
stationary distributionπ of multiserver systems. As a specific example, a general method-
ology is proposed in [9] based on Lyapunov functions to studythe stationary distribution
of infinite multidimensional Markov processesQ, which model a general set of multiclass
multiserver systems. This methodology is based on key results showing that if there exist
linear or piecewise linear Lyapunov functions which establish the stability of multiserver
systems, then these Lyapunov functions can also be used to determine upper and lower
bounds on the stationary tail distribution, which in turn provide bounds on the expected
queue lengths. These upper and lower bounds hold uniformly under any work conserving
policy, and the lower bounds are further extended to priority policies. The results in [9]
also represent the first explicit geometric upper and lower bounds on the tail probabilities
of the multidimensional queue length processQ for such general multiserver systems.

In another example related to infinite multidimensional Markov processes [34],
more specifically a stochastic online version of the classical bin packing scheduling prob-
lem, a stochastic analysis of the corresponding multiserver system is developed based on
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a combination of a Lyapunov function technique and matrix-analytic methods. These re-
sults include the stability conditions and the stationary distributionπ of the joint queue
length processQ for general stochastic multidimensional bin packing processes. The sta-
bility and stationary distribution results are both derived in a recursive manner by exploit-
ing a priority structural property, where the stability condition for the current level of the
partitioned queue length process is obtained using a Lyapunov function technique involv-
ing the stationary distribution for the previous level of the partitioned queue length pro-
cess, and the stationary distribution for the current levelis obtained from (discrete-time)
versions of (2.3) – (2.5). In addition, various performancemetrics are obtained including
asymptotic decay rates and expected wasted space, and largedeviations bounds are used
to obtain an accurate level of truncation. The approach in [34] is also based on a form of
stochastic decomposition, which is generally considered in more detail in the next section.

5. Stochastic Decomposition

The multidimensional aspects of stochastic processes underlying multiserver systems are
one of the many sources of complexity in their stochastic analysis and optimization,
which often involve various dependencies and dynamic interactions among the different
dimensions of the multidimensional process. Hence, a considerable number of general ap-
proaches have been developed that essentially decompose the complex multidimensional
stochastic process into a combination of various forms of simpler processes with reduced
dimensionality.

One general class of stochastic decomposition approaches is based on the theory
of nearly completely decomposable stochastic systems. Consider a discrete-time Markov
process with transition probability matrixTo = [to

xi,j xk,ℓ
] in the form of (2.1) and with

state spaceX . When|X | is very large, computing the stationary distribution (as well as
functions of the stationary distribution) directly from the transition probability matrix can
be prohibitively expensive in both time and space. Suppose,however, that the block sub-
matrices along the main diagonal (i.e.,Po

11, · · · , Po
LL) consist of relatively large probabil-

ity mass, while the elements of the other block submatrices are very small in comparison
(i.e., Po

ik ≈ 0, i 6= k). Matrices of this type are called nearly completely decompos-
able [20], in which case the matrixTo can be written in the formTo = W∗ + ǫD
whereW∗ = diag(W∗

1,W
∗
2, · · · ,W∗

L), the matricesW∗
i are stochastic and completely

decomposable,i = 1, . . . , L, ǫ is small compared to the elements ofW∗, and the ab-
solute value of each element ofD is less than or equal to 1. The model solution is
then based on extensions of the Simon-Ando approximations for the stationary distri-
bution of the corresponding Markov process. More specifically, given a functionF (To)
of interest, which can include its stationary distributionπ, it follows from the theory
of nearly completely decomposable matrices that the function can be approximated as
F (To) ≈ ∑L

i=1
π̃iF (W∗

i ), the accuracy of which is known to be within O(ǫ) [20].
Here,F (W∗

i ) is determined from the matrixW∗
i and its invariant probabililty vector̂πi,

while π̃i is determined as the invariant probability vector of the stochastic matrix of di-
mensionL × L whose elements are given byt̂o

ik =
∑|Xi|

j=1

∑|Xk|
ℓ=1

π̂ijt
o
xi,j xk,ℓ

. Note that



10 Mark S. Squillante

t̂o
ik = P[Xo(t + 1) ∈ Xk|Xo(t) ∈ Xi], i, k = 1, . . . , L. Error bounds also can be ob-

tained within this framework; see, e.g., [21, 88]. As a specific example, refer to [4] for
model instances whereF (To) represents the stationary page fault probability for a com-
puter program modelTo and a finite storage capacity. A solution for instances of these
computer storage models withF (W∗

i ) = 0, i = 1, . . . , L, while F (To) 6= 0 is derived
in [74, 83] based on first passage times, recurrence times, taboo probabilities and first en-
trance methods, whereas standard nearly completely decomposable models and analyses
obviously break down and fail in such model instances. For additional details on nearly
completely decomposable stochastic systems and their solutions, we refer the interested
reader to [20] and the references therein.

Another general class of stochastic decomposition approaches is based on models
of each dimension of the multidimensional process in isolation together with a fixed-
point equation to capture the dependencies and dynamic interactions among the multiple
dimensions. In order to consider what is probably the most well-known example of this
general approach, let us first recall that the classical Erlang loss model consists ofJ links,
with each linkj having capacityCj , and a set of routesR defined as a collection of links.
Calls for router arrive with rateλr and require capacityAjr from link j, Ajr ∈ Z+.
Such a call arrival is lost if the available capacity on any link j is less thanAjr , ∀j =
1, . . . , J , and otherwise the call reserves the available capacityAjr on each linkj for a
duration having meanµ−1

r , ∀j = 1, . . . , J . The traffic intensity for router is denoted by
ρr = λr/µr. It is well known that there exists a unique stationary distribution π for the
number of active calls on all routesr and thatπ has a product-formsolution in terms of the
traffic intensitiesρr. Then the stationary probabilityLr that a call on router is lost can be
expressed in terms of this stationary distribution. However, the computational complexity
of calculating the exact stationary distribution is known to be ♯P complete [58], thus
causing such calculations to be computationally intractable even for moderate values of
J and|R|. We refer the interested reader to [52] and the references therein for additional
details.

The well-known Erlang fixed-point approximation has been developed to address
this computational complexity and it is based on a stochastic decomposition in which
the multidimensional Erlang formula is replaced by a systemof J nonlinear equations
in terms of the one-dimensional Erlang formula. More specifically, the stationary loss
probabilitiesLr for routesr are given by

Lr = 1 −
J∏

j=1

(1 − Bj)
Ajr ,

where the blocking probabilitiesBj for links j satisfy the system of nonlinear equations

Bj = E



(1 − Bj)
−1

|R|∑

r=1

Ajrρr

J∏

i=1

(1 − Bi)
Air , Cj



 , (5.1)
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with

E(ρ, C) =
ρC

C!

(
C∑

n=0

ρn

n!

)−1

being the Erlang formula for the loss probability of an isolated link of capacityC under
traffic from an exogenous stream with intensityρ. Furthermore, it is well-known that there
exists a solutionB ∈ [0, 1]

J of the Erlang fixed-point equations (5.1) and that this solu-
tion converges to the exact solution of the original Erlang loss model in the limit as the
traffic intensity vectorρ and capacity vectorC are increased together in fixed proportion;
see [92, 51, 52]. The corresponding capacity planning optimization problem to maximize
profit as a function of the loss probabilitiesLr and capacitiesCj has been considered
within this context [92, 52]. The asymptotic exactness of the Erlang fixed-point approx-
imation and optimization based on this approximation, which follows from an instance
of the central limit theorem for conditional Poisson randomvariables, is an important as-
pect of this general decomposition approach for the stochastic analysis and optimization
of complex multiserver systems, though establishing such results is not always possible.
Various extensions of the Erlang loss model and Erlang fixed-point approximation are
also possible, including recent results to support less restrictive call arrival processes [11]
and on optimal capacity planning under time-varying multiclass workloads [10]. More ac-
curate approximations for the Erlang loss model have also been recently developed; refer
to [49, 3].

Another example of this general stochastic decomposition approach was developed
in [82, 64] to obtain the stationary distributionπ of a (symmetric) multiserver system in
which a scheduling policy assigns customers to the server where they are served most ef-
ficiently and in which a threshold-based scheduling policy manages the tradeoff between
balancing the workload among the servers and serving the customers in the most efficient
manner. A matrix-analytic analysis of the stochastic processes modeling each server in
isolation is derived to obtain the corresponding stationary probability vectors in terms
of their arrival and departure processes which are modified to reflect the probabilistic
behavior of the other servers. These probability vectors are given by versions of (2.3) –
(2.5), where explicit solutions for the elements of the matrix R are obtained in several
instances of the multiserver system. Then the modified arrival and departure processes
of each server are expressed in terms of the corresponding stationary probability vector,
and the final solution of the system of equations is obtained via a fixed-point iteration.
This solution can be shown to be asymptotically exact, in terms of the number of servers
S, under certain conditions. The results of this study illustrate and quantify the signifi-
cant performance benefits of the dynamic threshold-based scheduling policy, particularly
at moderate to relatively heavy traffic intensities, but also demonstrate the potential for
unstable behavior where servers spend most of their time inefficiently serving customers
when thresholds are selected inappropriately. The stochastic analysis in [82, 64] can be
used to determine the optimal threshold values for the multiserver system as a function
of its parameters. Related (non-symmetric) instances of this multiserver system and this
dynamic threshold-based scheduling policy have also been considered within the context
of diffusion limiting regimes; refer to Section 6.
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Yet another general class of stochastic decomposition approaches is based on ex-
ploiting various priority structural properties to reducethe dimensionality of the multi-
server system in a recursive manner. Although this general approach was originally de-
veloped for single-server systems with multiple queues under a priority scheduling dis-
cipline (see, e.g., [36, 45]), it has been extended and generalized in many different ways
for the stochastic analysis and optimization of multiserver systems. The basic idea con-
sists of a recursive mathematical procedure starting with the two highest priority dimen-
sions of the process that involves: (i) analyzing the probabilistic behavior of the so-called
completion-time process, which characterizes the intervals between consecutive points
when customers of the lower priority dimension begin service within a busy period; (ii)
obtaining the distributional characteristics of related busy-period processes through an
analysis of associated stochastic processes and modified service time distributions in iso-
lation; and (iii) determining the solution of the two-dimensional priorityprocess from a
combination of these results. These steps are repeated to obtain the solution for the(c+1)-
dimensional priority process using the results for thec-dimensional priority process, until
reaching the final solution for the original multidimensional stochastic process. Refer to,
e.g., [36, 45], and the references cited therein.

One example of this general approach for the stochastic analysis of multiserver sys-
tems was discussed at the end of Section 4. Several related extensions of this general
approach have been developed for the stochastic analysis and optimization of various
multiserver systems, e.g., parallel computing systems under a multiclass gang scheduling
policy [85], a (single-class) combination of spacesharingand timesharing policies [81],
and different (single-class) dynamic coscheduling policies [87, 86]. These approaches
generally exploit distinct priority structures in the underlying multidimensional stochas-
tic process together with the probabilistic behavior of dependence structures and dynam-
ics resulting from the multiserver workloads and policies.More specifically, these ap-
proaches investigate each dimension of the stochastic process in isolation based on an
analysis of the probabilistic behavior of a set of stochastic processes analogous to the
completion-time process together with an analysis of related busy-period processes and
modified service time distributions. In [85], this involvesderiving expressions for the con-
ditional distributions of the per-class timeplexing-cycle processes (which characterize the
intervals between consecutive quanta for a class) given thequeue length vectors in terms
of the stationary distributions for the other classes. (In alimiting regime, the exact sta-
tionary distribution for the queue length process of each class can be obtained in isolation
as an alternating service process with vacations representing periods when other classes
receive service.) In [81], this involves deriving a first-passage time analysis of the prob-
abilistic behavior of the departure processes associated with the set of timeplexing-cycle
processes (which characterize the intervals between consecutive quanta for a customer)
to obtain a set of modified service time distributions that incorporate the effects of time-
sharing. In [87], this involves deriving an analysis of the probabilistic behavior of a set
of overall service processes at each server (characterizing the various states that every
parallel application can be in) and expressing this probabilistic behavior in terms of the
corresponding stationary distributions for the other servers. A fixed-point iteration is used
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in all of these cases to solve the resulting system of equations and obtain the station-
ary distribution of the corresponding multidimensional stochastic process in the form of
(2.3) – (2.5). The probability distributions obtained fromeach stochastic analysis in iso-
lation are either used directly or replaced with more compact (approximate) forms that
are constructed by fitting phase-type distributions to match as many moments (and/or
other associated probabilistic functionals) of the original distributions as are of interest
using any of the best known methods. In particular, classical busy-period results (refer
to, e.g., [66, 68]) can be exploited to obtain a more compact (approximate) form for any
busy-period distribution. See also [23].

A similar approach was subsequently taken in [40, 39] for thestochastic analysis of
customer assignment with cycle stealing in multiserver systems under a central queue or
immediate dispatch. The workload consists of two classes denoted byC1 andC2. At any
given time, a single server is associated with each class andthe cycle stealing mechanism
allows the server associated withC2 to serve customers ofC1. In the immediate dispatch
case, the stationary distribution for theC2 process can be determined in isolation using
matrix-analytic methods with the solution given by versions of (2.3) – (2.5); the sojourn
time moments can be directly obtained using virtual waitingtime analysis for the case of
Poisson arrivals. Since the servicing ofC1 customers depends upon theC2 process, the
first three moments of the busy and idle periods of theC2 process are obtained and used to
construct corresponding two-stage Coxian distributions with matching moments. TheC1

process is augmented with the approximate busy and idle period distributions of theC2

process and analyzed in isolation using matrix-analytic methods to obtain the correspond-
ing stationary distribution in the form of (2.3) – (2.5). This analysis of the multiserver
system under immediate dispatch is also extended to the caseof multiple C1 servers.
Turning to the analysis for the central queue case, there aresome differences in the details
of the analysis as one would expect, but the basic approach isquite similar. The stationary
distribution for theC2 process can be determined in isolation using matrix-analytic meth-
ods where the firstC2 arrival of a busy period either starts service immediately or must
wait for the completion of aC1 customer already in service; the mean sojourn time can
be directly obtained, in the case of Poisson arrivals, usingknown results for the M/G/1
queue with setup times [89]. A stochastic process is formulated to represent theC1 pro-
cess together with the probabilistic behavior of various busy periods associated withC2,
where the first three moments of each of the latter random processes are obtained and used
to construct corresponding two-stage Coxian distributions with matching moments. The
stationary distribution of this process forC1 customers can be determined using matrix-
analytic methods with the solution given by versions of (2.3) – (2.5). The results of these
studies demonstrate that cycle stealing can significantly improve the performance ofC1

customers, while the penalty incurred byC2 customers is relatively small. Performance
improvements are found to be greater for bothC1 andC2 under a central queue than under
immediate dispatch.

This approach subsequently evolved into the so-called method of dimensionality re-
duction that applies to a class of recursive foreground-background stochastic processes,
which includes cycle stealing under immediate dispatch, and a class of generalized foreground-
background stochastic processes, which includes cycle stealing under a central queue [70].
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Two approximations of dimensionality reduction are also proposed in [70], each attempt-
ing to reduce the computational complexity of the recursiveuse of dimensionality reduc-
tion by ignoring dependencies to varying degrees (namely, partial and complete indepen-
dence assumptions) while maintaining reasonable accuracy. The method of dimension-
ality reduction has been applied to a number of different multiserver systems, including
multiserver systems with multiple priority classes [41], threshold-based policies for re-
ducing switching costs in cycle stealing [71, 72], and threshold-based policies for the
so-called Beneficiary-Donor model [73].

6. Stochastic Process Limits

The many sources of complexity and difficulty in the stochastic analysis and optimization
of multiserver systems often make an exact analysis intractable for numerous instances
of multiserver systems. Hence, a considerable number of general approaches have been
developed based on an investigation of the underlying stochastic process and associated
control problem in some limiting regime.

The analysis of fluid limits of multiserver systems is one important example of this
general approach in which the asymptotic behavior of the underlying stochastic process is
typically characterized via a functional strong law of large numbers. As such, the stochas-
tic system is approximated by a deterministic system comprised of dynamic continuous
flows of fluid to be drained in a manner analogous to the servicing of discrete customers
in the original stochastic system. In addition to the methods and results presented in Sec-
tion 4, this approach and related extensions have played an important role in the analysis
and optimization of multiserver systems. One example is developed in [14, 15] to study
the optimal dynamic control and scheduling of multiclass fluid networks. An algorith-
mic procedure is presented that systematically solves the dynamic scheduling problem by
solving a sequence of linear programs. Several important properties of this procedure are
established, including an example that a globally optimal solution (namely one rendering
optimality of the objective function over every point of time) may not exist, and thus the
solution procedure is myopic in this respect. The solution procedure generates within a
bounded number of iterations a policy, in the form of dynamiccapacity allocation among
all fluid classes at each node in the network, that consists ofa finite set of linear intervals
over the entire time horizon and that is guaranteed to yield astable fluid network.

In another example associated with the dynamic scheduling of multiclass fluid queue-
ing networks [5], an optimal control approach to the optimization of fluid relaxations of
multiclass stochastic networks is developed based on the Pontryagin maximum principle
and related theory [75, 79]. The maximum principle is used toderive the exact optimal
control policies in the fluid limiting regime for several canonical examples of multiserver
systems. A numerical method is proposed, based on the structure of the optimal policy,
to compute exact solutions for the fluid network optimal control problem using a discrete
approximation that is continually refined until the solution no longer improves. Due to
the dimensionality difficulties of this exact approach, an efficient approximate algorithm
is also developed to compute the fluid optimal control based on a heuristic that learns
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from the exact solution of special cases. Numerical experiments illustrate that a pairwise
interaction heuristic yields near-optimal policies. Morerecently, efficient approximation
algorithms have been developed for the class of separated continuous linear program-
ming problems that arise as fluid relaxations of multiclass stochastic networks. For exam-
ple, in [32], a proposed polynomial-time algorithm is shownto provide a solution that,
for given constantsǫ > 0 andδ > 0, drains the fluid network with total cost at most
(1 + ǫ)OPT + δ, whereOPT is the minimum cost drainage.

Many optimal control problems in multiserver systems can bestudied as Markov
decision processes. However, the well known difficulty withthis approach for some mul-
tiserver systems is the so-called curse of dimensionality.In [59, 60], a form of unifica-
tion is established between the dynamic programming equations of the Markov decision
process of a stochastic network control problem and a related total-cost optimal control
problem for the corresponding linear fluid network. This andrelated results in [59, 60]
form the basis of a general framework for constructing control algorithms for multiclass
queueing networks, with network sequencing and routing problems considered as special
cases. Numerical examples are presented showing close similarity between the optimal
policy from the proposed framework and the average-cost optimal policy. In [61], the
connections between multidimensional Markov decision processes associated with the
optimal control of stochastic networks and the corresponding optimal fluid limit control
processes are further studied within the context of the control of stochastic networks using
state-dependent safety-stocks. For a few canonical examples, it is shown that the proposed
policy is fluid-scale asymptotically optimal and approximately average-cost optimal, lead-
ing to a new technique to obtain fluid-scale asymptotic optimality for general networks
modeled in discrete time. These results are based on the construction of an approximate
solution to the average-cost dynamic programming equations using a perturbation of the
value function for an associated fluid model.

The analysis of diffusion limits of multiserver systems is another important example
of the general approach of this section in which the asymptotic behavior of the underlying
stochastic process is typically characterized via a functional central limit theorem. As
such, the stochastic processes underlying the multiserversystem are approximated by
various Brownian motions that describe the heavy-traffic system behavior. A wide variety
of methods and results for this diffusion approximation approach have been developed
to address the general stochastic analysis and optimization of multiserver systems, and
we refer the interested reader to, e.g., [42, 93] and the references therein. Of particular
interest is the well-known Halfin-Whitt regime [38, 93], forwhich certain heavy-traffic
limits have been established as the traffic intensity goes tounity andS → ∞ in anS-
server queueing system. This framework and related extensions have played an important
role in the stochastic analysis and optimization of multiserver systems, with applications
in various areas such as large call center environments where resource (agent) capacity
planning and scheduling problems have received considerable attention. In one example
associated with the dynamic scheduling of multiclass queueing systems in the Halfin-
Whitt heavy-traffic regime [44], the Hamilton-Jacobi-Bellman equation associated with
the limiting diffusion control problem is shown to have a smooth solution with an optimal
policy having a so-called bang-bang control. Several qualitative insights are also derived
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from the stochastic analysis, including a square root rule for the capacity planning of large
multiserver systems.

Another general class of diffusion approximation approaches have played an im-
portant role in the stochastic analysis and optimization ofmultiserver systems based on
solving the corresponding Brownian control problem. As a representative example hav-
ing received considerable attention, consider a multiserver system in which each class of
customers can be served at any one of a (per-class) subset of the servers, with specific
class-server service rates. The Brownian control problem associated with the dynamic
scheduling of customers in this multiclass parallel-server system to minimize the cumu-
lative holding costs of customers is studied in [43] where, assuming a so-called com-
plete resource pooling condition, a particular discretization method is proposed to find
discrete-review policy solutions. (A symmetric version ofthe general problem, discussed
in Section 5, is studied in [82, 64].) Under the same heavy-traffic complete resource pool-
ing assumption, a candidate for an asymptotically optimal control policy in the form of
a dynamic threshold policy is proposed in [94] for the original multiserver system. It is
then established that this dynamic threshold scheduling policy is asymptotically optimal
in the heavy traffic limit under the complete resource pooling condition and that the lim-
iting cost is the same as the optimal cost in the Brownian control problem [7, 8]. Also, for
numerical solutions of such control problems in general, refer to [55].

Another example of this general approach consists of first determining derivatives
of the performance function of interest atρ = 0, using a Taylor expansion of the function
nearρ = 0, then determining the diffusion limit of the underlying stochastic process,
and finally obtaining a closed-form approximation for the performance function (e.g., the
expected sojourn time in the multiserver system) by interpolating between these light-
traffic and heavy-traffic limits. This approach was originally proposed in [77] where the
0th throughn − 1st order light-traffic derivatives are combined with the heavy-traffic limit
to obtain annth degree polynomial inρ as an approximation to the normalized perfor-
mance function, which in turn is used to produce the desired closed-form approximation.
Several instances of this general approach have been developed for the stochastic analysis
and optimization of various multiserver systems, including symmetric fork-join queueing
systems (see below) [91] and optimal resource allocation inparallel-server systems [84].

Several other multiserver systems have been studied in various limiting regimes.
One example is shortest queue routing systems in which each of the S servers has its
own dedicated queue and customers join the queue with the shortest length at the instant
of their arrival. An analysis of the shortest queue system based on a diffusion limit ap-
proximation is presented in [33], whereas an exact analysisfor the two-server case [2]
and mean sojourn time approximations [63] have also been obtained. A related optimal
multiclass scheduling problem is studied in [80] together with the associated sequencing
problem at each of theS servers. Another example is fork-join queueing systems in which
each server has its own dedicated queue and each customer arrival forks intoS tasks, with
theith task assigned to theith server, such that the customer departs the system only after
all of its tasks have received service. An analysis of the fork-join queueing system using
an interpolation approximation based on light and heavy traffic limits is presented in [91],
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whereas an analysis for the two-server case [31] and bounds on various performance met-
rics [65, 6] have also been obtained.

7. Decentralized Control and Dynamics

Another important source of complexity and difficulty in thestochastic analysis and opti-
mization of multiserver systems often arises as a result of the decentralized management
of (large-scale) environments comprised of a collection ofmultiserver systems. Hence, an
additional number of fundamental issues need to be taken into account in the stochastic
analysis and optimization of such multiserver systems overtime.

One particularly important issue concerns the quality of a decentralized optimiza-
tion of the entire collection of multiserver systems in comparison with a globally optimal
solution of a centrally managed instance of this entire system; see, e.g., [69]. More specif-
ically, consider a hierarchical system where the first levelof the hierarchy consists ofn
multiserver systems, each of which in turn is the root of a subhierarchy of multiserver
systems. A utility functionfi(xi, ri, ui) is associated with theith multiserver system of
the first level, wherexi is the set of variables (including policies) that can be changed
or affected in multiserver systemi, ri is the set of resources allocated to multiserver
systemi, andui is the set of external variables (including workloads) thatimpact mul-
tiserver systemi. The total utility function for the entire hierarchical system is given by
h(f1(x1, r1, u1), . . . , fn(xn, rn, un)), such thath aggregates the utility of each multi-
server system of the first level into a single total utility. Then the overall goal of the col-
lection of multiserver systems is to globally optimize the total utility functionh among
all feasible resource allocationsr1, . . . , rn and all feasible sets of variables (policies)
x1, . . . , xn, yielding total utilityhc. Namely, we have

hc = min
xi,ri

h(f1(x1, r1, u1), . . . , fn(xn, rn, un)).

On the other hand, the decentralized optimization of this hierarchy of multiserver systems
involves each of then multiserver systems optimizing its local utility function

gi(ri, ui) = max
xi

fi(xi, ri, ui)

among all feasible sets of variables (policies)xi given the set of resourcesri allocated by
the central manager to multiserver systemi. In turn, the central manager optimizes the to-
tal utility functionh(g1(r1, u1), . . . , gn(rn, un)) among all feasible resource allocations
r1, . . . , rn for the collection of multiserver systems, yielding total utility hd. Namely, we
have

hd = min
ri

h(g1(r1, u1), . . . , gn(rn, un)).

Then it can be easily shown [69] that as long as the aggregation functionh is order pre-
serving (in the sense thath(x) ≥ h(y) wheneverx ≥ y wherex ≥ y if xk ≥ yk for all k
andh : R

n → R
m), the decentralized optimal solution is as good as the centralized opti-

mal solution, i.e.,hc = hd. The same arguments can be applied recursively at each level
of the hierarchy with respect to the decentralized optimization of the entire subcollection
of multiserver systems. We refer the interested reader to [69] for additional details.
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Another fundamental issue that needs to be addressed in the stochastic analysis and
optimization of multiserver systems concerns the dynamicsof the system over time and at
multiple time scales. Various aspects of each multiserver system (e.g., the external vari-
ablesui) can vary over time, and thus the above decentralized optimization decisions
may occur on a periodic basis. The time scales at which these decisions are made at each
level of the hierarchical collection of multiserver systems depend upon several factors,
including the delays, overheads and constraints involved in making changes to decision
variables, the service-level agreements and performance guarantees of each multiserver
system, and the properties of the underlying (nonstationary) stochastic processes. In such
circumstances, it is well known that even very simple (e.g.,linear) models, which are
only piecewise continuous or contain a feedback element, may exhibit chaotic behavior
(in the sense of difficult to predict and qualitatively very sensitive to initial or control con-
ditions) [50]. As an elementary instance in which adding time delay can produce locally
unstable behavior (and hence can produce chaos on the largerscale), consider a linear
dynamical systemyn+1 = (s − d)yn + D with constant parameters, where the new sys-
tem state depends only on the closest previous state. This system is stable when|ξ| ≤ 1
and asymptotically stable when|ξ| < 1, whereξ = s − d denotes the eigenvalue of the
dynamical system. On the other hand, if the balance ofs− d is spread over time, we have
a systemyn+1 = syn − dyn−1 + D in which now the stability condition is that both
solutions ofξ2 − sξ + d (the characteristic polynomial of the new system) satisfy|ξ| ≤ 1.
Here the growth rates corresponds to the rate of growth in the backlog of customersin
the multiserver systems and the decay rated corresponds to the resource allocation in
the multiserver systems. In the first dynamical system equation, the growth rate and the
decay rate cancel each other within the same time interval, and thus we focus on the net
effect which, by assumption, is such that the backlog remains bounded. In the presence
of time delay as in the second dynamical system equation, thedecay rate (or the resource
allocation) corresponds to a different time interval than the growth rate (or the customer
backlog), which in some cases produces instabilities. Whenthe dynamical system is near
such a fix point and it is globally bounded (by some non-lineardependencies) in such a
way that the trajectories return to this fix point, then the instability of the fix point pro-
duces very chaotic behavior due to the irregular number of iterates involved in returns
to this fix point. Chaos can be controllable in special cases,for example many stochas-
tically stable systems exhibit individual chaotic trajectories, but with very well behaved
distributions or moments. The transitions from a deterministic regime, where all trajec-
tories are predictable at all times, to a stochastic regime,where most of the trajectories
are predictable over long intervals of time, may go through all kinds of uncontrollable
evolutions. It is therefore essential for the stochastic analysis and (decentralized) opti-
mization of multiserver systems to determine the types of possible asymptotic behavior
and the stability of such behavior under small perturbations of the system, and to conceive
of mechanisms exposing the type of behavior in which the system currently resides. For
additional details, we refer the interested reader to [69].
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8. Conclusions

The genesis of multiserver systems may have been as straightforward extensions and alter-
natives to single-server systems, but new and emerging trends such as autonomic comput-
ing have been driving a significant growth of interest in multiserver systems. This growth
has resulted in new formulations and even greater complexities in the multiserver sys-
tems in general from both theoretical and practical perspectives. The stochastic analysis
and optimization of multiserver systems must address thesecomplexities and difficulties.
This will require extensions of existing solution methods and results, including some of
the general approaches considered in this paper, but will also require the development of
new solutions methods and the derivation of new results in the stochastic analysis and
optimization of multiserver systems.
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