
RC25019 (C1006-024) June 29, 2010
Other

IBM Research Report

Measuring the Sustainability Performance of
Software Projects

Felipe Albertao, Jing Xiao, Chunhua Tian
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100193

P.R.China

Yu Lu, Kun Qiu Zhang, Cheng Liu
Northeastern University

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Measuring the Sustainability Performance of Software Projects

Felipe Albertao, Jing Xiao, Chunhua Tian
IBM Research - China

{albertao, xiaojcrl, chtian}@cn.ibm.com

Yu Lu, Kun Qiu Zhang, Cheng Liu
Northeastern University

prothi@163.com, uniworldson@126.com, lectery@gmail.com

Abstract

Contrary to the common assumption that software is "en-
vironmentally friendly" simply because it is virtual, the pro-
cesses and methods used to develop, maintain and deploy
software do have an environmental, social and economic
footprint. For example, e-waste could be greatly minimized
if software vendors would take into consideration the life-
time of old hardware. Like so, software that is dependable
minimizes waste of resources used to support the system.
This paper introduces a set of software engineering met-
rics that can be used to assess the sustainability of software
projects, and it demonstrates how these metrics were used
to assess a real project.

1 Introduction

Information Technology plays a fundamental role in ad-
dressing environmental, economic and social concerns: IT
can not only immaterialize activities that otherwise would
consume resources (e-mail versus postal mail, virtual meet-
ings versus travel) but also the capability to extract knowl-
edge to optimize resource-intensive processes (such as ana-
lytics for water consumption and smart grids).

On the other hand, the impact caused by the development
of IT products are very rarely accounted or even acknowl-
edged across the industry. For example, it is estimated that
one computer becomes obsolete for every new one put on
the market [1]: In other words, the computer hardware it-
self is still usable, but the software rendered it useless or
undesirable. If software developers took that fact into con-
sideration, perhaps products would be designed from the
ground-up to work on older hardware.

This paper outlines a method to quantify factors that
(positively or negatively) impact the environment, the econ-
omy and society, with the objective of raising the awareness

that software should be developed in a sustainable manner.

2 Previous Work

• This study is a follow-up of a methodology created by
one of the authors of this paper [2].

• Eckart Wintzen has invented and implemented a con-
cept called “Environmental Accounting” at Origin (an
European outsourcing company) in the early nineties
[3]. That was not a methodology per se, but ballpark
estimates based on input from project managers. How-
ever, Eckart Wintzen was the first to recognize the en-
vironmental impact of “virtual” IT-based processes.

• IfPeople (an US-based IT company focused on non-
profit organizations) has published guidelines for so-
cially responsible IT practices [4]. However, the stan-
dard is focused on the adoption and operation of IT
products, rather than the software development pro-
cess.

3 Proposed Solution

The method outlined in this paper introduces a set of Sus-
tainability Performance Metrics that can be used to improve
the environmental, economic and social aspects of a soft-
ware project, following three steps:

1. Assess the Sustainability Performance Metrics at the
end of a software release cycle.

2. Analyze the Sustainability Performance Metrics.

3. Establish Sustainability Improvement Goals for the
next software release cycle.

Most of the metrics do not have a “good” or “bad” result per
se. The goal is to use the metrics as a basis for continuous

improvement, where results are monitored and compared
after each software release cycle.

4 Sustainability Properties

The Sustainability Performance is measured and ana-
lyzed against a set of properties [5], which if improved will
bring economic, social and environmental benefits:

4.1 Development-Related Properties

Properties that impact the development process.

• Modifiability: The ability to introduce changes quickly
and cost effectively.

– Economic Benefit: Minimizes development and
support costs.

– Social Benefit: Enables system to be continu-
ously adapted to meet societal demands.

– Environmental Benefit: Minimizes environmen-
tal waste through less effort in producing and
maintaining existing system.

• Reusability: Level in which system components can be
reused in other systems.

– Economic Benefit: Accelerates time-to-market.

– Social Benefit: Enables the production of new
products with less effort.

– Environmental Benefit: Minimizes environmen-
tal impact through less effort in producing sys-
tem.

• Portability: Ability of the system to run under different
computing environments.

– Economic Benefit: Increases potential market
and system’s lifetime.

– Social Benefit: Reduced cost for technology
adoption, by minimizing user’s dependency on
latest technology.

– Environmental Benefit: Minimizes e-waste by
extending the lifetime of old hardware.

• Supportability: System’s ability to be easily config-
ured and maintained after deployment.

– Economic Benefit: Increased customer base due
to reduced support costs.

– Social Benefit: Vendor’s independence increases
the product usability and thus accessible to a
larger population.

– Environmental Benefit: Indirect benefit: min-
imizes resources required to provide support
(transportation, physical material, etc. . .)

4.2 Usage-Related Properties

Properties that impact the user at run-time.
• Performance: The time required by the system to re-

spond to user requests.

– Economic Benefit: Improves productivity.

– Social Benefit: Minimizes dependency on latest
technology.

– Environmental Benefit: Minimizes e-waste by
extending hardware lifetime. Minimizes energy
consumption through less computer usage time.

• Dependability: The ability of a system to function as
expected at any given time.

– Economic Benefit: Minimizes support and main-
tenance costs.

– Social Benefit: Increases societal productivity.

– Environmental Benefit: Indirect benefit: Mini-
mizes energy waste.

• Usability: Features that enable a system to be user
friendly.

– Economic Benefit: Increases customer satisfac-
tion. Minimizes support costs.

– Social Benefit: Contributes to the digital in-
clusion, by eliminating barriers (learning curve)
and making system more accessible to a broader
number of users.

– Environmental Benefit: Indirect benefit: Less
waste of resources used in training (books, train-
ing rooms, energy, etc. . .).

• Accessibility: The system’s ability to serve people re-
gardless of location, experience, background, or the
type of computer technology used.

– Economic Benefit: Increases potential market
and/or audience.

– Social Benefit: Enables technology to minori-
ties, elderly, people with disabilities, non-English
speaking communities, and illiterate population.

– Environmental Benefit: Increases multicultural
awareness and provides equal opportunities. In-
direct benefit.

4.3 Process-Related Properties

Properties that impact project management

• Predictability: The team’s ability to accurately esti-
mate effort and cost upfront.

– Economic Benefit: Minimizes risks of budget
overrun.

– Social Benefit: Increases team’s conditions of
work (avoid long workhours).

– Environmental Benefit: Optimizes use of envi-
ronmental resources.

• Efficiency: The overhead of production processes over
the bottom-line value perceived by the customer.

– Economic Benefit: Maximizes product value.

– Social Benefit: Minimizes effort waste.

– Environmental Benefit: Optimizes use of envi-
ronmental resources.

• Project’s Footprint: Natural resources and environ-
mental impact used during software development.

– Economic Benefit: Indirect benefit.

– Social Benefit: Indirect benefit.

– Environmental Benefit: Reduces fuel consump-
tion and emissions, officespace utilization, and
maximizes use of shared resources.

5 Metrics and Analysis

The metrics used to assess each one of the properties
are described below, along with the Sustainability Perfor-
mance findings for the Urban Water Management Platform
(UWMP), a software project developed by IBM Research -
China, Northeastern University and the Shenyang Eco-city
Research Institute (SERI).

5.1 Modifiability and Reusability

Systems with a high number of interdependencies are
hard to maintain because the impact of a given change is
hard to assess. In order to address this problem, a common
practice in object-oriented design is to measure the depen-
dency among the classes of a given system[6]. The first
metric to be analyzed is the Instability, which measures the
potential impact of changes in a given package:

I = Ce/(Ca+ Ce)
Where:

• Afferent Couplings (Ca): The number of classes out-
side a package that depend upon classes within the
package.

• Efferent Couplings (Ce): The number of classes inside
a package that depend upon classes outside the pack-
age.

Instability ranges from 0 to 1, where 0 means that the pack-
age is maximally stable, and 1 means that the package is
maximally unstable.

However, a system maximally stable is also unchange-
able, and in fact some packages must be unstable enough
to allow changes. Therefore it is also necessary to mea-
sure how much a package can withstand change, which in
object-oriented design is accomplished by the use of ab-
stract classes. This metric is called Abstractness:

A = Na/Nc
Where:

• Na: Number of abstract classes in a given package

• Nc: Number of contrete classes in a given package

Abstractness ranges from 0 to 1, where 0 means the package
is completely concrete and 1 means completely abstract.

We can now measure the relationship between Instabil-
ity and Abstractness: The two extremes (a maximally stable
and concrete package, versus a maximally unstable and ab-
stract package) are both undesirable: The ideal package is
one with a “balanced” Instability and Abstractness. The fi-
nal metric measures how far a package is from the idealized
balance, or the Distance From Main Sequence:

D = |A+ I − 1|
Distance ranges from 0 to 1, where 0 means the pack-

age has the ideal balance and 1 means the package requires
redesign and refactoring.

The table below shows the metrics for the UWMP source
code:

Package Ca Ce I A D
Java: map.bean 8 2 0.20 0 0.80

Java: map.io 2 3 0.60 0 0.40
Java: common 1 0 0 0 1

Java: kpi.servlet 0 1 1 0 0
Java: map.business 0 4 1 0 0

Flex: comp 2 19 0.90 0 0.10
Flex: comp.key 1 1 0.50 0 0.50

Flex: kpi 1 1 0.50 0 0.50
Flex: beans 21 1 0.04 0 0.96
Flex: maps 1 18 0.95 0 0.05

Flex: business 1 1 0.50 0 0.50
Flex: events 20 1 0.05 0 0.95

The metrics indicate a high number of packages that re-
quire redesign (D close to 1). The fact that packages were
organized by design patterns (beans, business, servlets, io)

rather than their actual functions are the most likely cause
for such instability. The key conclusion is that the packages
should be reorganized by system functionality.

5.2 Portability

The goal is to maximize the hardware’s lifetime by its
actual physical durability rather than forcing its obsolence
by software platform requirements. Therefore it is desirable
to measure the Estimated System Lifetime, or the estimated
number of years the minimum hardware required by the sys-
tem reached the market.

UWMP depends on the following platforms and compo-
nents: Adobe Flash Player 10, Java 6 on Windows XP, IBM
SPSS Statistics 18, Geoserver and PostgreSQL. By inves-
tigating its minimum hardware requirements, we have esti-
mated that the system can run in hardware as old as from
2003, giving it a lifetime of 7 years. We concluded that 7
years is an acceptable timeframe based on the types of PCs
used by the UWMP’s target users, and therefore the system
is not going to require unecessary hardware upgrades.

5.3 Supportability

The metric Support Rate was used, which is calculated
by the number of user questions that required assistance di-
vided by the number of minutes the system was used in a
given session. Because UWMP is a new system with no
support history, we have used the results of the usability
study to calculate the Support Rate, as such: The usability
test subject performed 4 tasks that required assistance / 8.3
minutes = 0.48

UWMP is a web-based system, not requiring installation
on the user’s desktop. Desktop-based systems can also use
the Estimated Installation Time metric, which is the amount
of time the user takes to install the product without assis-
tance.

5.4 Performance

A measure of performance is relative to the objective of
the system. Since our goal is to improve user’s productiv-
ity, we use the Relative Response Time metric, which is
the number of tasks with an unnaceptable response-time
divided by the total number of tasks tested. The usabil-
ity study indicated one task with an unnaceptable response-
time from a total of 11 tasks, or a Relative Response Time
of 0.09.

5.5 Dependability

Defect Density (that is, how many defects a system has
relative to its size) is a common software engineering met-
ric, however that metric alone could be misleading because

an inefficient testing process could cause the defect density
to be low. Therefore we used the following metrics:

• Defect Density: Known defects (found but not re-
moved) / LOC (lines of code):
4 known defects / 2,111 LOC = 0.002

• Testing Efficiency: Defects found / Days of testing:
9 defects found / 16 hours of testing = 0.56

• Testing Effectiveness: Defects found and removed /
Defects found:
5 defects removed / 9 total defects found = 0.55

5.6 Usability

Three of the Nielsen’s usability attributes[7] were used
to assess the system’s usability:

• Learnability: Number of minutes to accomplish first
critical task without assistance / Number of minutes
system was used by user
0.43 / 8.3 = 0.05

• Effectiveness: Number of tasks completed without as-
sistance / Total number of tasks
5 / 11 = 0.45

• Error Rate: Number of tasks which were completed
but deviated from normal course of action / Total num-
ber of tasks
2 / 11 = 0.18

5.7 Accessibility

We reviewed accessibility based on a list of
requirements[8] and using the following score: 0=Non
Existent, 1=Not Adequate, 2=Acceptable, 3=Adequate.

• Support for motor impaired users: 1 = Flash Player 10
supports motor control, but UWMP does not provide
shortcuts

• Support for visual-impaired users: 1 = Flash Player
10 supports color adjustments, however it does not in-
clude features for low-vision users, such as zoom-in or
font sizing.

• Support for blind users: 2 = Flash Player 10 supports
screen readers.

• Support for users with language and cognitive disabil-
ities: 0 = UWMP uses very technical language, and
no investigation was carried to find out what profes-
sionals with such disabilities in the water management
industry do to overcome such challenges.

• Support for illiterate users: 2 = UWMP has no support
for illiterate users, however it is extremely unlikely that
the target user (water-management professionals) will
be illiterate.

• Internationalization and localization support: 2 =
UWMP supports English and Standard Mandarin, the
most common languages spoken by the target users.
UWMP does include a few localized features such as
dates, however additional changes are necessary, such
as correctly translating indicators that use the chinese
character “wan” (which means “10,000”) to the En-
glish “thousand” or “million” (for example: “78 mil-
lions” instead of “7800 ten-thousands”).

5.8 Predictability

The goal is to measure how effectively the development
team is able to estimate effort and cost. Normally this is
measured by simply counting the number of days a project
was delayed. However, that metric is not effective for
Agile-based projects because a project is never “late” per
se. Instead, Agile practitioners prefer to remove features
and tasks from the plan.

The UWMP team uses a variation of the Extreme Pro-
gramming methodology, based on points instead of hours
worked. First we have compared the number of points ini-
tially estimated at the beginning of each iteration with the
number of points used at the end of each iteration. Then, the
Estimation Quality Rate metric was calculated by dividing
the number of iterations where the difference was +/- 20%
by the number of total iterations in the project. The result
was zero, given that no iteration had more or less than 20%
difference in points.

5.9 Efficiency

The Project Efficiency is measured by the effort towards
deliverables that add direct value to the customer (such as
coding, manuals, etc. . .) versus project-related effort (such
as infrastructure maintenance, project management, etc...).
In the UWMP project, 38 points were used in infrastructure-
related tasks, out of a total of 310 points (12.25%). There-
fore the Project Efficiency is 88%.

5.10 Project’s Footprint

It is hard to accurately calculate the amount of natural
resources used by the team, such as fuel or paper. However,
the goal is not to extract an exact amount, but instead to
allow the team to progressively improve the metrics over
time. We have chosen two metrics that reflect resource-
intensive activities, such as transportation from/to the office,
and long-haul trips:

• Work-From-Home Days: 2 days out of 165 total team-
days (33 project days * 5 team-members) = 1.21%

• Long-Haul Rountrips: By airplane: 6; By train: 0.

6 Results

Based on the analysis above, the following problems
were identified:

1. Modifiability and Reusability: Packages organized by
design instead of functionality.

2. Portability: No action required.

3. Supportability: No action required.

4. Performance: Low response time of the “Data Audit
Analysis” function.

5. Dependability: No action required.

6. Usability: No action required.

7. Accessibility: Short-cuts not available; Zoom-in or
font-sizing not available; Chinese “wan” not correctly
translated.

8. Predictability: No action required.

9. Efficiency: No action required.

10. Project’s Footprint: Team-members rarely work from
home; Zero train trips.

The list above was prioritized based on 3 attributes (cus-
tomer value, effort, and level of improvement) and the fol-
lowing specific Sustainability Improvement Goals were de-
fined for the next release of the software:

• Goal #1: Improve the “Data Audit Analysis” response
time by 50%

• Goal #2: Redesign the package structure and improve
the Distance metric on at least 5 packages.

• Goal #3: Prioritize train trips whenever possible.

7 Conclusion and Future Work

This study demonstrates that is feasible to incrementally
improve the sustainability of software projects by measur-
ing a set of metrics over several releases of a software prod-
uct. Further work is necessary in order to develop bench-
marks for the metrics, by applying this methodology on sev-
eral other projects of different sizes. Such effort would be
greatly facilitated if the collection of the metrics were auto-
mated.

References

[1] Poison PCs and Toxic TVs, Silicon Valley Toxics
Coalition, 2001.

[2] Felipe Albertao, Sustainable Software Engineering,
Carnegie Mellon University, 2004.
http://www.scribd.com/doc/5507536/Sustainable-
Software-Engineering

[3] Rogier van Bakel, Origin’s Original, Wired Magazine,
Issue 4.11, 1996.
http://www.wired.com/wired/archive/4.11/es_wintzen.html

[4] IfPeople, ResponsibleIT Standard.
http://www.ifpeople.net/learn/resources/sustainability/responsibleIT-
ifpeople.pdf

[5] Most properties are in fact Quality Attributes. See Len
Bass, Paul Clements, and Rick Kazman, Software Ar-
chitecture In Practice - CMU SEI Series, Carnegie Mel-
lon University

[6] Robert Martin, OO Design Quality Metrics: An
Analysis of Dependencies, 1994.
http://www.objectmentor.com/resources/articles/oodmetrc.pdf

[7] Usability Engineering, Jakob Nielsen, 1994

[8] List partially adapted from the Web Accessibility Ini-
tiative, Ball State University.
http://www.bsu.edu/web/bsuwai/use.htm

