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ABSTRACT
High-end solid state disks (SSDs) provide much faster ac-
cess to data compared to conventional hard disk drives. We
present a technique for using solid-state storage as a caching
layer between RAM and hard disks in database management
systems. By caching data that is accessed frequently, disk
I/O is reduced. For random I/O, the potential performance
gains are particularly significant. Our system continuously
monitors the disk access patterns to identify hot regions
of the disk. Temperature statistics are maintained at the
granularity of an extent, i.e., 32 pages, and are kept current
through an aging mechanism. Unlike prior caching methods,
once the SSD is populated with pages from warm regions
cold pages are not admitted into the cache, leading to low
levels of cache pollution. Simulations based on DB2 I/O
traces, and a prototype implementation within DB2 both
show substantial performance improvements.

1. INTRODUCTION
Recent advances in solid state technology have led to the

introduction of solid state drives (SSDs). Today’s SSDs
store data persistently using NAND flash memory. While
SSDs are more expensive than hard disks when measured
in dollars per gigabyte, they are significantly cheaper when
measured in dollars per random I/O per second. For work-
loads with significant random I/O, SSDs should be targeted
to the portion of the workload that can benefit the most
from random I/O savings. Using SSDs to store an entire
enterprise-scale database is not currently cost-effective.

Previous work has demonstrated how one might place cer-

∗The majority of this work was completed while the au-
thor was an intern at IBM T. J. Watson Research Center,
Hawthorne, NY.

tain tables and/or indexes selectively on an SSD to take
maximal advantage of the SSD’s performance characteris-
tics [2, 9]. A workload is profiled to determine which tables
and indexes generate the most physical random I/O, and
tables are placed on the SSD in order of decreasing I/O per
page.

There are two drawbacks to such an approach. First, a
user must explicitly run a profiling tool to gather statistics,
and then perform potentially expensive physical reorganiza-
tions as data is moved to/from the SSD. Second, decisions
are made at the granularity of an entire table or index. In
some cases, only part of the data in a table (e.g., the most re-
cent data) may be frequently accessed, and one might hope
to put just fragments of the table on the SSD.

In this work, we take a different approach. Rather than
treating disk and SSD storage as alternative storage options
at the same level of the storage hierarchy, we treat the SSD
and disk hierarchically. All data is initially stored on the
disk. Over time, high-value data is identified and stored in
the SSD. This high-value data is kept current on both the
SSD and the disk. Other low-value data is current only on
the disk, and not resident on the SSD. Thus the SSD behaves
like a write-through cache. As with traditional caches, one
needs to define suitable admission and replacement policies
to optimize performance.

1.1 Region Based Temperature
At first glance, it is not even clear that there are signif-

icant gains available. Database systems typically employ
memory resident bufferpools that can hold a few gigabytes
of data. If the application’s working set fits within this mem-
ory budget, then there will be relatively little physical I/O
and the benefits of an SSD cache would be minimal. There
is a complementary risk that even if the application’s work-
ing set exceeds the bufferpool size, the physical I/O may
be spread thinly over a very broad range of pages, meaning
that there would be little locality for a cache to utilize.

To demonstrate that significant opportunities for perfor-
mance improvement using an SSD bufferpool are available
we have profiled DB2 for Linux, Unix and Windows (DB2
LUW) [5] running a TPC-C workload [26], and have recorded
the traces of physical I/O requests. A typical trace is shown
in Figure 1. These traces reveal that there remains substan-
tial locality of reference in the physical I/O stream. Notice
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Figure 1: Disk page accesses over time for a TPC-
C workload with a 368MB bufferpool and a 15GB
database

the horizontal bands where data from nearby locations on
the disk are accessed with increased frequency, as well as
horizontal bands with low access frequency.

The locality we have identified has an interesting charac-
ter. If accesses are grouped into contiguous fixed-size regions
of physical memory, there are “warm” and “cold” regions.
Warm regions correspond to tables (or contiguous parts of
tables) that are accessed moderately often, but not often
enough to be cached in RAM. Cold regions correspond to
tables that are either infrequently accessed, or to tables that
are so big that the per-region access frequency is low.

Our temperature calculations distinguish between sequen-
tial and random I/O, and give higher weight to random I/O.
This choice enables the SSD to be efficiently utilized, primar-
ily improving the poor random I/O performance of hard
disks, but also helping with sequential I/O when there is
minimal random I/O. (Note that the TPC-C workload above
exhibits random rather than sequential I/O patterns.)

1.2 SSD Caching Policies
It appears that gathering region-based data online could

be helpful to determine which regions are warm and which
are cold. Using this information, one can define suitable ad-
mission control and eviction policies for the SSD bufferpool.
Region-based data has advantages over page-level statistics.
First, keeping statistics for every page in the database would
take much more space. Second, page-level statistics would
be more sparse, would take longer to accumulate, and if
used alone would not capture the information that accesses
to neighboring pages increase the chance of reuse for a given
page. In DB2, data is stored in extents, groups of 32 contigu-
ous pages. In this work we accumulate temperature statis-
tics at the extent granularity.

Traditional caches admit every page, and accumulate data
about use over time, such as frequency of access or time of
last access. Pages are candidates for eviction if they are
accessed rarely (low frequency) or long ago (old time of last
access). Information about the reuse potential of a page is
gathered only after the page is admitted, and it may take
time for the system to evict a cold page. For example, under
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Figure 2: System overview

a least recently used (LRU) policy, a newly admitted page
that is never reused will not be replaced until after at least
N more page accesses, where N is the capacity of the cache.
Cold pages will therefore pollute the cache, and lead to a
smaller effective cache size.

In our approach, we gather region-level statistics on the
fly. A page is admitted if it comes from a warm region. A
page from a cold region may be admitted, but only if it does
not displace a page from a warm region. Region statistics
are maintained online, and updated for each page access,
whether the access resulted in the admission of the page or
not. As a result, the system can adapt to changes in page
access patterns over time. By refusing to admit pages from
cold regions at the expense of pages from warm regions, more
of the cache is available for warm-region pages, leading to
improved cache utilization.

1.3 System Architecture
Our system architecture is summarized in Figure 2. In this

figure, arrows represent the flow of data pages. When data
is read (item 1 in the figure) the memory-resident buffer-
pool is consulted. If the data is not memory resident, its
corresponding page has to be brought in from SSD or disk
and the temperature of the region containing that page is
updated.

First, the SSD bufferpool is interrogated, and if found,
the page is read into the main memory bufferpool (item 2).
If the data is not on the SSD, the page is read from disk as
usual (item 3), with a copy being fed into the temperature-
based replacement logic. If the page is warmer than the
coldest clean page currently cached, it is written to the SSD
(item 4). Queries may cause records to be modified (item
6), resulting in pages marked “dirty” in the main memory
bufferpool. Whenever a dirty page is displaced from the
main memory bufferpool (item 5) it is written to the HDD
and updated in the SSD (item 6), if present. Every time a
page is read from either the SSD (item 2) or HDD (item 3),
its identifier is also fed into the temperature-based replace-
ment logic so that the temperature information is updated.

We assume an SSD device whose random access perfor-
mance exceeds both the random and sequential access per-
formance of the underlying hard disk drives. The FusionIO



device we use in our experiments satisfies this assumption. If
sequential I/O on the hard disk was faster than random I/O
on the SSD, the architecture of Figure 2 would be subopti-
mal because sequential I/O cannot bypass the SSD buffer-
pool after the first access.

1.4 Evaluation
We evaluate our architecture in two ways. To evaluate the

cache replacement policies, we record a physical I/O trace of
IBM DB2 LUW. We then replay this trace through a cache
simulator to compare our SSD replacement algorithms with
previously proposed methods. The simulator sends physi-
cal I/O requests based on the trace to actual SSD and hard
disk devices and measures the elapsed time. Traces based
on TPC-C [26] and TPC-H [27] are considered, to evalu-
ate the benefits for both transaction processing and query
processing.

Secondly, we implemented the described method in DB2
LUW. It was then evaluated using two workloads: an enter-
prise resource planning (ERP)-like workload and the TPC-C
workload.

1.5 Main Results and Contributions
Our performance results show that the region-based tem-

perature calculation is effective. Caching based on these
temperatures significantly outperforms alternative methods.
Once the temperature statistics are warm, the hit rate and
I/O time can be a factor of two better than competing
methods. The additional information provided by the tem-
perature statistics allows the system to limit admission to
the cache to pages from relatively warm regions. Conven-
tional caches admit all pages and only then accumulate us-
age statistics. Our method thus makes better use of the
cache by avoiding transient caching of cold pages.

By adding an SSD layer to DB2, we are able to obtain a
speedup of over 5x for an ERP workload where the SSD can
hold roughly one quarter of the database. Our algorithms
are able to identify the hot data and the SSD is able to
satisfy 83% of the physical I/O requests for pages not in the
memory-resident bufferpool.

Our approach overcomes the two drawbacks we identified
in the previous work. First, because all data gathering is
online and automatic, no explicit tuning or physical reorga-
nization is required. Second, decisions are made at a region
level, which is finer than the whole table level. Thus if only
part of a table is warm, such as the most recently appended
data, only that part of the table will be cached.

The remainder of the paper is organized as follows: we
start by highlighting some target database scenarios for our
approach in Section 2; we follow with the details of our
SSD bufferpool extension in Section 3; then, in Section 4 we
compare the performance of our cache against other known
policies through a trace-based simulation; we evaluate the
performance of our SSD bufferpool extension implemented
inside DB2 in Section 5; finally, we discuss related work in
Section 6 and we conclude in Section 7.

2. MOTIVATING EXAMPLES
We outline several common use scenarios that could ben-

efit from our SSD caching approach. In the three examples
below, there would be no benefit to temperature statistics
at a finer granularity than an extent, because extent-level
statistics capture the essence of the distribution.

Example 2.1. Consider an extent from a table that is
clustered by one or more attributes of the table. DB2 LUW
supports multi-dimensional clustering [23] where all records
in an extent have the same values for the dimension at-
tributes. Suppose that the most common access pattern is a
range or equality query on the clustering attributes. Then for
most extents, either the whole extent will satisfy the query,
or the whole extent will not satisfy the query. Thus there is
a very strong correlation between the access patterns of all
pages within each extent.

Example 2.2. Consider a table scan or a range parti-
tioned scan in which accesses to all records in the table (or
range) are equally likely. Then the access probability of a
page is exactly the access probability of the extent divided
by the extent size. One might think that uniformly accessed
tables would be bad candidates for caching since there is no
locality within them. However, one must consider interac-
tions between tables. A table T with an access frequency that
is uniformly high should be cached ahead of the colder parts
of other tables. If T is relatively small, it could conceivably
be cached in its entirety.

Example 2.3. Consider a table where new data is ap-
pended to the end of the table. If more recent data is more
frequently accessed, there will be a gradient of increasing
temperature as one progresses though the table. Within any
small segment of the table, pages will have been inserted at
about the same time, and will thus have similar tempera-
tures.

Each of these examples represents a typical use case that
could benefit from our approach.

3. METHODOLOGY
In this section we describe the algorithm managing our

SSD bufferpool extension, the Temperature-Aware Caching
(TAC) algorithm.

3.1 Region-based Temperature Calculation
Each page request issued by the bufferpool layer con-

tributes to the computation of regional temperatures. The
access patterns of the page requests are determined using
a windowing technique. As the pages are requested, the
consecutive page IDs are accumulated within a logical win-
dow. Once the window is full, the page IDs are transformed
into region IDs. If a region is accessed more than a cer-
tain number1 of times within a window, these page requests
are labeled as “sequential”. Otherwise the page request is
labeled as “random”.

As mentioned previously, we assume an SSD device whose
random access performance exceeds both the random and
sequential access performance of the underlying hard disk
drives. In such a case, it pays to cache both sequentially
accessed and randomly accessed pages, but the payoff for
randomly accessed pages is higher. For an accessed page
P , we compute the cost C(P ) defined using the following
function.

1In our implementation, this number is 2, for a window size
of 20.



C(P ) =

{

∆S = SHDD −RSSD if P accessed sequentially

∆R = RHDD −RSSD if P accessed randomly

(1)
In this function SHDD and RHDD are the times the hard

disk takes to perform a sequential read and a random read
respectively. RSSD is the time to perform a random read on
the SSD. Consequently, ∆S is the extra time cost incurred if
the requested page has not been found on the SSD and is re-
trieved from the hard disk in a sequential manner. Similarly,
∆R is the extra time cost of retrieving the page from the disk
in a random fashion if the page does not exist on the SSD.
C(P ) is computed and added to the incremental cost of P ’s
region. Over time, the temperature statistics allow one to
identify the regions of the disk that would have incurred the
highest I/O cost. These cumulative values help the system
determine the best pages for retention or replacement.

In order to allow temperature values to reflect changing
access patterns over time, we apply a standard aging pol-
icy [29] in which temperature values are halved after a cer-
tain number of accesses. The effect of this halving is that
historical data is weighted lower than recent data in deter-
mining temperature levels.

3.2 Temperature-based Replacement Policy
As described in Section 1.3 the SSD bufferpool is popu-

lated with pages read from the HDD. While the SSD buffer-
pool is not full, all incoming pages are admitted. After-
wards, whenever a page P is read from the HDD, it is con-
sidered for caching on the SSD in place of the coldest page
currently cached. When a dirty page P ′ is discarded from
the main memory bufferpool, if an earlier version of it is cur-
rently cached on the SSD than it is updated in place, so the
SSD bufferpool acts like a write-through cache. This write-
through operation does not take into account the current
temperature of the dirty page’s region. One could conceiv-
ably check the temperature at the time of displacement and
when the dirty page is sufficiently hot, try to cache it on
SSD. However, since hot pages are accessed frequently, this
will happen “naturally” with the next read access to this
page.

Note that the current design performs random writes to
the SSD at page granularity. As Chen et al. [3] report, high-
end SSD devices do not show noticeable performance penal-
ties for random versus sequential writes due to their internal
write buffering. They do however point out that subsequent
writes that are randomly distributed over the SSD space can
lead to internal fragmentation (i.e., erase blocks with invalid
pages). This in turn can lead to a significant drop in perfor-
mance if the defragmentation logic of the SSD cannot keep
up.

For this reason, one may instead buffer multiple pages in
memory and write to the SSD one full erase-block at a time,
whereby reducing internal fragmentation. We experimented
with this approach by accumulating pages in memory and
grouping them in blocks before writing to the SSD. In this
approach, the unit of replacement on the SSD bufferpool is
an erase block, instead of a page. This increases the book-
keeping overhead somewhat since dirty pages can no longer
be updated in place on the SSD so their previous versions
need to be invalidated and their space reclaimed. For the
FusionIO device we used in our experiments and the investi-

gated workloads, this page buffering approach did not yield
any measurable performance benefits, so we decided to keep
the current page-at-a-time design.

3.3 Implementation Details
In this section, we provide more detail about how we effi-

ciently implement the architecture outlined in Figure 2.
When a page P is requested, and is not in the memory-

resident bufferpool, the request is transferred to the SSD
bufferpool agent. The SSD bufferpool agent checks if the
page is stored in the SSD by probing a memory-resident
hash table. For each SSD-resident page P , this table keeps
a pair (HP , SP ), where HP is the location of the page on
the disk and SP is the location of the page on the SSD
Determining the region of a page is a simple calculation on
HP , since extents are contiguous and aligned.

Temperature-based statistics are stored per region in a
memory-resident hash table that maps regions to tempera-
tures for all regions that have been accessed in the past.
Since the number of regions depends on the sizes of all
database objects, this hash table may need to be resized
once its occupancy factor exceeds some threshold. Because
we use only static databases in our experiments, we imple-
mented a fixed-size hash table for the current prototype.

The temperature-based replacement policy depends on
the ability to identify the coldest page currently cached on
the SSD. In order to do that efficiently, we maintain a heap
with all cached pages, organized by their temperature, so
that extracting the coldest page can be done in logarithmic
time. The temperatures are current at the time of insertion
in the heap, and are updated lazily, in order to minimize
the heap reorganization cost. More precisely, whenever a
victim needs to be identified, we update the temperature of
the heap’s top and re-insert it. If another page is now in
the top, we update its temperature too and re-insert it. We
repeat this a small number of times (currently five times),
and finally pick the page currently at the top of the heap.
This way, the worst case cost for extracting the coldest page
is still logarithmic.

It is not necessary to identify the absolute coldest page in
order to achieve good caching behavior. Oftentimes, find-
ing a page that is among the coldest is sufficient. This can
be accomplished with constant cost as follows. Assume the
temperature range is divided into a fixed number of temper-
ature ranges or “bands”. Every page can then be assigned
to one of these bands, depending on its current temperature.
In memory, we can store the pages belonging to a band in a
linked list. Whenever a page’s temperature is updated, we
determine if it has to be moved to a different band and then
insert it in the list of the correct band. Finding the coldest
page can now be accomplished in constant time: first, the
bands are inspected from coldest to hottest, until one with
a non-empty page list is found (there is a constant number
of bands, typically less than 100). Then, the front page of
the list is removed in constant time.

Besides the efficiency gain, this approach has the advan-
tage of introducing some amount of “smoothing”. In real
workloads, pages rarely have temperatures that are exactly
the same. Consider, for example, the case of a table scan.
The pages at the beginning of the scan are already get-
ting hotter while the pages still to be scanned are relatively
colder, even though they should be of the same temperature
logically. With multiple scans in different locations, the tem-



peratures get even more diverse (even though this danger
can be reduced by techniques such as scan sharing [17]). The
net effect is that upcoming scan pages may be displaced by
the seemingly hotter past scan pages. By introducing tem-
perature bands, this danger is reduced significantly, since
now all scan-related temperatures end up in the same band
with high likelihood.

While efficient, this solution introduces three new tuning
knobs: the number of temperature bands, the choice of band
boundaries, and the replacement policy within a band. All
three are dependent on the workload characteristics. For our
benchmark workloads, we found between 50 and 100 bands
to be a good choice, with less than 10 bands usually lead-
ing to noticeable degradation due to “over-smoothing” and
more bands not improving the performance. In our tests, we
picked the band boundaries using equi-depth histograms but
more investigation is needed for this knob since we typically
found many very thin bands in the “very cold” category
and some thin bands in the “very hot” category, with few or
none in between. Regarding the replacement policy within
a band, LRU may seem to be an obvious choice. However,
if the workload consists largely of sequential scans, MRU
may be a good choice as well: as discussed earlier, pages
of scans will end up in the same band with high likelihood.
With MRU policy, the beginning of a scan may remain in
the SSD bufferpool and improve reuse by other scans. LRU,
on the other hand, would displace the oldest scan pages first
which can lead to fewer cached scan pages if the SSD buffer-
pool is too small. This knob requires more investigation as
well.

During our tests, we determined that this banded ap-
proach is similar in performance to a modified heap-based
approach: instead of admitting a page into the heap as soon
as it is warmer than the coldest page, we admit it if it is
at least 1% warmer than the coldest page. This way, sim-
ilar smoothing is achieved as with bands. Since our tests
showed no discernible difference in performance, we chose
the slightly simpler “smoothed heap” implementation.

Another implementation detail concerns the writing of
pages to SSD. While pages could be written synchronously
to SSD whenever a page is admitted to the SSD bufferpool
(i.e., when reading a hot page from disk or when writing a
hot dirty page to disk), this is not exploiting the parallelism
available from having two storage devices. In addition, if
there are hundreds of queries running concurrently and the
number of SSD devices is small, the SSDs could become a
bottleneck from the many write requests and slow down all
queries.

It would therefore be better to decouple the reads and
writes on disk from the SSD writes by introducing a small
in-memory buffer that can store a number of pages to be
written to SSD. When a page is read or written on disk
and is admitted to the SSD bufferpool, it is placed into this
memory buffer first, thereby adding only a small overhead.
Background writer threads continuously watch the buffer
and write any available pages to SSD in parallel with any
disk activity. If there are too many write requests being
added for the writer threads to keep up, the coldest pages
can be dropped from the memory buffer since they provide
the smallest benefit. The number of writer threads can be
set based on SSD characteristics (e.g., more threads if the
SSD has more write queues) or can be adjusted dynamically
by monitoring the write performance.

With this write buffering mechanism, the system can dy-
namically adapt to varying SSD speeds and loads, without
affecting the query response times. Since in our experiments,
we used a very fast PCI-Express based SSD device, the SSD
was never the bottleneck and therefore, no benefit was ob-
served when using decoupled writers. In the experiments,
we therefore use synchronous writes. For slower SSDs, this
may be a worthwhile consideration though.

4. SIMULATION-BASED EVALUATION
In this section, we focus on the merits of our temperature-

based replacement policy relative to other replacement poli-
cies for a database-derived I/O workload. In order to com-
pare our temperature-aware cache with other caching algo-
rithms, we first extracted disk access traces by running IBM
DB2 on various workloads. Then, we replayed those traces
with a custom simulator program implementing several re-
placement policies. These traces include the disk offsets of
the read-write requests issued by the DB2 prefetchers and
page cleaners. The simulator program implements the lower
part of what’s described in Figure 2 (the components be-
tween the main memory bufferpool and the hard disk). For
the experiments we created one file on the hard disk and
multiple files on the SSD. The file on the disk is as large
as the table space of the database we used for running the
workloads. We created multiple files on the SSD with differ-
ent sizes to simulate varying sizes of SSD bufferpool cache.
The simulator reads the offset values from the trace file and
retrieves the pages corresponding to these offset values from
the file which is stored on the disk. For write operations, the
pages are written to the file according to their offset values.
If a requested page is stored on the SSD bufferpool, the page
is retrieved from the SSD. Otherwise, the page is retrieved
from the disk. Initially we assume that the SSD bufferpool
is empty. As the data pages are read from the disk, the
pages are written to the SSD cache. During the execution
of the simulation program, we measure the overall elapsed
time.

The TAC algorithm in the simulator program is imple-
mented as described in Section 3. We compare the perfor-
mance of the proposed algorithm with the following page
replacement algorithms: least recently used (LRU), first in
first out (FIFO), clock replacement, and adaptive replace-
ment (ARC). These are the most commonly used algorithms
in the conventional database engines and enterprise storage
systems. In addition, we compare our algorithm with the
optimal replacement (OPT) algorithm.

Sybase ASE allows partitioning the bufferpools for differ-
ent objects and for each bufferpool either LRU or clock re-
placement algorithms are used. IBM DB2 also allows buffer-
pool partitioning and uses a variant of clock replacement for
memory management (e.g., index non-leaves get a higher
starting clock value to delay their replacement). Informix
and Oracle both maintain a single global bufferpool using
LRU. Microsoft SQL Server has a single bufferpool using
clock replacement [24].

In the implementation of LRU we used a queue of pointers
to the memory frames. Once a frame is ready for replace-
ment, it is moved to the end of the queue. The frames at
the head of the queue is used for replacement.

Clock is a variant of LRU: It has similar behavior but less
overhead. An iterator points to one of the buffer frames
numbered from 1 to N. The iterator traverses these buffer



Table 1: Hardware specifications of the SSD
Brand: Fusion IO
NAND Type Single Level Cell (SLC)
Storage capacity: 80GB
Interface: PCI-Express x4
Read Bandwidth: 700 MB/s (random 16K)
Write Bandwidth: 550 MB/s (random 16K)
Mixed Bandwidth: 370 MB/s (70R/30W random 4k mix)
IOPS: 88,000 (70R/30W random 4k mix)
Access Latency: 50µs Read
Wear Leveling: 24yrs (@ 5-TB write-erase/day)

frames in a circular fashion. Each frame has an associated
referenced bit, which is turned on when the page is accessed.
Whenever a buffer frame is searched for replacement, the
frame which is pointed by the iterator is used if the refer-
enced bit is 0. Otherwise, the iterator is incremented until
finding an available frame [24]. The adaptive replacement
cache (ARC) maintains four LRU lists with page IDs for
pages currently in the cache as well as pages which were re-
cently evicted from the cache and adaptively tunes the sizes
of these lists [21].

Finally, OPT (Belady [1] calls this algorithm MIN ) is
an offline page replacement algorithm that can take all fu-
ture page requests into account for its replacement decisions.
Whenever a page needs to be replaced from the bufferpool,
OPT picks the page that is accessed the latest in the fu-
ture access sequence. This represents the optimal policy
with regard to minimizing bufferpool misses. However, it is
important to note that OPT does not necessarily minimize
the overall access cost due to the difference in random and
sequential accesses. In order to minimize the overall cost,
it may be better to discard a page that is accessed sooner
but mostly sequentially than a page that is accessed later
but benefits more from SSD caching because it is accessed
randomly. For this reason, some of the online algorithms
can actually perform better than OPT from an access cost
perspective.

Below, we first give the hardware and software specifica-
tions of the system where we conducted the experiments.
Then, we discuss the details of the experiments.

4.1 Hardware & Software Specifications
All experiments are conducted on a 64 bit Fedora 8 (Linux

kernel 2.6.24) operating system. IBM DB2 LUW V.9.5 is
used as the DBMS software. As for the platform, we used
an IBM x3400 model 7974 which has 4GB of main memory
and a Dual core Intel Xeon 64 bit processor. Hardware
specifications for the solid state disk are given in Table 1.

The hardware specifications of the HDD used in these
experiments are as follows: Seagate 1TB SATA HDD of
7.2K RPM, 8.2 ms average seek time and 4.17 ms average
latency, 1070 Mb/sec max media transfer rate.

4.2 TPC-H based Experiments
The TPC-H benchmark is a decision support benchmark

widely used in the database community to assess the per-
formance of very large database management systems [27].
Using the TPC-H schema, we prepared an Operational Data
Store (ODS) environment [7, 10, 25] to compare the effec-
tiveness of our proposed page replacement algorithm. We
followed the same experimental methodology described in [2]
while preparing the experimental testbed and the workloads.
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Figure 3: Execution times of various cache replace-
ment algorithms for the modified TPC-H query
workload (160 MB main memory bufferpool size,
320 MB SSD bufferpool size)

Below, we explain the details.
We prepared a workload using the TPC-H queries and the

TPC-H schema which includes 8 relations. While generating
the data, a scale factor of 10 is used. In total, 15 GB of disk
space is used to create the TPC-H database.

The workload used in the experiments is constructed us-
ing 5 TPC-H queries (Query # 2, 5, 9, 11, 17) with the
objective of maximizing the number of objects accessed dur-
ing the execution of each query. We subsequently modified
these queries to simulate an Operational Data Store (ODS)
environment where some of the queries in the workload re-
quire processing large ranges of data while others process
smaller ranges.

The major difference between an ODS and a data ware-
house (DW) is that the former is used for short-term, mission-
critical decisions while the latter is used for medium and
long-range decisions. The data in a DW typically spans a
five to ten years horizon while an ODS contains data that
covers a range of 60 to 90 days or even shorter [7, 10]. In
order to simulate an ODS environment, more predicates are
added to the “where” clause of the TPC-H queries. This
in turn, reduces the number of rows returned. As a result,
we obtained a workload comprising random and sequential
accesses. The following query provides an example for this
modification:

select n name,
sum(l extendedprice * (1 - l discount)) as revenue

from customer, orders, lineitem, supplier, nation, region
where c custkey = o custkey and l orderkey = o orderkey
and l suppkey = s suppkey and c nationkey = s nationkey
and s nationkey = n nationkey and n regionkey = r regionkey
and r name = ’america’ and o orderdate ≥ ’1993-01-01’
and o orderdate ≤ ’2000-01-01’
and o orderkey between 170261658 and 170271658

group by n name order by revenue desc

In this query, the predicate “o orderkey between 170261658
AND 170271658” is added to the original query to reduce the
range of the data that has been accessed. In order to reduce
the bufferpool hit ratio, the predicate values are randomly
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Figure 4: Execution times of various cache replace-
ment algorithms for the Zipfian-distributed TPC-H
query workload (160 MB main memory bufferpool
size, 320 MB SSD bufferpool size)

drawn from a uniform distribution with range (0, n) where
n is the maximum in the domain of the predicate attribute.
Using this technique, 500 TPC-H queries are generated and
issued to the database. We set the main memory bufferpool
size of the database to 160 MB. During the execution of this
workload the disk accesses are monitored and logged in a
file. Next, this log file is provided to the replay application.
Three separate hard disk drives are used to isolate the I/O
operations. The operating system uses the first disk and the
log file is stored in the second disk. We use the third disk for
storing all table spaces including the index and data pages.
During the simulation, 320 MB (20,000 pages) of SSD space
is used for the SSD bufferpool.

We then ran each page replacement algorithm on the same
trace separately. The total execution time for each cache
algorithm is shown in Figure 3. We can see that our tem-
perature based algorithm (TAC) is very close to the optimal
replacement algorithm, at nearly half of ARC’s execution
time and at nearly one third of the other replacement al-
gorithms. It should be noted that the execution times are
measured starting from an empty cache, so they include a
brief warm-up period.

In a second experiment, we use the same TPC-H instance
described above with a workload that simulates a typical
data warehouse where recent data is accessed more often
than older data. More precisely, we selected five of the TPC-
H queries (Query # 1, 6, 14, 15) and we generated the date
ranges on the shipdate attribute of the Lineitem table using
a Zipfian distribution. Using this technique, we generated
100 queries. Also, in typical DSS and DW environments
the tables growing over time are clustered based on date
attributes. This is because more recent data records have
higher access rate compared to the older data records and
clustering the records based on access rate reduces the I/O
cost dramatically. For this reason, we clustered the Lineitem
table on the shipdate column.

In this experiment, the dataset size is 15 GB (TPC-H scale
factor 10). The memory bufferpool size is 160MB (10,000
pages) and the SSD cache size is set to 320 MB (20,000
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Figure 5: SSD bufferpool hit ratio of various cache
replacement algorithms for the TPC-C workload
(386 MB main memory bufferpool size, for various
SSD bufferpool sizes)

pages). The experiment results are shown in Figure 4. As
seen in this figure, TAC performs much better than other
online algorithms, close to the optimal algorithm.

When the size of the SSD bufferpool is increased to 1.6
GB (10 % of the dataset size), the SSD bufferpool provides
more than a three times improvement on the I/O cost, high-
lighting that big gains are available with a relatively small
SSD investment.

4.3 Experiments with TPC-C
TPC-C is a popular benchmark for comparing online trans-

action processing (OLTP) performance on various hardware
and software configurations. TPC-C simulates a complete
computing environment where multiple users execute trans-
actions against a database. The benchmark is centered
around the principal activities (transactions) of an order-
entry environment. These transactions include entering and
delivering orders, recording payments, checking the status of
orders, and monitoring the level of stock at the warehouses.
The transactions do update, insert, delete, and abort opera-
tions and numerous primary and secondary key accesses [26].

In our experiments, the scaling factor is set to 150 Ware-
houses during the data generation. With this scaling factor
the database occupies a total of 15 GB of disk space. For
the memory bufferpool, 368 MB (2.5% of the database size)
of space is used while running the transactions of 20 clients.
After capturing the disk traces, we ran the replay applica-
tion and monitored the number of page hits on the SSD
bufferpool. These results for different ratios between the
size of the SSD bufferpool and the main memory bufferpool
are shown in Figure 5.

As the results prove, TAC outperforms the other replace-
ment algorithms for all SSD bufferpool sizes. The differ-
ence in hit ratios is more pronounced for the case when the
SSD bufferpool size is smaller (e.g. 1 or 2 times the size of
the main memory bufferpool). This is due to the selective
caching property of TAC (not caching pages colder than the
coldest page cached), which reduces cache pollution. For
large SSD bufferpool sizes, all algorithms (with the excep-



tion of FIFO) perform about the same, because there is less
contention for the SSD space.

4.4 Effect of Write-Back Caching
While the current behavior of the SSD bufferpool is write-

through, a potential advantage of a write-back policy would
be the ability to batch random disk writes to HDD into
sequential ones. In OLTP environments, the data pages are
frequently updated by the active transactions. When there
is no space left for dirty pages in the bufferpool, the dirty
pages are flushed to the disk. Since the dirty pages are
mostly written to random locations on the disk, the random
I/O cost reduces the performance. A write-back caching
policy could accumulate the dirty pages in the SSD cache
and write these pages to the HDD in sequential order once
some threshold amount of dirty pages has been reached.

There is a variety of ways this can be accomplished. One
can reserve part of the SSD for write-back caching and flush
the pages accumulated there to disk once full. Another pos-
sibility is to store dirty pages among the clean pages in
the regular SSD cache but mark them as “dirty”. Once
a threshold percentage of dirty pages has accumulated, they
are flushed to disk and the corresponding SSD pages are
marked “clean”. The latter strategy leaves more valuable
SSD space for clean pages when there are few writes but
it requires more bookkeeping and more random SSD reads
during flushing. For both variants, the dirty pages to be
written back to disk should be first sorted by disk location
in order to minimize random disk seeks.

To observe the benefit of this idea, we conducted an ex-
periment using TPC-C traces. We implemented a replay
application that works as follows. Given a trace file, the
program considers only the write requests. For each write
request, a page is written to the SSD bufferpool sequentially,
instead of writing it to the HDD. When the cache is full, the
pages are sorted by their hard disk locations and written to
the disk sequentially. During the flush process, the pages
are read from random locations on the SSD but this cost is
negligible compared to the disk I/O cost. We ran the ex-
periment four times while changing the SSD bufferpool size
and the results are given in Figure 6.

In the first run, the SSD is not used for buffering the
dirty pages and the pages are written to the disk directly.
In the subsequent runs the SSD size is increased slowly. As
seen in the figure, this approach provides a significant per-
formance gain compared to the case where the pages are
directly written to the SSD. Therefore, a write-back SSD
bufferpool has the potential to further improve performance
over TAC. However, since this has non-trivial implications
for recovery, we leave this to future work.

5. IMPLEMENTATION IN IBM DB2
We implemented the Temperature-Aware Caching (TAC)

method in DB2 LUW version 9.7 and we evaluated its per-
formance using both customer and benchmark databases. In
all experiments, data and indexes were placed on a separate
disk from temporary tables.

5.1 ERP Scenario
For the experimental evaluation, we used a setup simi-

lar to that used by some customers who run ERP solutions
over DB2 LUW. This consists of a star schema with a 24
column fact table with 7 dimensions and 16 measures and
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pool for batching random writes into sequential
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Table 2: Experimental Setup Details
Table size: fact table of 16 million records with 176

bytes per record. Total data size of 3GB
including fact and dimensions.

Index sizes: 7 single part indexes and one multi part
unique index. Total index size of 2GB.

associated dimension tables. There were 8 indexes defined
on the fact table including a multi part unique index. The
total database size including indexes was about 5GB. Ta-
ble 2 provides more details of the schema we used in the
experiment. The hardware and software specifications of
the system are the same as those discussed in Section 4.1.

The evaluation was done with a set of a dozen queries
which had predicates on multiple dimensions, aggregates
and multiple table joins. Two of these queries were long
running and the rest had small to medium running time.
These queries had a total working set size of about 30% (or
1.45GB) of the database size. They were executed using the
db2batch utility that comes with DB2 LUW. During these
runs, file system caching was turned off, so as to see the
actual effect of the database I/O. It is common in customer
situations for the database engine to manage the I/O instead
of the file system.

The evaluation aimed to compare single and multi stream
query performance with different sizes of the SSD bufferpool.
Each of the streams in the multi stream was made by picking
a random query without replacement from the set of dozen
queries. For each stream, the end to end time for query
execution was recorded and the maximum of these timings
was reported.

For these experiments, the DRAM bufferpool was kept at
4% of the database size. This is in the range that customers
use while running data warehousing on DB2 LUW. The size
of the SSD bufferpool was varied from 0 pages to beyond
the working set size of this workload. The SSD bufferpool
was used to assist the DRAM bufferpool to cache the data
and index pages only, not the temporary table pages.

Figure 7 shows the query execution times for 1, 4 and 8
streams for a SSD bufferpool size of 24% (or 320K pages)
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of the database size and a DRAM bufferpool of 4% (or 50K
pages). It is being compared against base DB2 LUW run-
ning with a DRAM bufferpool of 4%. We obtained a speedup
of 3x for a single stream, 4.5x for four streams and 5.3x for
eight streams. As the number of streams was increased the
speedup kept improving. This is partly because we were able
to obtain temperature information faster and partly because
we were able to exploit the I/O parallelism that is available
in the fusionIO card with multiple streams.

Figure 8 shows the volume of writes on the SSD bufferpool
for the 8 stream run. In the initial part of the run, we
see much higher writes as the bufferpool fills up and then
subsequently it stabilizes to replacing pages based on the
temperature. By the end of the run, the SSD bufferpool had
absorbed 83% of the reads from the queries which spilled out
of the DRAM bufferpool. This is shown in Figure 9.

In a subsequent experiment, shown in Figure 10, the size
of the SSD bufferpool was varied. The execution time keeps
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Figure 9: Read amounts from disk and SSD buffer-
pool for various SSD bufferpool sizes during ERP
execution

decreasing as we increase the size of the SSD bufferpool until
we hit the active data set size. After that the improvement
tapers off. It is to be noted that we obtain better speedup
with multiple streams as shown in Figure 11. The maximum
speedup obtained was 12x for 8 streams with a 400K page
SSD bufferpool.

As an alternative to using an SSD for caching, one could
have used the SSD as a device to store some of the base
data. We performed an experiment to give the DB2 system
an SSD partition of 24% of the database size to store hot
data objects. The hot objects considered were tables and
indexes which could fit in this partition and which occurred
frequently in the query plans. Given that the fact table
would not have fit, and the dimension tables were relatively
small (and would be cached in RAM), the indexes of the fact
table were placed on the partition. The results of these ex-
periments did not show any noticeable change in the timings
of the base configuration over the previous experiments.

5.2 TPC-C Evaluation
In this evaluation we used a 48 GB TPC-C database with

500 warehouses. The database was created on a tablespace
striped across 3 disks with the logging done on the fusionIO
card. A standard TPC-C mixed workload with 15 clients
was run on it. The main memory bufferpool was kept at
2.5% of the database size. This resulted in a main memory
bufferpool hit ratio in the range of typical customer sce-
narios. The SSD bufferpool was created on the FusionIO
card. Its size was varied as a multiple of the main memory
bufferpool size.

The workload consisted of the TPC-C transaction types
New Orders 45%, Payment 43%, Order Status 4%, Deliv-
ery 4% and Stock Level 4%. The transactions per minute
(tpmC) for base DB2 LUW and the prototype was mea-
sured. These measurements were done after the system had
reached a steady state in terms of the number of transactions
running per minute.

As indicated in Figure 12, a speedup of 2.4 was obtained
in the tpmC figures when an SSD bufferpool of 12.5% of the
database size was used to aid the main memory bufferpool.
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The speedup improved further to 3.7 when the SSD buffer-
pool size was increased to 25% of the database size. The
SSD bufferpool delivered a hit ratio of up to 71% when it
was set to 25% of the database size.

6. RELATED WORK
The first commercial system we are aware of that used an

intermediate paging device between main memory and sec-
ondary storage was Multics (Multiplexed Information and
Computing Service) as early as the 1970’s. Thus, the mul-
tilevel paging hierarchy described in [8] had to deal with
many of the same issues as our system, namely replacement
policy, page flow between devices, handling of dirty pages,
etc. However, since no long-term temperature statistics were
maintained, the replacement policies were based on short-
term information such as recency of use, i.e., LRU and later,
Clock.

More recently, multi-level caching is analyzed in [11, 29, 4,
19, 28]. One common thread is the observation that the lo-
cality of page accesses is much weaker in lower level caches
because of the filtering effect of the high level caches. As
a result, the effectiveness of traditional page replacement
policies such as LRU is greatly reduced. The solutions pro-
posed in the past include the coordination of the replace-
ment policies at each level [11, 12], providing hints to the
lower level cache manager [11] and special purpose second-
level cache algorithms such as Multi-Queue [29]. Our so-
lution is a temperature-aware replacement policy for the
SSD-resident cache, which bases its admission/eviction de-
cisions on long term usage trends and so it is less affected
by the loss of locality that is characteristic of a second-level
cache. Our grouping of cache blocks by temperature range
is somewhat similar to the grouping in multiple queues of
the Multi-Queue [29] and the ARC (adaptive replacement
cache) algorithm [20, 21], except that our algorithm does not
explicitly migrate blocks from one group to the other based
on each page access. Rather, the regrouping happens peri-
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odically, when the temperatures of currently cached blocks
are re-evaluated.

Using flash as a storage medium for a second-level cache
in a DBMS is not a new idea. Thus, for example, multi-
level caching using flash is discussed in [15]. There, various
page flow schemes (inclusive, exclusive and lazy) between
the main memory bufferpool and the SSD bufferpool are
compared both theoretically, using a cost model, and exper-
imentally. The conclusion drawn is that the best scheme is
dependent on the particular workload. While we agree that
page flow schemes can impact the performance, we consider
this aspect orthogonal to the cache replacement policy ques-
tion, which is the focus of our work.

Another important issue arising in multi-device environ-
ments is the allocation of cache space dedicated to each de-
vice. Since each device can have very different access costs,
especially if SSDs are involved, the cost of a page miss can
be vastly different. Consequently it makes sense to assign



a utility that reflects the page miss cost to each cache slot
assigned to a device. The resulting optimization problem is
discussed in [16] where a self-tuning system is proposed. We
employ a similar notion of device-specific utility in our tem-
perature calculations, with the notable difference that we
also distinguish between random and sequential accesses.

The idea of using an SSD as a write-back cache and con-
verting random writes to the HDD into sequential ones is
also exploited in the HeteroDrive system [14]. There, the
SSD is used primarily for buffering dirty pages on their way
to the HDD, and only secondarily as a read cache, which
allows blocks to be written sequentially to the SSD as well.

The use of region-level statistics for caching is also dis-
cussed in [13], which introduces the notion of a macroblock,
essentially contiguous regions of memory with near-uniform
access frequency. One difference is that this is done in the
context of CPU caching and it is implemented by hard-
ware, whereas our cache is a software solution for I/O reduc-
tion. The other difference is that their scheme is designed
for general-purpose computing, while ours is optimized for
database workloads.

In the industrial space, Oracle’s Exadata Smart Flash
Cache [22] takes advantage of flash storage for caching fre-
quently accessed pages. The Flash Cache replacement pol-
icy avoids caching pages read by certain operations such as
scans, redos and backups, as they are unlikely to be fol-
lowed by reads of the same data. In our approach, pages
read by scans will tend to have a low temperature so they
will have a low priority for caching, unless they are scanned
very frequently. Still in the industrial space, Teradata’s Vir-
tual Storage [6] continuously migrates the hot data to the
fastest areas of storage and the cold data to the slowest areas
of the storage. Teradata Virtual Storage recognizes the rel-
ative performance of the various portions of each disk drive
and matches it with the relative temperature of the data to
be migrated. Note that while this solution is temperature-
based, like ours, it is a data placement approach, not a
caching one. Finally, Sun’s ZFS enterprise file system uses a
flash resident second-level cache managed by the L2ARC al-
gorithm [18] which cooperates with the ARC algorithm man-
aging the DRAM cache in an evict-ahead mechanism that
batches soon to be evicted pages into large asynchronous
writes to the SSD.

7. CONCLUSION
We presented our work on SSD-resident bufferpool exten-

sions for database systems. The regular memory-resident
bufferpool acts like the primary cache, while the SSD por-
tion of the bufferpool is used as a second level cache. Since
the locality of references observed at a non-primary cache
is much lower than that of the first level cache, standard
replacement algorithms (e.g. LRU, Clock) are sub-optimal.
To address this problem we designed a caching scheme that
continuously monitors the disk access pattern at an extent
level and uses the inferred “temperature” information for
cache admission/eviction decisions. Our algorithm dynam-
ically adapts to changing workloads by giving more weight
to recent access information through an “aging” scheme.

To validate our approach, we first compared our TAC
cache with existing replacement policies by re-playing DB2
disk access traces in a simulator. Subsequently, we imple-
mented the TAC cache inside the DB2 engine and compared
the performance against the baseline DB2 when servicing

multiple concurrent streams of queries. Both sets of ex-
periments demonstrate substantial improvements: up to 3x
better than competing cache policies in the simulator and
up to 12x over baseline in the DB2 implementation.

Future work includes exploiting the persistence of the SSD
for warm cache re-start after an orderly shutdown and data
recovery after a failure; adaptive self-tuning of the SSD
bufferpool size and other parameters for changing work-
loads; and collecting statistics about cache coverage of indi-
vidual database objects and using that information in query
optimization.
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