
RC25023 (W1007-058) July 16, 2010
Computer Science

IBM Research Report

Discovering Algorithms in Angelic Programs

Shaon Barman, Rastislav Bodík
University of California

Berkeley, CA

Satish Chandra, Emina Torlak
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Discovering Algorithms in Angelic Programs

Shaon Barman† Rastislav Bodı́k† Satish Chandra? Emina Torlak?

†University of California, Berkeley ?IBM T.J. Watson Research Center

Abstract
In angelic programming, the programmer asks an oracle
for a demonstration of an algorithm under development. He
writes a program with nondeterministic choose statements,
with the goal of divining values that he does not yet know
how to compute. Given an input, angelic choose statements
produce values that, if possible, pass all the assertions in
the program. A trace of these values typically exposes the
insight behind the algorithm, allowing the programmer to
refine the angelic program into a desired deterministic pro-
gram.

A challenge with angelic programming is that not all safe
traces correspond to a plausible algorithm; some achieve a
safe execution by abusing the clairvoyance of the oracle.
For example, a trace may first break a data structure, only
to miraculously correct it later. Clearly, we want a method
for identifying (sets of) traces that correspond to a plausible
algorithm.

We approach this problem by computing sets of angelic
traces that can each be abstracted with a single trace. The
abstraction is based on entanglement of choose statements.
Intuitively, two choose statements are entangled when their
values are correlated, i.e., if you change one, you may have
to change the other in order to meet the specification. The
abstract trace exposes entangled angels and thus often also
the logic behind the algorithm in these traces.

In general, correlation of angels can be a complex rela-
tion. We approximate entanglement as an equivalence re-
lation, which allows us to represent entanglement as sim-
ple partitioning of angels. We also introduce a two-lattice
structure that relates partitions of angels to sets of traces.
We develop useful queries on this structure and design ef-
ficient algorithms for computing this structure on demand.
Finally, we show on several case studies that entanglement
helps identify algorithms in angelic programs.

1. Introduction
Background Angelic nondeterminism can be a valuable
tool in program development [5]. In this style of develop-
ment, a programmer can use nondeterministic choose state-
ments in his program with the goal of divining values that he
does not yet know how to compute. The use of nondetermin-
ism lets the programmer defer part of the reasoning involved
in program development to an oracle and allows execution
of incomplete programs.

Given a representative input, for each evaluation of a
choose statement, the runtime system supplies a value that
continues the execution to a successful termination, i.e., the
execution violates no assertion. A value is supplied if at
all possible, hence the term angelic. When a safe execu-
tion exists, the programmer obtains a trace of values, one
for each choose statement encountered dynamically. In fact,
a programmer obtains all such traces. Successful traces can
suggest possible ways in which the program can be deter-
minized. When no safe traces can be found, the programmer
learns that the development of the program is already on the
wrong track; if the oracle cannot complete the program, nei-
ther can the programmer.

After examining the safe traces, the programmer refines
the nondeterministic program to make it more deterministic.
Technically, a programmer achieves this by a program trans-
formation that curtails the number of safe traces that the pro-
gram can produce, until only one safe trace exists for each
input. Informally, refinement can be achieved by adding as-
sertions in the program, or by replacing a choose statement
by deterministic code. The details of these transformations
are not pertinent to this paper. (See [5].)

We illustrate angelic development on the problem of
checking whether a graph has a bipartite decomposition.
The purpose of the algorithm is to assign each vertex of the
graph a 0 or 1 polarity so that edges connect only vertices
of opposite polarity. The kernel of the program is adapted
from Immerman [9]. Here beta enforces the condition that
the subset of edges that have been handled form a bipartite
graph: e.handled⇒ e.src.pol != e.dest.pol.

Program Bipartite0

for (j <− 0 to numedges − 1) {
val e : Edge = choose(Edge) // angel selects an edge
assert (! e.handled)
if (j == 0) { // first edge processed

assert (e.src == root) // it must start from root
e.src.pol = 0

} else { // enforce wavefront
// pick edge whose src is assigned polarity already
assert (e.src.pol != −1) // −1 means uninitialized

}
e.dest.pol = choose(0,1) // angel assigns polarity
e.handled = true
assert (beta())

}

Note that functional correctness is already embedded in
the partial program, as is some restriction on the order of
traversing the edges (via the wavefront condition), but the
exact order in which edges are picked is nondeterministic.
Also nondeterministic is the assignment of polarities. A suc-
cessful trace from this program will contain the selection of
edges that the angels made, as well as the polarities that the
angels assigned: e.g., e2, 1, e4, 1, e5, 1, e6, 0, The angelic
program above produces 3,888 safe traces, each of length 18,
on the representative input in Fig. 1.

The Problem In an ideal scenario, an examination of the
safe traces would suggest a clearly discernible pattern that
the angels are following. However, a challenge with angelic
programming is that not all safe traces necessarily corre-
spond to a plausible algorithm.

In our example, the safe traces contain standard graph
traversals such as breath-first and depth-first, but they also
contain several arbitrary traversals. Here we show a ran-
domly chosen trace:

e2, 1, e4, 1, e6, 0, e7, 0, e5, 1, e8, 1, e1, 0, e0, 1, e3, 1

The order is unpredictable and it is hard to see how to
produce this order algorithmically. In some cases, a safe
execution can even be abusing the clairvoyance of the oracle:
a data structure is broken only to be corrected later.

Lacking a priori knowledge of which traces are desirable,
the oracle cannot help the user in discriminating between de-
sirable traces and arbitrary ones. However, since thousands

v0

v1

 e2

v5 e4

v7

 e5

v3

v6

v2

 e8
v4 e0

 e6

 e7

 e3

 e1

Figure 1. Example graph

of safe traces may exist even on small inputs—as is the case
in our running example—it is desirable to mechanize the
analysis of traces.

Angelic communication and entanglement This paper
presents a method for grouping angelic traces so that they
need not be triaged individually. Our approach is based on
the observation that undesirable traces tend to contain many
angels that one can think of as “communicating.” Angels
communicate in the sense that the choice of one angel in-
fluences the choice of another. Communicating angels often
compensate for each others’ undesirable actions, for exam-
ple, when one angel breaks the data structure and another
corrects it in a way specific to the choice of the first angel.

Not all angelic communication is spurious. Sometimes, a
plausible algorithm corresponds to multiple safe traces and
angels must communicate to generate them all. The role
of the analysis of traces is in grouping traces with similar
angelic communication, but letting the user decide whether
the communication is spurious or necessary.

We model angelic communication by an entanglement
partition on the choose statements executed in the traces.
Informally, the intent is that angels that are communicating
are placed in the same equivalence class, and angels in dif-
ferent equivalence classes do not communicate.

We have designed an algorithm for computing entangle-
ment partitions. Applied to the 3,888 traces produced in our
example, our algorithm tells us the entanglement partition is
as follows:

[{o0, o1, . . . , o8, p1 . . . p8}{p0}]

Here, oi are the angels that pick edges, and pi are angels
that pick polarities. This information tells us that the angels
that select edges, and most of the ones that select polarities
must be communicating. It is not surprising that p0 does not
need to communicate with any other angel because it has no
choice! The polarity of the destination of any edge out of
root must be 1, as the polarity of the root is fixed to be zero.

The programmer might now realize that, in fact, the po-
larity angels should never have choice, because as soon as
the root is assigned a polarity of 0, the polarity of all the ver-
tices is predetermined (for a connected graph). If they have
no choice, they need not be communicating either with the
edge-order angels, or with other polarity angels. The rea-
son they appear to be communicating is that not all vectors
of polarity assignments, combinatorially speaking, are pos-
sible.

Entanglement-guided refinement A programmer might
wish to pose the question: is there a refinement he could
carry out so that entanglement on the remaining traces is as
follows:

[{o0, o1, . . . , o8}{p0}{p1} . . . {p8}]

This partition reflects his understanding that polarity angels
should not be communicating.

We have designed a second algorithm that answers such a
query. In this case, we can inform the programmer that there
are indeed such subsets of traces that will result in the de-
sired unentanglement. In fact there are 37 such subsets, each
of which has a distinct constant vector of polarity assign-
ments to the destination vertices of selected edges.

One such set has polarity assignments in the pattern
111000110, which is suggestive of a breadth first order of
traversing the graph. Zooming in on that subset of 72 traces,
we now pay attention to the edge-order angels. Using the
first algorithm again, we find that the finest entanglement
among the order angels in this subset is

[{o0, o1, o2}{o3, o4, o5}{o6, o7}{o8}]

Indeed, a perusal of some of the corresponding traces shows
that in each case, first the angels choose some permutation of
edges e2, e4 and e5, then choose some permutation of edges
e3, e6 and e7, and so on.

Although it is now straightforward to determinize the
program, methodologically the next step for a programmer
would be to transform the program to produce only this
desirable subset of 72 traces. We envision that in the future,
suitable assertions can be automatically synthesized from a
set of templates (see, e.g. [16]), but for now this is a manual
process. A candidate program is the following:

Program Bipartite1

for (j <− 0 to numedges − 1) {
val e : Edge = choose(Edge) // angel selects an edge
assert (! e.handled)
if (j == 0) { // first edge processed

assert (e.src == root) // it must start from root
e.src.pol = 0
curlevel = 0

} else { // enforce wavefront
assert (e.src.pol != −1) // −1 means uninitialized
// enforce non−decreasing level
assert (level(e.dest) >= curlevel)
curlevel = max(e.dest.level, curlevel)

}
e.dest.pol = choose(0,1) // angel assigns polarity
e.handled = true
assert (beta())

}

Here level is temporary instrumentation for the purpose
of constraining executions, and is not intended to appear in
the final, deterministic program.

We have built a tool with a GUI in which a user can
interact with traces using the operations described above. We
carried out program development using this tool on several
problems, some of which are the same ones that we handled
without this tool previously. In our experience, entanglement
analysis provides a useful means to quickly navigate through
a large set of traces to find subsets that are interesting from
the perspective of program development.

Contributions Our contributions are the following.

• A formalization of angelic communication. We propose
entanglement as a means of capturing which choose
statements communicate to produce safe traces and
which do not in the setting of angelic programs. This
information helps identify sets of traces that might plau-
sibly correspond to algorithms. We provide a mathemat-
ical definition of entanglement, and define relationships
between angelic partitioning and angelic traces that a
programmer may wish to explore during program devel-
opment.
• Efficient algorithms. We design novel algorithms for ef-

ficiently computing the results of entanglement queries
on demand. The maximum runtime of the algorithms on
any of the examples presented in this paper was only 10
seconds, attesting to the feasibility of using these in an
interactive tool in developing small but subtle programs.
Our algorithms may have applicability in other kinds of
trace-based analyses.
• Empirical evaluation. We evaluate usefulness of the idea

of entanglement in angelic methodology on several prob-
lems, including the Deutch-Schorr-Waite graph marking
problem, and ListZipReverse, a problem due to Olivier
Danvy.

Outline The rest of the paper is organized as following.
In Section 2, we define entanglement and present its proper-
ties. In Section 3, we present a formal structure that connects
entanglement partitions with sets of traces, and show how
a programmer would use it for program refinement. Sec-
tion 4 shows how to compute this formal structure. Section 5
presents a brief description of the tool. Sections 6 and 7
present case studies of using entanglement in program de-
velopment. We conclude with a discussion of related work.

2. Entanglement
We begin by defining entanglement as a property of traces.

DEFINITION 1 (Entanglement). Let L be a set of labels that
uniquely identify the choose statements executed on an in-
put. Let T be a set of traces, where each trace is mapping
from labels to values. We say that labels li, lj ∈ L are unen-
tangled, if and only if, there exists a set W ⊂ L, such that
li ∈ W , lj ∈ L −W , and

∀t, t′ ∈ T .∃t′′ ∈ T .∀l ∈ L.t′′(l) = ((l ∈ W) ? t(l) : t′(l))

Otherwise, li and lj are entangled.

Traces are bounded executions of an angelic program on
an input. Entanglement is an empirical property of the pro-
gram that brings out the combinatorial structure latent in the
set of traces. Unlike the notion of dependence, entanglement
is not directly based on program semantics.

We illustrate the definition of entanglement with a syn-
thetic example shown below, whereL = {a0, a1, a2, a3, a4}.

Program Synthetic
a0 = choose(0,1)
a1 = choose(0,1)
a2 = choose(0,1)
a3 = choose(0,1)
a4 = choose(0,1)
if (a1) {

assert a2 + a3 <= 1
} else {

assert a2 + a3 == 2
}
assert a4 == 1 − a1

assert a0 + a1 + a2 > 0

Variables a0 through a4 take values in [0, 1], as evident
from the choose statements in the code. Our system pro-
duces the following safe traces (and no more) for this exam-
ple.

T =



a0 a1 a2 a3 a4

0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 0 1 1 1

Entanglement analysis on T reveals that a1, a2, a3 and a4

are entangled with each other, but a0 is not entangled with
any other variable. (Here, by entanglement among variables
we mean entanglement between invocations of choose op-
erators that are assigned to those variables.) Referring to the
definition of entanglement, if we had to show a0 is unen-
tangled with a1, the set {a0} serves the role of W in the
definition. Intuitively, we can interpret this as telling us that
angelic statements for a1, a2, a3 and a4 must communicate
to make an execution avoid assert failures, but a0 can act
independently.

Some features of entanglement are as follows:

• The absence of entanglement can be computed conclu-
sively only when the full set of traces is available.
• Removing a trace from a set of traces does not neces-

sarily reduce entanglement, and can even increase it. For
example, if the last trace were dropped, a0 would lose
its independence. Thus, entanglement is not monotonic
in the size of the set T .
• Entanglement is modeled as a symmetric relation. In

the example, although the code seems to suggest a2 is
“dependent” on a1 and not the other way around as well,
we consider both entangled with the other.
• Entanglement is modeled as a transitive relation. In the

example, since a2 is entangled with a1, which in turn
is entangled with a4, we say a2 is entangled with a4,
even though the program does not seem to suggest that

directly. A transitive formulation of entanglement allows
its representation as a partition and simplifies our algo-
rithms. Here, partition L = [{a0}{a1, a2, a3, a4}].
• The definition implies that if an angel has a constant

value in the set of traces, it is unentangled with other
angels.
• The definition implies that in a singleton set of traces, all

angels are unentangled.

3. Entanglement-guided program refinement

We propose to use entanglement to help with refinements in
the angelic development methodology. An angelic program
Q is a refinement of an angelic program P if the set of safe
traces in Q is a subset of the safe traces in P , i.e., Q special-
izes the behavior of P . While two angels can be entangled
on the set T of all safe traces, there may exist a subset T ′

of traces on which their entanglement disappears. T ′ is thus
a refinement of the program that removes potentially unde-
sirable angelic communication and could be the plausible
algorithm. Indeed, the search for a plausible algorithm is ap-
plication of refinement until the remaining entanglement is
deemed necessary by the programmer.

The relationship between entanglement of angels and
program refinement can be described with a two-lattice
structure: the trace lattice, which is defined over the safe
traces (T) of a program, and the angel lattice, which is de-
fined over its angelic labels (L). The trace lattice orders
the power set of T via the subset inclusion relation ⊆. The
angel lattice orders the partitions of L via the refinement re-
lation v. The refinement relation v has the usual meaning:
L v L′, where both L and L′ are sets of sets that partition
L, if and only if for every Li ∈ L, there is an L′j ∈ L′ such
that Li ⊆ L′j . Moving down the angel and trace lattices si-
multaneously brings us to more refined programs with less
entanglement.

To facilitate entanglement-guided browsing of the lat-
tices, we define two relations that connect them in a mean-
ingful way: the finest entanglement partitioning (FEP) for a
set of traces and a locally maximal support (LMS) for an an-
gel partition. Both are derived from the entanglement parti-
tioning relation induced by Def. 1, which maps sets of traces
to partitions of angels entangled in those traces. FEP and
LMS summarize the edges of this relation by taking a point
in one lattice to its lowest or highest counterpart(s) in the
other lattice, as specified below.

DEFINITION 2 (Entanglement partitioning). A partition L =
{L1, . . . , Ln} of L is an entanglement partitioning for a set
of traces T ⊆ T if and only if T can be expressed as a
concatenation of projections onto the sets L1, . . . , Ln: i.e.,
T = T ↓L1 ⊕ . . .⊕ T ↓Ln.

The projection T ↓ Li of a set of traces T onto a set of
labels Li is defined as {t ↓ Li | t ∈ T}, where t ↓ Li :=

{〈l, v〉| l ∈ Li ∧ t[l] = v}. The concatenation of the sets
T and T ′ is the pairwise concatenation of their elements,
T ⊕T ′ := {t⊕ t′ | t ∈ T ∧ t′ ∈ T ′}. The trace concatenation
operation t⊕ t′ yields t∪ t′ on traces with disjoint labels and
is undefined otherwise. By extension, T ⊕T ′ is defined only
if t⊕ t′ is defined for every t ∈ T and t′ ∈ T ′.

DEFINITION 3 (Finest entanglement partitioning). A parti-
tion L is the finest entanglement partitioning (FEP) for a
set of traces T iff L is the lowest point on the angel lattice
that is an entanglement partitioning for T .

DEFINITION 4 (Locally maximal support). A set of traces
T ⊆ T is a locally maximal support (LMS) for a partition
L iff L is an entanglement partitioning for T but not for any
proper superset of T .

To illustrate Definitions 2-4, let us revisit the sample pro-
gram from Sec. 2. The FEP for all safe traces of this pro-
gram is the partition L = {{a0}{a1, a2, a3, a4}}, which
precisely captures the entanglement relationships in T .
All partitions coarser than the FEP (in this case, only
{{a0, a1, a2, a3, a4}}) are entanglement partitionings for T .
All partitions finer than FEP have one or more LMSs in T .
For example, consider the following refinement of T ’s FEP:

L′ = [{a0}{a2}{a1, a3, a4}]

This partition has three LMSs, shown here compactly in
regular expression notation, with a2 highlighted:

T1 = (0|1).0.1.1.1 + (0|1).1.1.0.0
T2 = (0|1).1.0.(0|1).0
T3 = (0|1).1.(0|1).0.0

T1, T2 and T3 demonstrate several important properties of
LMSs:

• FEPs induced by the LMSs will necessarily disentan-
gle a2, but may split other equivalence classes as well. In
fact, both T2 and T3 induce the FEP L′′ = {{a0}{a1}{a2}
{a3}{a4}}.
• No subset of traces from T can be added to any one these

subsets while keeping a2 unentangled (maximality).
• The LMSs cover all of T ; i.e., T = T1 ∪ T2 ∪ T3.

These traces also show that to unentangle a2, some of the
other angels may have to be held to a constant value.

Figure 2 shows the lattice structures for the sample pro-
gram. On the left is the angel lattice and on the right is the
trace lattice for this example, each shown only in part. The
dashed arrows show the result of computing FEP. The dotted
arrows show the result of computing LMS.

4. Computing lattice relationships
To support interactive usage of our tool, we have designed
efficient algorithms to compute the FEP and LMS relations.

L = {a0} {a1,a2,a3,a4}

L' = {a0} {a2} {a1,a3,a4}

L'' = {a0} {a1} {a2} {a3} {a4}

T

T1 T3T2

Figure 2. The 2-lattice structure

Both algorithms require that the traces in a given input set
are of the same length, and that each label gives a unique
identity to a dynamically occurring choose statement.

To satisfy these requirements, our tool encodes angelic
labels and traces as follows. We first attach unique static
names to each choose statement, drawn from a set S. A
label l ∈ L for a dynamically occurring choose statement
then becomes a finite string of symbols from S, as they
are encountered in a particular execution. A trace t ∈ T
is described as a mapping L 7→ V from labels to values. A
mapping 〈l, v〉 ∈ t represents the value v generated by the
non-deterministic choice at the label l. If a given execution
does not perform the choice labeled by l (i.e., it does not
traverse the path encoded by l), then the trace t of that
execution maps l to bottom: t[l] = ⊥. As a result, all traces
generated for a given program on a given input are defined
over the same set of labels, each of which uniquely identifies
a dynamically occurring choose statement.

4.1 Finding the finest entanglement partitioning
Given a set of traces T , we compute its FEP efficiently
using the algorithm in Fig. 3. The top-level procedure, FEP,
is straightforward. Lines 1 initializes the variable L, which
holds discovered partitions, to the empty set; line 2 initializes
rest , which holds unpartitioned labels, to the set of all labels
mapped by the traces in T . The main loop then computes
the partitions by choosing some label l that has not yet been
placed in a partition (line 4); finding the finest partition part
that contains l (line 5); and updating rest to exclude, and L
to include, part (lines 6-7).

The key step in the algorithm—finding the finest partition
that contains a given label—is performed by the procedures
ENTANGLED and WITNESS. Given a label l and traces T
such that l ∈ labels(T), ENTANGLED computes the labels
entangled with l in T as follows. We first hypothesize that
l is in a partition part of its own (line 1). This hypothesis
is then tested by invoking WITNESS on part and T (line
2). The WITNESS procedure, as explained below, returns the
empty set if part is an entanglement partition for T . Oth-
erwise, it returns some, but not necessarily all, labels that
are entangled with part . Because the set of labels returned
by WITNESS may be incomplete, the main loop of ENTAN-
GLED (lines 3-5) keeps expanding part with WITNESS la-
bels until part becomes an entanglement partition for T .

The WITNESS procedure works by first checking if part
is an entanglement partition for T . Lines 1-3 implement
this check as a straightforward application of Def. 2. If the
check succeeds, the procedure returns the empty set (line 4).
Otherwise, we choose (line 5) some unsafe trace of the form
x ⊕ y, where x is in the projection of T onto part and y
is in the projection of T onto the complement of part . The
chosen trace is a witness of entanglement between part and
some labels in part’s complement. The rest of the procedure
(lines 7-11) collects and returns these labels, which comprise
the smallest subset of part’s complement that the witness
x⊕ y maps differently than a safe trace x⊕ y′.

To see that any non-empty set returned by WITNESS
contains only labels entangled with part , suppose that, at
the end of the loop, w contains one or more labels that are
not entangled with part . Denote these labels with b. Then,
by Def. 2, there is a partitioning {L1, L2} of labels(T)
such that T = T ↓ L1 ⊕ T ↓ L2, part ⊆ L1 and b ⊆
L2 ⊆ (labels(T) \ part). This and line 5 imply that for any
witness x ⊕ y, the following equalities must hold: x ⊕ y =
((x ⊕ y) ↓ L1) ⊕ ((x ⊕ y) ↓ L2) = (x ⊕ (y ↓ L1)) ⊕ (y ↓
L2). Since L2 ⊆ (labels(T) \ part) and y is chosen from
T ↓ (labels(T) \ part), we know that y ↓ L2 ∈ T ↓ L2.
Furthermore, since T = T ↓L1 ⊕ T ↓L2 and x ∈ T ↓ part
(where part ⊆ L1), there must be a safe trace t ∈ T such
that t ↓ part = x and t ↓ L2 = y ↓ L2. The existence of
t, however, forces the computation on lines 6-10 to yield
w ⊆ L1 \ part . This contradicts the initial assumption that
w contains a non-empty subset b ⊆ L2.

Correctness of the algorithm as a whole follows easily
from the correctness of WITNESS. The running time is at
most cubic in the number of traces: this cost can be seen
from line 5 in procedure WITNESS. The number of traces is
the dominant cost since the number of labels (i.e., the length
of traces) is negligible in comparison.

Example. Figure 4 illustrates an execution of the FEP al-
gorithm on the example from Section 2. Each column in the
table represents one iteration of the main loop of FEP. Dur-
ing the first iteration, the algorithm checks if a0 is entangled
with any other angelic statement by trying to find a witness.
Because no witness exists (i.e., (X ⊕ Y) = T on line 3 of
WITNESS), we conclude that a0 is unentangled with all other
angelic labels and place it into its own partition.

The loop in FEP then moves on to the next angelic state-
ment, a1. This time, we can find a witness which shows
that a1 is entangled with some of the remaining angelic
statements. One such witness is x ⊕ y = {a1 = 1, a2 =
1, a3 = 1, a4 = 1}. This value is a witness because in
some safe trace, {a1 = 1}, and in some other safe trace,
{a2 = 1, a3 = 1, a4 = 1}, but there does not exist a sin-
gle trace with both of these properties. The algorithm then
chooses a minimal set of angels, w = {a2, a4}, such that the
values of these angels in x⊕y can be changed in order to get
a trace in T ↓rest (e.g., {a1 = 0, a2 = 1, a3 = 0, a4 = 1}).

FEP(T)
1 L← {}
2 rest ← labels(T)
3 while rest 6= ∅ do
4 l← choose(rest)
5 part ← ENTANGLED(l, T ↓rest)
6 rest ← rest \ part
7 L← L ∪ {part}
8 return L

ENTANGLED(l, T)
1 part ← {l}
2 w ← WITNESS(part , T)
3 while w 6= ∅ do
4 part ← part ∪ w

5 w ← WITNESS(part , T)
6 return part

WITNESS(part , T)
1 X ← T ↓part
2 Y ← T ↓(labels(T) \ part)
3 if (X ⊕ Y) = T then
4 return {}
5 x⊕ y ← choose((X ⊕ Y) \ T)
6 w ← (labels(T) \ part)
7 for y′ ∈ Y such that x⊕ y′ ∈ T do
8 w′ ← {l | y[l] 6= y′[l]}
9 if |w′| < |w| then

10 w ← w′

11 return w

Figure 3. Algorithm for finding the finest entanglement par-
titioning of angels for a given set of traces. The algorithm re-
quires that all traces in the input set are defined on the same
set of labels.

At this point, the algorithm has found that {a1, a2, a4}
are all entangled, but must repeat the loop in ENTANGLED
to ensure that no other angelic statement has been left out.
In this second pass, we find that a3 also belongs in this
partition. Since there are no remaining angels, the execution
terminates.

4.2 Enumerating all locally maximal supports
Given a partitioning L of labels and a set of traces T de-
fined over those labels, we enumerate the LMSs of L in T
using the LMS algorithm in Fig. 5. If L consists of a sin-
gle partition, then its set of maximal supports is simply {T}
(lines 2-3). If L consists of two or more partitions, then the
problem of computing its LMSs reduces to the problem of

FEP(T) FEP(T) FEP(T)
L = ∅ L = [{a0}] L = [{a0}{a1, a2, a3, a4}]
rest = {a0, a1, a2, a3, a4} rest = {a1, a2, a3, a4} rest = {}
ENTANGLED(a0, T) ENTANGLED(a1, T ↓rest)
part = {a0} part = {a1} part = {a1, a2, a4}
WITNESS({a0}, T) WITNESS({a1}, T ↓rest) WITNESS({a1, a2, a4}, T ↓rest)
X = {0, 1} X = {0, 1} X = {100, 110, 011}
Y = {1000, 1010, 1100, 0111} Y = {000, 010, 100, 111} Y = {0, 1}

x⊕ y = 1111 x⊕ y = 0101
w = {a2, a4} w = {a3}

Figure 4. Execution trace of the FEP algorithm as applied to the example in Section 2.

enumerating all maximal bicliques [1, 10] in the bipartite
graph representation of T . In particular, given a partitioning
{L1, L2} of its labels, a set of traces T can be encoded di-
rectly as a bipartite graph (V1 ∪ V2, E) using the procedure
G in Fig. 5. A maximal biclique in this graph is a maximal
subgraph of the form (V ∪V ′, V ×V ′), where the subgraph
relation is defined in the usual way: i.e., V ⊆ V1, V ′ ⊆ V2

and V × V ′ ⊆ E. It is easy to see that the trace represen-
tation of a maximal biclique in G(T, {L1, L2}) satisfies the
definition of an LMS (Def. 4). Hence, line 6 correctly enu-
merates all LMSs of {L1, L2} in T . The correctness of the
algorithm in the case of an L with more than two partitions
(lines 7-10) follows by induction from the base cases.

Since there may be exponentially many maximal bi-
cliques in a given graph, the worst case running time of the
LMS algorithm is exponential. In practice, however, graphs
that correspond to traces have a small number of bicliques
for any given partitioning. Our current implementation enu-
merates them quickly using a SAT-based constraint solver
[17], but we plan to implement a dedicated biclique enumer-
ation algorithm (e.g., [1, 10]) in the future.

Example. Revisiting the example from Sec. 2, let us now
walk through calculating the LMSs of the partitioning L =
{{a0}{a2}{a1, a3, a4}} using the LMS algorithm. Since
the maximal biclique subroutine only works on two parti-
tions at a time, the algorithm first finds the maximal bi-
cliques of {a0} and {a1, a2, a3, a4}. This returns only one
biclique which encompasses the entire graph. A recursive
call to LMS is made with L = {{a2}{a1, a3, a4}} and T =
{1000, 1010, 1100, 0111}, which returns the three maximal
supports shown in Sec. 2. Figure 6 illustrates the graphs and
maximal bicliques created during the execution of the algo-
rithm.

5. Implementation
We have extended the tool from [5] to allow the program-
mer to use angelic entanglement to gain insight about about
the angelic program. The tool embeds the angelic choose
construct into the Scala programming language [12]. The
program passes to the angelic choose operator a list of val-
ues from which a parallel backtracking solver selects one

LMS(L, T)
1 switch L

2 case {L1} :
3 return {T}
4 case {L1, L2} :
5 B ← MAXBICLIQUES(G(T, {L1, L2}))
6 return

⋃
(V ∪V ′,V×V ′)∈B{V ⊕ V ′}

7 case {L1, L2, . . . , Ln} :
8 L′ ← L \ {L1}
9 B ← MAXBICLIQUES(G(T, {L1,

⋃
L′}))

10 return
⋃

(V ∪V ′,V×V ′)∈B

⋃
M∈LMS(L′,V ′){V ⊕M}

G(T, {L1, L2})
1 V1 ← T ↓L1

2 V2 ← T ↓L2

3 E ← {〈v1, v2〉 | v1 ∈ V1 ∧ v2 ∈ V2 ∧ v1 ⊕ v2 ∈ T}
4 return (V1 ∪ V2, E)

Figure 5. Algorithm for enumerating all locally maximal
supports for a given partitioning of angels in a given set of
traces. The algorithm requires that the input set L partitions
the set of labels on which the given input traces are defined.

that leads to a safe trace. During the entanglement analysis,
this list of values serves as the finite domain for the angelic
choose operator. The solver computes all safe executions,
which can then be browsed through the GUI. A trace is cre-
ated for each execution by mapping each angelic choose op-
erator to the index in the list of values that is chosen for that
execution. We have used this implementation to develop the
examples in this paper.

The GUI presents the programmer with a list of safe
executions. Once the programmer selects an execution, the
main window displays that execution by showing the source
code annotated with decisions made by the angelic choose
operators during that execution.

The entanglement extension of the tool has been designed
to allow the programmer to quickly understand the safe
traces through queries about the FEP and LMS relations.

{a0}

{a1,a2,a3,a4}

0

1000

1010

1100

0111

1

{a2}

{a1,a3,a4}

0

100

110

1
011

Figure 6. Graph of G(T, [{a0}, {a1, a2, a3, a4}] and
G(T, [{a2}, {a1, a3, a4}])

Program #Traces #Labels FEP LMS
dsw 11679 37 - 1665
dsw 8040 37 1023 3473
dsw 6760 37 438 348
dsw 200 37 15 9
listzip 460 30 136 145
listzip 368 30 386 42
bipartite 3888 18 594 10076

Table 1. Runtime of our algorithms on selected inputs (ms)

Initially, he sees all safe traces returned by the synthesizer.
He can ask queries or refine this set of traces through vari-
ous commands. For example, if the programmer wanted to
know the finest angelic partitioning, he would use the entan-
glement command. Another useful command is to view the
maximal supports for a finer angelic partitioning. The sup-
ports command takes in an angelic partitioning and creates
subsets of traces. The programmer can then choose one of
the subsets as the current set of traces and continue with the
refinement. Whenever the user chooses a support, the GUI is
updated to only show the executions in the chosen support.
This allows the programmer to quickly browse the traces in
a support in order to find patterns among the traces. There
are also commands to allow backtracking in case a misstep
is taken. The time taken (in milliseconds) for various trace
sets on FEP and LMS queries are shown in Table 1.

6. Deutsch-Schorr-Waite
The Problem. This section considers angelic development
of the Deutsch-Schorr-Waite (DSW) algorithm for marking
of reachable nodes in a directed graph. Unlike graph marking
with an explicit stack, DSW uses constant memory thanks to
cleverly reversing pointers in the graph.
Methodology. One of co-authors developed the angelic pro-
gram shown below as part of [5]. As part of work on this
paper, a different co-author analyzed the safe traces using
entanglement.

def DSW(g) {
val vroot = new Node(g.root)
var current = g.root
ParasiticStack.push(vroot, List(vroot,g.root))

while (current != vroot) {
if (!current.visited) current.visited = true
if (current has unvisited children) {

current.idx = index of first unvisited child
val child = current.children[current.idx]
ParasiticStack.push(current, List(current, child))
current = child

} else {
current = ParasiticStack.pop(List(current))

}
}

}

Figure 7. The DSW algorithm with a parasitic stack.

Angelic Programs for DSW. We developed DSW with an-
gelic refinement in [5]. A key idea was to avoid mixing
graph traversal code with the pointer reversal code by ex-
pressing DSW with a parasitic stack, a data structure that
behaves like a stack but borrows storage from the host data
structure. Since it behaves like a stack, it allows us to write
DSW cleanly, as if it was regular dfs traversal (see Figure 7).
Thanks to the parasitic stack, we achieved modularization:
pointer reversal is hidden in the parasitic stack under the
metaphor of borrowing and restoring memory locations.

The programming challenge is to parameterize the para-
sitic stack. There are three questions:

1. Which location to borrow from the graph? The traversal
must not need the location until it is returned.

2. How to restore the value in the borrowed location? The
stack does not have enough locations to remember values
from all borrowed locations.

3. How to use the borrowed location to provide the stack
semantics?

A generic parasitic stack is implemented in Figure 8. The
parameterization of this stack has been delegated to angels.

The parasitic stack in Figure 8 keeps only a single mem-
ory location (e). The push method first angelically selects
which memory location to borrow from the host. This is
done by selecting a suitable node n and a child slot c in
that node. The borrowed location is n.children[c]. The stack
(deterministically) stores the selected child slot index in the
node itself, as that is allowed by the constraints of the DSW
problem. Next, push reads the value in the borrowed loca-
tion since it will need to be restored later and so may need
to be saved. Finally, there is a hard decision. The stack has
four values that it may need to remember: the pushed value
x, the reference to the borrowed location n, the value in that
location v, and the value in the extra location e. However,

ParasiticStack {
e = choose(node in g) // initialize one extra storage location

// ’nodes’ is list of nodes we can borrow from
push(x,nodes) {

// borrow memory location n.children[c]
n = choose(nodes)
c = choose(n.children.length)

// value in borrowed location will need to be restored
v = n.children[c]

// we are holding 4 values but have only 2 locations
// select which 2 values to remember, and where
e, n.children[c] = angelicallySemiPermute(x, n, v, e)

}
// values are pointers to nodes that may be useful
pop(values) {

// ask angels which location we borrowed in push()
n = choose({e} ∪ values)
c = choose(0 until n.children.length)

// v is the value stored in the borrowed location
v = n.children[c]

// (1) select return value
// (2) restore value in the borrowed location
// (3) update the extra location e
r, n.children[c], e = angelicallyPermute(n,v,e,values)
return r

}
}

Figure 8. Angelic implementation of the parasitic stack.

there are only two locations available to the stack: the bor-
rowed location n and the extra location e. Clearly, only two
of the four values can be stored. Perhaps the value of e is not
needed, but the remaining three values are essential.

A little reasoning reveals that the parasitic stack is plausi-
ble only if the value that push must throw away is available at
the time of pop from the variables of the enclosing traversal
code. Therefore, we decided to make the environment of the
client available to pop. The pop method first guesses which
location was borrowed in the corresponding push. This lo-
cation is either n or is in nodes; no other alternatives ex-
ist. Next, pop reads the value from the borrowed location.
Finally, pop angelically decides (i) which value to return,
(ii) how to update the extra locations, and (iii) how to restore
the borrowed location. As in the case of push, it must select
from among four values.
Entanglement Analysis. Recall that entanglement typically
starts with a set of traces. In this study, we started with the
set of all safe traces and partitioned them based on trace
properties. The specific property we used was trace length.
We then chose the set with equal number of pushes and

pops. (Angels were indeed able to to form safe traces without
matching pushes and pops.)

Next, we computed the partitioning L of angels induced
by this set of traces. We observed that the very first angel
executed in the trace—the angel that initialized the extra
location e—was entangled with other angels. This contra-
dicted our hypothesis that the initialization value should be
a constant across all traces, whereas entanglement told us
that there were traces in which later angels depended on a
particular initialization value; in these traces, the initializa-
tion could not be changed arbitrarily without some other an-
gel compensating. We posited that our hypothesis was cor-
rect and hence that traces with entanglement on the first an-
gel were undesirable. We asked the tool to filter them out
by requesting the maximal supports in which this first angel
was completely disentangled. These angelic partitions cor-
responded to traces that did match our belief.

The tool found four such maximal supports, of sizes
roughly 2,000 traces (three supports) and 6,000 traces (one
support). Quick examination showed that in the three smaller
supports, the angel was set to a constant value (the same
value across all traces of the set). In contrast, in the large
support, the angel could take on any value. This subset of
traces matched a stronger hypothesis: not only the initial-
ization value could be a constant, it in fact did not matter.
This was because in all these traces, the location e was over-
written before it was read. We proceeded with this subset of
traces.

Finally, we requested a subset of traces that removed
some further entanglement. Specifically, we requested to
keep only entanglement within the same function invoca-
tion. If entanglement does not cross procedure boundaries,
then the function may have a simpler interface (decisions
in one invocation do not depend on decisions in callers or
callees). Removing inter-function-invocation entanglement
created eight maximal supports. After manually examining
the supports, we found that one support, of 200 traces, exhib-
ited had a lot of regularity, i.e., function invocations made
mostly the same angelic decisions. Specifically, the angels
in the first push were all entangled, and the angels in the
last pop were all entangled but the remaining angels were
completely disentangled. And more so, most dynamic invo-
cations of the same syntactic angel took on only one value.
The entanglement in the first push and last pop were entan-
gled because in these invocations, the angels could find the
necessary values also in other locations. However, these two
invocations could also use the same angelic decisions made
in the other invocations.

After doing some more analysis, we concluded that this
set contained the traces that we had previously deemed to
be the algorithm. In summary, we arrived at the algorithm
in a mere two requests for disentanglement, which reduced
11679 traces to 200 traces.

7. ListZipRev
The Problem. The ListZipRev problem, posed at a summer
school, asks to take two lists of strings and return a single
list, created by zipping the first list with the reversed second
list. The crucial restriction is that each list must be traversed
at most once, and only operations cons(head,tail), list.head,
and list.tail can be used.
Methodology. One of us had developed a solution to this
problem via angelic refinement about a year ago, without the
benefit of the theory of entanglement. A different co-author
re-analyzed the angelic program with entanglement; the re-
sults are reported below. To compare the two experiences,
the manual examination of traces necessary for arriving at a
correct solution took more than an hour; an incomplete ex-
amination of traces necessary for deeper understanding of
the angelic program took more than half a day. In contrast,
entanglement-based analysis produced deeper understand-
ing in about one hour.
Angelic Programs for ListZipRev. Before we arrive at
the final angelic program, let us review its development.
The first angelic program quite literally encodes the speci-
fication. The program iterates as many times as necessary,
traversing each list at most once. (Note that in each iteration,
the index variables a and b have a choice of advancing or not
advancing along their respective lists. Since these variables
cannot reset to the beginning of the list, the angelic program
ensures that each list is traversed at most once.) This pro-
gram encodes all possible traversals over the lists yet it has
no angelic trace, which means that the problem cannot be
solved under the given resource constraints.

Program ListZipRev0

val x = List(”a”, ”b”, ”c”, ”d”)
val y = List(”1”, ”2”, ”3”, ”4”)
var a = x, b = y, r = Nil

while (choose) {
a = choose(a, a.tail)
b = choose(b, b.tail)
if (choose) r = cons(a.head + b.head, r)
}
assert r == List(”a4”,”b3”,”c2”,”d1”)

It is obviously necessary to relax the specification a little.
By using recursion, we give the traversal memory, which al-
lows visiting a node that has been previously visited. The
first angel decides whether to construct the list when de-
scending into the recursion (up=false) or when ascending
from the recursion (up=true). For the sake of presentation,
this program is not concerned with how to traverse the lists:
instead of using pointers into a list, it angelically selects a
suitable element from the list, with the operation choose(x).
This program is more nondeterministic than the version we
want to understand with entanglement, but this version is a
useful sanity check: if no angelic traces exist, the program is

buggy, which we discover before progressing too far in the
development process.

Program ListZipRev1

var r = Nil
val up = choose // pick true or false

def descent() = {
if (choose) return

if (!up) r = cons(choose(x) + choose(y), r)
descent()
if (up) r = cons(choose(x) + choose(y), r)
}
descent()

We now implement the angels choose(x) and choose(y)
with angelic expressions that actually traverse the lists, in
all possible ways, rather than pick an element from the list.
Note that ListZipRev2 is a refinement of ListZipRev1 in
that the set of traces of the former is a subset of those of the
latter. This is because the implementation of choose(x) and
choose(y) restricts the values these two angels can produce.

When it comes to list traversal, the angels in this pro-
gram make several decisions. When invoking the recursive
function, the pointers into each list are passed in; here the
angels decide whether the pointer should be advanced or not
(line 1). When returning from recursion, we must return a
pointer into the list. If the pointer can be computed either
from the argument (a) or from the pointer returned from re-
cursion (aa), in line 3. Finally, we have an analogous choice
when constructing the list.

Program ListZipRev2

var a = x, b = y, r = Nil
val up = choose

def descent(a, b) : (List,List) = {
if (choose) return (a,b)

if (!up) r = cons(a.head + b.head, r)

// 1: advance the pointers a, b to the next element?
val (aa, bb) = descent(choose(a,a.tail), choose(b,b.tail))

// 2: construct the list from the arg (a) or ret val (aa)
if (up) r = cons(choose(a,aa).head + choose(b,bb).head, r)

// 3: return the pointer based on the arg or ret val
return (choose(a,aa).tail, choose(b,bb).tail)
}
descent(x,y)

The angelic program ListZipRev2 has 30 angel invoca-
tions in each trace and produces 460 safe traces. Our goal
now is to find the desired algorithm within these traces. The
first thing we observe is that up=true in all traces, which
means that a tail-recursive algorithm does not exist, as the
real work happens when returning from recursion.

Now, to find the algorithm in the 460 traces, we turn to en-
tanglement analysis. The analysis discharges two angels di-
rectly: they are unentangled but have multiple values, caus-
ing an explosion in the number of traces. After reviewing
these angels, we observed that the values of these angels are
not used during the execution; they are the two angels in the
last invocation of return(choose(a,aa).tail, choose(b,bb).tail).
These are don’t-care angels because they can return any
value. Such angels are always unentangled and cause a mul-
tiplier effect in the number of traces.

We are still left with more than 100 traces. Here entan-
glement helps by revealing two entanglement properties:

• Entanglement of angels crosses procedure invocations.
That is, the choices made by a procedure invocation in-
fluence the choices of other procedure invocations.
• Angels that manipulate the list x (there are three in each

procedure, or 12 in total) are not entangled with the
angels that manipulate the list y (again, there are 12 in
total).

It follows that we can reason about each list in isolation,
but we need to do it by crossing procedure boundaries.
Furthermore, we can implement (refine) the two lists in
isolation because we can constrain the angels for one list
without restricting the safe behaviors (in our case, traversals)
over the other list.

A plausible strategy is to remove all entanglement that
crosses procedures. This however refines the program too
much, meaning that it creates many support sets, too many
to analyze. Instead, it is more beneficial to perform a more
gentle refinement, one that removes only some entanglement
but creates a large set of traces that is easier to understand.

We thus proceeded to understand the entanglement in
the list traversal code, separately for each list. The b list is
almost disentangled except for three angels. Disentangling
one of them—the angel in descent(..., choose(b,b.tail))—
yields two support sets. In the first set, this angel chooses
the first value, while the second set permits both values.
Analyzing the traces, we discovered that this was a case
of conditional aliasing: under some conditions (which held
in the second set of traces), the values of variables were
such that either choice of an angel led to a safe trace. In
short, this situation manifested itself as entanglement be-
tween the angel that controlled the condition and the an-
gel that was allowed to make both choices. In more de-
tail, this situation arose in the last recursive call, where bb
takes on the value chosen by this angel. So when the angel
chooses the first value, bb = b, and when the angel chooses
the other value, bb = b.tail. The value that makes the pro-
gram execute correctly in all function invocations is b in
cons(choose(a,aa).head + choose(b,bb).head, r), but when
b is chosen for choose(b,b.tail), b and bb become aliased,
which causes the entanglement. After realizing this insight,

it is becomes simple to replace the angels with deterministic
code that works in all invocations.

In the angels that traverse the list a, one particular an-
gel, choose(a,a.tail), is mostly disentangled, except for one
invocation. This angel chooses whether to use a or aa as
the value to pass into the next recursive invocation. After it
is disentangled and forced to be the same value as the rest
of the invocations of the syntactic angel expression—most
likely the desired value since it makes the angel constant—it
breaks the original set of entangled angels into two. Observ-
ing that making an angel constant removes entanglement is a
heuristic clue that we have removed many undesirable com-
munications between angels. The remaining entangled an-
gels can be refined easily since only local reasoning needs to
be made.

8. Related Work
In concept analysis [18], there exists a finite set of attributes
and a finite set of objects which have these attributes. A par-
tial order is defined using the subset relation on sets of ob-
jects and sets of attributes. This partial order induces the con-
cept lattice which shows a hierarchy of object and attribute
clusters. Ammons used concept analysis to cluster traces
used specification mining [3]. At first, it looks like concept
analysis can be applied to entanglement. But because of the
lack of monotonicity in entanglement, concept analysis was
inapplicable in our setting. Specifically, if a trace is added to
a set of traces, then the FEP of this new set could be finer,
coarser or remain the same.

Others have proposed statistical methods that find prop-
erties inherent to a program. Specification mining [2] uses
machine learning and observations of program executions
to create a state machine which represents implicit depen-
dencies. Another related problem is the so called light bulb
problem [13] posed by Valiant that again tries to find objects
whose attributes are statistically correlated. Using a statisti-
cal approach to find entanglement would reduce the number
of traces needed to be seen, but would not be able to de-
tect the complete set of correlations as shown by our tool.
By leveraging the complete set of safe traces, we are able
to show all correlations which exists in the angelic program,
along with possible ways of breaking these correlations.

Additionally, there has been much work done in trace
analysis and in trace clustering. In most of this work, traces
are debug statements of a program which give insight into
the runtime state of the program. The work that has been
done in trace analysis usually detects anomalies, eliminates
redundant traces [7], or clusters similar traces together [11].

The problem posed as FEP is closely related to boolean
formula decomposition. If each angel ranges over boolean
values, then each trace is essentially represents a solution for
some boolean formula. FEP poses the question: is it possible
to break this formula into a conjunction of two formulas with
non-overlapping variables? The decomposition problem is

more difficult since it requires the synthesis of formula for
each conjunct. We instead solve for the simpler question, can
two variables exist in different conjuncts?

Others have proposed different uses of angelic nondeter-
minism during program development. Floyd [8] used it as
an executable construct, much like our use. Back and von
Wright [4] used angelic nondeterminism for problem de-
composition. Angels are used as substitutes which satisfy
intermediate conditions which the programmer could fill in
later on in the development process. Celiku and Wright [6]
refined angelic nondeterminism to demonic in order to refine
each independently.

The work in this paper builds off the programming
methodology described in [5] and can be viewed as an-
other step in the evolution of the SKETCH project. In
SKETCH [15, 14], the programmer leaves holes in the pro-
gram, which are later filled in with a synthesizer. One of
the limitations of SKETCH is that these holes can be filled
in with a limited set of expressions. Angelic programming
aims to tackle this criticism by allowing more user-defined
choices for expressions.

9. Conclusion
We have defined a notion of entanglement in angelic pro-
grams that formalizes the idea of angelic communication:
i.e. whether choose statements in an angelic program some-
how must collaborate to produce a safe trace. Entanglement
analysis helps a programmer triage a large set of traces into
subsets that might correspond to plausible algorithms, and
those that might contain too much spurious angelic com-
munication. We have also developed two novel algorithms
for efficient answering of entanglement queries. We have
embedded these algorithms in an interactive tool, and have
demonstrated its usefulness in carrying out refinement steps
in angelic development methodology. Our experience on two
case studies has been very positive, especially when com-
pared to handling the same programming problems without
the aid of the entanglement tool.

References
[1] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and

B. Simeone. Consensus algorithms for the generation of
all maximal bicliques. Discrete Appl. Math., 145(1):11–21,
2004.

[2] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications.
SIGPLAN Not., 37(1):4–16, 2002.

[3] G. Ammons, D. Mandelin, R. Bodı́k, and J. R. Larus.
Debugging temporal specifications with concept analysis.
SIGPLAN Not., 38(5):182–195, 2003.

[4] R.-J. Back and J. von Wright. Refinement Calculus: A
Systematic Introduction. Graduate Texts in Computer Science.
Springer-Verlag, Berlin, 1998.

[5] R. Bodik, S. Chandra, J. Galenson, D. Kimelman, N. Tung,
S. Barman, and C. Rodarmor. Programming with angelic

nondeterminism. In POPL ’10: Proceedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 339–352, New York, NY,
USA, 2010. ACM.

[6] O. Celiku and J. von Wright. Implementing angelic nondeter-
minism. In APSEC, pages 176–185. IEEE Computer Society,
2003.

[7] M. Diep, S. Elbaum, and M. Dwyer. Trace normalization.
In ISSRE ’08: Proceedings of the 2008 19th International
Symposium on Software Reliability Engineering, pages 67–
76, Washington, DC, USA, 2008. IEEE Computer Society.

[8] R. W. Floyd. Nondeterministic algorithms. Journal of the
ACM, 14(4):636–644, oct 1967.

[9] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. Simple
inductive synthesis methodology and its applications. In
SPLASH 2010 (to appear), 2010.

[10] J. Li, G. Liu, H. Li, and L. Wong. Maximal biclique subgraphs
and closed pattern pairs of the adjacency matrix: A one-to-
one correspondence and mining algorithms. IEEE Trans. on
Knowl. and Data Eng., 19(12):1625–1637, 2007.

[11] A. V. Miranskyy, N. H. Madhavji, M. S. Gittens, M. Davison,
M. Wilding, and D. Godwin. An iterative, multi-level, and
scalable approach to comparing execution traces. In ESEC-
FSE ’07, pages 537–540, New York, NY, USA, 2007. ACM.

[12] M. Odersky and al. An overview of the scala programming
language. Technical Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

[13] S. Rajasekaran, J. Reif, R. P. Sanguthevar, and R. Paturi. The
light bulb problem, 1989.

[14] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. Saraswat,
and S. Seshia. Sketching stencils. In PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 167–178, New
York, NY, USA, 2007. ACM.

[15] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs.
SIGPLAN Not., 41(11):404–415, 2006.

[16] S. Srivastava, S. Gulwani, and J. S. Foster. From program
verification to program synthesis. In POPL, 2010.

[17] E. Torlak and D. Jackson. Kodkod: a relational model
finder. In TACAS’07: Proceedings of the 13th international
conference on Tools and algorithms for the construction and
analysis of systems, pages 632–647, Berlin, Heidelberg, 2007.
Springer-Verlag.

[18] R. Wille. Restructuring lattice theory: an approach based on
hierarchies of concepts. In I. Rival, editor, Ordered sets, pages
445–470, Dordrecht–Boston, 1982. Reidel.

