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Tracking Dynamic Networks under Sampling
Constraints: Supporting Materials

Ting He, Animashree Anandkumar, and Dakshi Agrawal

I. INTRODUCTION

This report contains supporting materials such as proofs,
discussions, and additional numerical results, for [1 8ee
original paper for terms and definitions.

Il. PROOFS OFSELECTED THEOREMS el Tmeo -7

A. Relationship between Whittle's Index and Myopic Index 0 77&;7;\"*‘ e T+&m)11 x
Proposition 2.1: For the link sampling problem, the Whit- - Threch Idjt\tp(m)j o e Value di
e} H H H [P f 19. . resno structure o e optmal olIicy: alue an

tle’s index (if exists) is no smaller than the myopic indeg,, ng(:p; U =0) for (@)m > 0, (b) m = 0, a?]d (C)nf< 0){

W(z) > Y(z) Vz € [0, 1]. Moreover,W(z) — Y (x) as

Ip11 — po1| — 0. L i

Proof. Due to the convexity of Vim(z) [2, C. Pseudo Lm@ Form of Value Function Vg ,, () |

Vor(T(x) < 2Vim(p) + (1 — 2)Vsm(por). Since  Lemma23: Given thresholds~—(m) and 7 (m), define

Whittle’s index must satisfy Vs ) (z; U = 0) = coefficientsa;, b; (i = 1, 2) as in (3—6) and define functions
Vaw(z; U = 1), plugging in the Bellman equgtions A 1- pE@
for Vau(z; U = 0) and Vg(z; U = 1) gives alz) = -5 + pL@HITLE) (3)q,
W(z) + max(z, 1 —z) > 1 and hencéV (z) > Y (z). As
p11 — po1, equality will be achieved. m +AEOT1 — T (2))ay, 1)
, _ _ bx) = fla; Lx)) + B4 4+ O TEE (2)b,
B. Threshold Structure of the Optimal Policy for Single-Armed HBEER (TR ()b, ?)

Bandit with Subsidy
Lemma 2.2: The optimal policy for the single-armed banditwhereL(x)éﬁ(x; 77 (m), 77 (m)). Then the value function

with subsidym is a threshold policyx;, (x) = 1ifand only if is equal to Vs ,,(z) = a(z)m + b(z), with end values
7 (m) <z <7 (m),i.e, P(m)=1[0,7~(m)|U[rT(m), 1]. V3,m(po1) = aim + b1, and V., (p11) = aam + ba.

Proof: Note thatVj,,(z; U = 1) is linear inz. By the Proof: The linear forms otV ., (po1) and Vs ., (p11) are
convexity of the value function [2], we have this ,,.(z; U = obtained by simply rewriting their expressions in (29, 30).
0) is also convex inc. At z = 0 or 1, we have Substituting them into (28) gives the linear form 6§ ., ().

{ Vam(0; U =0) =m+1+ Vs m(por), "
Vom(1; U=0) =m+ 1+ BVgm(p11);
{ Va,m(0; U =1) =1+ Vg m(po1)s D. Piecewise-Linear Property of a(x), b(z)
Vom(L; U =1) =14 6Vsm(pn), Proposition 2.4: The functions a(x), b(x) defined in
which implies that the endpoints &% ,,,(z; U = 0) are above, Lemma 3 of [1] are both piecewise-linear functionsaof
equal to, or below those &3 ,,,(z; U = 1) form > 0,m = 0, Proof: The proof is based on the piecewise-constant prop-

or m < 0, respectively, as illustrated in Fig. 1. Due to therty of L(z). For fixedL(x) = I, it is easy to see that “(*) (z)
convexity of Vg ,, (z; U = 0), it must have at most two inter-and f(x; L(x)) are both linear inz, which implies the
sections withV/s ,,, (z; U = 1), denoted byr— (m) and7+(m); linearity of a(xz) andb(x). Thus, each constant piece bfx)
for cases without intersection, define (m) = T+(m)é7.*’ corresponds to a linear piece @fr) andb(x), respectively.m
where7* is the tangent point under a certain,... Then as
in Fig. 1, Vam(z; U = 1) > Vg m(z; U = 0) if and only if
|

x € (17 (m), 77 (m)). E. Monotonicity of 7= (m), 7+ (m)

Lemma 2.5: The thresholds—(m), 7+ (m) are monotone
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(1 — pEltiTli(pyy)) (1;ﬁL

) ﬁL2+1TL2(p01)( ﬁgl)

A
ay = n ) (3)
b, 2 (1 =5 T (p11))(f (pos; Lo) 4+ 672) + 8521752 (por) (f (p11; La) + 65) @)
"7 )
s 0000 = Thn)) (FE57) +851 (- TR n) (555
a2 = n ) (5)
by 2 (1 =851 (1 = T"(po1)))(f(p11; L1) + B51) + B (A = T5 (1)) (f(pors L2) + BLZ)_ 6)
n
for z = 7= (m’), 7 (m’), because this condition guarantee£(x; ci, c2) = 0. Indeed, in (11), eithey; (co; =) < 0 and

that for all m > m/, Vg pm(z; U = 0) > Vg p(z; U = 1)

atz = 7= (m/) and 7+ (m/), implying 7= (m) > 7~ (m/),

7t (m) < 71 (m’). Next, by Lemma 2.3, we have

Va,m(z; U =0)=m + max(z, 1 — z) + fa(T (z))m

+06(T (x)),

Va,m(z; U =1)=1+ Bx(aem +b2) + S(1 — x)(arm + b1).

Substituting these into (7) and noting that b; anda(-), b(-)

are constants for fixed thresholds reduce (7) into

1+ Ba(T (z)) > Bras + B(1 —x)ay, =171 (m'), 77 (m').
8

For 3 < 1/2, 1+ fa(T(x)) > 1 > /(1 — ). Meanwhile,

g1(c1; ) > 0 (if © > ), or g2(c1; ¢) < 0 andga(co; ) >0
(if x < x), yielding L(z; ¢1, c2) = 0. If , zg > ¢o OF
x, xo < ¢, it is easy to see thaf(z; ¢, c2) = oo. Indeed,
for o, xy > ca, eitherg;(ca; ) = oo and g (c1; x) = oo (if
x > x0), O ga(c1; ) < 0 andga(co; z) < 0 (if = < xg); for
x, xo < ¢, eithergy (co; ) < 0andg (¢1; ) < 0 (if z > xo),
or ga(c1; &) = oo and ga(co; ) = oo (if < ), both
yielding L(x; ¢1, ¢2) = oo (define(co, oo)é@ andmin (/)éoo).
Similar sanity check holds fop;; < po;.

Due to the integral requirement,(x; c1, o) is always a
piecewise-constant function af for any ¢;, ¢o andpg1, pi1,
as illustrated in Fig. 2.

a1, az < 1/(1—p) (since they are the discounted total passiv

time) implies3/(1 — ) > Bzas + B(1 — z)ay, proving (8). — : -—
B o a
Qs s
[1l. SUPPORTINGSTEPS INCOMPUTING WHITTLE’S s — s —
INDEX ) 2
. - < <
A. Computing Hitting Time L(z; c1, ¢2)
For the ease of presentation, we introduce the followin, =~~~z ° T
auxiliary functions: @ (b)
Fig. 2. Piece-wise constant property 8{xz; c1, c2) (c1 = 0.35, ca =
(y; 7) A log (max(y — o, 0)) — log|z — x| (9) 0.65): (@) po1 = 0.25, p11 = 0.65 (positively correlated); (bpo1 = 0. 65,
g1iy; o log [p11 — po1| ’ p11 = 0.25 (negatively correlated).
A log(max(zg —y, 0)) — log |z — o]
92(y; ) = . (10)
log [p11 — pou|

Then some calculation will show that fer; > po1,

Claienen) = {

min NN (g1(c2; @), g1(er; 2)) if > o,
minN N (ga(c1; ), go2(co; x)) If & < a9,
(11

whereN denotes the set of nonnegative integers. #qr <
pot, If x> wo,

L(x; c1, ¢2) = min (minNo N (g2(c1; ), g2(c2; 2)),

min Ne N (g1(c2; @), g1(c1; 2))), (12)
whereNe is the set of nonnegative even numbér=(. . .) and

Np the set of nonnegative odd numbets §,...). Similarly,
if < xo,

L(x; c1, ¢2) = min (minNo N (g1(c2; 2), g1(c1; 2)),

min Ne N (g2(c1; @), g2(c2; 2))). (13)

Sanity check: Consider the casei: > po1 (positively
correlated arm).

Ifec;, < o < ¢, it is easy to see that

B. Computing Auxiliary Function f(z; L)

First of all, note that sincd, may be infinity, we cannot
always computef(x; L) by the definition. Fortunately, due
to its special structure, we can provide a closed-form swiut
as follows. The computation is based on the observation that
f(z; L) is a piecewise power series. We will treat positively-
correlated and negatively-correlated arms separately.

For positively-correlated armsi.€, pi1 > po1), let
L/, denote the hitting timeif., smallestl) for 7'(x)
to cross 1/2, if the crossing occurs withinL steps.
That is, Ly ,=min(L, L(z; 1/2, 1)) if @ < 1/2, and
min(L, L(z; 0, 1/2)) if x > 1/2. It is easy to see that

L1/271 1 ; L=1 . .
Y AA-T@)+ X pT(x) ifax<y,
f(z; L= Lf/_20—1 o L—1 12%1/2 )
% BT (z) + . %: Bi(1—Ti(z)) ow.
= i=Ly/o



K] 1

i H i 1 i 1/27
By plugging in the expression d&f*(z), it can be shown that Otherwise (e, T(z) > 1/2), (18) is 5 F2FH1T2k+1(g)
k=0

for z <1/2,
[552]

flas L) = 1= phiz (1282 + BY) and (19)is 3 F2FHL(1 — T2+ (), yielding (26-27).

’ 1-p 1-p k=K,
L @o—2){d — 251y —po1))"2 + (B(p11 — po1))") (14)

1 — B(p11 — po1) ’ C. Computing Value Function Vs ,,, (z)
and forz > 1/2, It is shown in [1] that givenm, 7~ (m), and 7T (m), we
can compute the value function of the single-armed bandit

Flas L) = prue — gr n xo(1 — 26512 + 1) with subsidym by

7 1-5 1-p L

1-p3%)m

(w0 —2)(1 = 2(B(p11 — por)) ™72 + (B(p11 — por)*) (15) Vam(x) = % + f(x; L)+ B~

1 — B(p11 — po1)

For negatively-correlated arms€, pi11 < po1), the even
steps 72*(x) and the odd stepg?**1(x) will converge
towardz, from opposite directions. Lé€(x; ¢1, @)é min{k :
T2k € (c1, c2)} denote the hitting time ofc;, co) from
r by taking two steps at a time, and, »(x) the number
of step pairs needed to first cro$g2 starting fromz, i.e,

A . A
K SK(z;1/2,1) if z < 1/2, andk SK(z;0,1/2 _ _ _ T
2(@)=K(@; /2, D iz < 1/ 1/2(@) =K /2) We first verify the properties of(x), b(x) given in Propo-

. : A

if = > 1/2- Define K /2= min(Ky2(2), [(L=1)/2] + 1), gition 2.4. As shown in Fig. 3a(z) and b(x) are indeed
and K ,=min(Ky/2(7 (z)), [(L — 2)/2] + 1). Note that piecewise-linear functions of.

K(z; c1, c2) (thus K, K1/2) can be computed similarly

+BEEITE @)V (p11) + BETH (1 = T (@) Vs m (por) (28)

The only unknowns left ar&p .., (pi1), Vs,m(po1). Note that

x = pi1 Or por should also satisfy (28), giving us two
equations with two unknowns. Solving these equations gield
the results in (29, 30).

IV. ADDITIONAL NUMERICAL RESULTS

46

asL(x; c1, c2) (see Section IlI-A). We can writg(x; L) as | | | %
Ko R T
flo D= B max(T*(x), 1-T*(x))  (16) s | |
k=0 36
L252) N
+ > A max(T™(z), 1-TM(x)) (A7) .
k=Ko 20

26

0 0.2 04 0.6 0.8 1

K /p—1 T

2k+1 2k+1 _ g2k+1 Fig. 3. Coefficientsa(z), b(z) vs.z (8 = 0.8, po1 = 0.25, p11 = 0.65,
- ,;) B max(T (@), 1 =T (2) (A8) (7% 0.4039, 7~ (m) = 0.35, 7+ (m) = 0.6329). ' "

L2 We then verify the convexity oV ., (x) with respect tan,
e which is needed to ensure that thﬁé performance upper bounds
2k+1 2k+1  2k+1
* Z B max(T (@), 1-T ())(19) derived in [1] are well-defined and the associated subsidies
F=Ki2 are unique. We plot the value functidr ,,,(zo) (with the
This decomposition guarantees that (16) is on the same sfi@ady state as the initial state) for the single-armedibasd
of 1/2 asz, (17) on the other side, (18) on the same side &4nction of subsidyn under positive and negative correlation,

T (z), and (19) on the other side. respectively, as shown in Fig. 4. In both casEg,,,(z) is a
We now calculate (16-19) by cases. i < 1/2, Mmonotone increasing, convex functionsaf This observation
Ki/p—1 holds even if we vary the parameters (not shown). Therefore,
then (16) is equal to > (%*(1 — 72%(z)) and (17) to the expressions within the minimization of the bounds are
L1 k=0 convex inm (or m), and hence the bounds are well-defined

22: B2k T2k (7). Calculation will yield the closed-form and the dual variables (subsidies) achieving them are eniqu
k=K /2
results as in (20-21). Otherwiseg(, :cL>11/2), (16) becomes REEERENCES
Kl/gfl —

2k 72k 2k (1 _ 72k [1] T.He, A. Anandkumar, and D. Agrawal, “Index-Based SamgplPolicies
Z T (x) and (17) becomes Z B (1 T (x))’ for Tracking Dynamic Networks under Sampling Constrain010.

k=0 k=Ko
. . . . draft.
which ymlq (22_23)- S'm'larly' 'fT(I) < 1/2' then (18) [2] E. Sondik, “The optimal control of partially observabigarkov processes
Ki/p—1 over the infinite horizon: Discounted cost&perations Research, vol. 26,

becomes Y. p%**tL(1 — 72k*t1(z)) and (19) becomes  no. 2, pp. 282-304, 1978.
k=0 [3] K. Liu and Q. Zhao, “Indexability of Restless Bandit Pebis and Opti-
5 mality of Whittle’s Index for Dynamic Multichannel Acce$sSubmitted
> BRI kA1 (x), which gives the results in (24-25). to IEEE Trans. on Information Theory, Jan 2010.
k=K!

L—2

/2
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1 (=o)X = g (g — 2)[1 = (B%(p11 — por)?) 2]
2 (16) = -3 * 1 — 32(p11 — po1)? , 20
_ xo(Be — BT (o —2)[(B*(p1n —po1)*)f2 — (B2 (pua —P01)2)L%J+1]_
an = 11—/ 1 —B%(p11 — po1)? 7 (21)
1. _ w1 = p%2) (w0 — 2)[1 — (B (P11 — por)?) 2]
16) = 11— 52 1 —32(p11 — po1)? ’ (22)
(1= mp)(Be — ﬁzm%ﬁl)) (zo — 2)[(B*(p11 — po1)?) 72 — (B2(p1a —p01)2)L%H1]
(17) B 11—/ * 1- »32(1711 - 1701)2 23)
1 (I —m0)B(1 — BH52) (2o — 2)B(p1 — po)[1 — (B2(p11 — por)?) 172]
5+ (18)= 7 + S p— ; (24)
(19)= 208812 = BUTID) (@ = )B(p1a = po)l(F o1 — pon))" 2 — (Bpnr = por)) I,
1—p3? 1—B%(p11 — po1)? '
(25)
1 B = ) _ (zo —2)B(p11 — po)[1 — (B*(pux — po1)?)*12]
=1 1= B — por)? ! (26)
(19):(1 — m9) B(5*12 — A5 n (z0 — 2)B(p11 — po)[(B>(p11 — po1)2) 172 — (B2 (p11 — por)?)L 727111
1—p3? 1 — %(p11 — po1)? '
(27)
Vi (po1)= (1—pltiTh (pll)):;2 + BL2 T2 (o1 vy , (29)
Va,m(p11)= (= p7 (1 = TR pon))Jen + F2 (L = T2 (pu) e ; (30)

Ui

whereLy 2L (p11; 7 (m), 7 (m)), Ly2L(por: 7~ (m), 7 (m)), 0y 2O 4 f(pyy; Ly) 455, 0 202220 f(poys L)+
BL2, andn=(1 — FLHLTL (py))(1 = BE2 11— T2 (pgr))) — FE1+E22(1 = T (p1y)) T2 (pon).

4 Vﬁz»m('?o) N

e Woen(0) .

03 04 05 06 07 o o1 02 03
m m

(a) positively-correlated arm(b) negatively-correlated arm

Fig. 4.

Vg,m(z) vs.m (8 = 0.8): (@) po1 = 0.05, p11 = 0.45; (b)

po1 = 0.45, p11 = 0.05.



