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Tracking Dynamic Networks under Sampling
Constraints: Supporting Materials

Ting He, Animashree Anandkumar, and Dakshi Agrawal

I. I NTRODUCTION

This report contains supporting materials such as proofs,
discussions, and additional numerical results, for [1]. See the
original paper for terms and definitions.

II. PROOFS OFSELECTED THEOREMS

A. Relationship between Whittle’s Index and Myopic Index

Proposition 2.1: For the link sampling problem, the Whit-
tle’s index (if exists) is no smaller than the myopic index,i.e.,
W (x) ≥ Y (x) ∀x ∈ [0, 1]. Moreover,W (x) → Y (x) as
|p11 − p01| → 0.

Proof: Due to the convexity of Vβ,m(x) [2],
Vβ,m(T (x)) ≤ xVβ,m(p11) + (1 − x)Vβ,m(p01). Since
Whittle’s index must satisfyVβ,W (x)(x; U = 0) =
Vβ,W (x)(x; U = 1), plugging in the Bellman equations
for Vβ,m(x; U = 0) and Vβ,m(x; U = 1) gives
W (x) + max(x, 1 − x) ≥ 1 and henceW (x) ≥ Y (x). As
p11 → p01, equality will be achieved.

B. Threshold Structure of the Optimal Policy for Single-Armed
Bandit with Subsidy

Lemma 2.2: The optimal policy for the single-armed bandit
with subsidym is a threshold policy:π∗

m(x) = 1 if and only if
τ−(m) < x < τ+(m), i.e., P(m) = [0, τ−(m)]∪ [τ+(m), 1].

Proof: Note thatVβ,m(x; U = 1) is linear in x. By the
convexity of the value function [2], we have thatVβ,m(x; U =
0) is also convex inx. At x = 0 or 1, we have

{

Vβ,m(0; U = 0) = m + 1 + βVβ,m(p01),
Vβ,m(1; U = 0) = m + 1 + βVβ,m(p11);

{

Vβ,m(0; U = 1) = 1 + βVβ,m(p01),
Vβ,m(1; U = 1) = 1 + βVβ,m(p11),

which implies that the endpoints ofVβ,m(x; U = 0) are above,
equal to, or below those ofVβ,m(x; U = 1) for m > 0, m = 0,
or m < 0, respectively, as illustrated in Fig. 1. Due to the
convexity ofVβ,m(x; U = 0), it must have at most two inter-
sections withVβ,m(x; U = 1), denoted byτ−(m) andτ+(m);

for cases without intersection, defineτ−(m) = τ+(m)
∆
=τ∗,

whereτ∗ is the tangent point under a certainmmax. Then as
in Fig. 1, Vβ,m(x; U = 1) > Vβ,m(x; U = 0) if and only if
x ∈ (τ−(m), τ+(m)).
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Fig. 1. Threshold structure of the optimal policy: Value function
Vβ,m(x; U = 0) for (a) m > 0, (b) m = 0, and (c)m < 0.

C. Pseudo-Linear Form of Value Function Vβ,m(x)

Lemma 2.3: Given thresholdsτ−(m) and τ+(m), define
coefficientsai, bi (i = 1, 2) as in (3–6) and define functions

a(x)
∆
=

1 − βL(x)

1 − β
+ βL(x)+1T L(x)(x)a2

+βL(x)+1(1 − T L(x)(x))a1, (1)

b(x)
∆
= f(x; L(x)) + βL(x) + βL(x)+1T L(x)(x)b2

+βL(x)+1(1 − T L(x)(x))b1, (2)

whereL(x)
∆
=L(x; τ−(m), τ+(m)). Then the value function

is equal to Vβ,m(x) = a(x)m + b(x), with end values
Vβ,m(p01) = a1m + b1, andVβ,m(p11) = a2m + b2.

Proof: The linear forms ofVβ,m(p01) andVβ,m(p11) are
obtained by simply rewriting their expressions in (29, 30).
Substituting them into (28) gives the linear form ofVβ,m(x).

D. Piecewise-Linear Property of a(x), b(x)

Proposition 2.4: The functions a(x), b(x) defined in
Lemma 3 of [1] are both piecewise-linear functions ofx.

Proof: The proof is based on the piecewise-constant prop-
erty ofL(x). For fixedL(x) ≡ l, it is easy to see thatT L(x)(x)
and f(x; L(x)) are both linear inx, which implies the
linearity of a(x) andb(x). Thus, each constant piece ofL(x)
corresponds to a linear piece ofa(x) andb(x), respectively.

E. Monotonicity of τ−(m), τ+(m)

Lemma 2.5: The thresholdsτ−(m), τ+(m) are monotone
increasing and decreasing, respectively, withm for β ≤ 0.5.

Proof: It suffices to show ( [3]) that for any given thresh-
olds(τ−(m′), τ+(m′)) corresponding to somem′ ∈ [0, mmax],

∂

∂m
Vβ,m(x; U = 0) ≥

∂

∂m
Vβ,m(x; U = 1) (7)
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a1
∆
=

(1 − βL1+1T L1(p11))
(

1−βL2

1−β

)

+ βL2+1T L2(p01)
(

1−βL1

1−β

)

η
, (3)

b1
∆
=

(1 − βL1+1T L1(p11))(f(p01; L2) + βL2) + βL2+1T L2(p01)(f(p11; L1) + βL1)

η
, (4)

a2
∆
=

(1 − βL2+1(1 − T L2(p01)))
(

1−βL1

1−β

)

+ βL1+1(1 − T L1(p11))
(

1−βL2

1−β

)

η
, (5)

b2
∆
=

(1 − βL2+1(1 − T L2(p01)))(f(p11; L1) + βL1) + βL1+1(1 − T L1(p11))(f(p01; L2) + βL2)

η
. (6)

for x = τ−(m′), τ+(m′), because this condition guarantees
that for all m > m′, Vβ,m(x; U = 0) ≥ Vβ,m(x; U = 1)
at x = τ−(m′) and τ+(m′), implying τ−(m) ≥ τ−(m′),
τ+(m) ≤ τ+(m′). Next, by Lemma 2.3, we have

Vβ,m(x; U = 0)=m + max(x, 1 − x) + βa(T (x))m

+βb(T (x)),

Vβ,m(x; U = 1)=1 + βx(a2m + b2) + β(1 − x)(a1m + b1).

Substituting these into (7) and noting thatai, bi anda(·), b(·)
are constants for fixed thresholds reduce (7) into

1 + βa(T (x)) ≥ βxa2 + β(1− x)a1, x = τ−(m′), τ+(m′).
(8)

For β ≤ 1/2, 1 + βa(T (x)) ≥ 1 ≥ β/(1 − β). Meanwhile,
a1, a2 ≤ 1/(1−β) (since they are the discounted total passive
time) impliesβ/(1 − β) ≥ βxa2 + β(1 − x)a1, proving (8).

III. SUPPORTINGSTEPS INCOMPUTING WHITTLE ’ S

INDEX

A. Computing Hitting Time L(x; c1, c2)

For the ease of presentation, we introduce the following
auxiliary functions:

g1(y; x)
∆
=

log (max(y − x0, 0)) − log |x − x0|

log |p11 − p01|
, (9)

g2(y; x)
∆
=

log(max(x0 − y, 0)) − log |x − x0|

log |p11 − p01|
. (10)

Then some calculation will show that forp11 > p01,

L(x; c1, c2) =

{

min N ∩ (g1(c2; x), g1(c1; x)) if x ≥ x0,
min N ∩ (g2(c1; x), g2(c2; x)) if x < x0,

(11)
whereN denotes the set of nonnegative integers. Forp11 <
p01, if x ≥ x0,

L(x; c1, c2) = min
(

min No ∩ (g2(c1; x), g2(c2; x)),

min Ne∩ (g1(c2; x), g1(c1; x))
)

, (12)

whereNe is the set of nonnegative even numbers (0, 2, . . .) and
No the set of nonnegative odd numbers (1, 3, . . .). Similarly,
if x < x0,

L(x; c1, c2) = min
(

min No ∩ (g1(c2; x), g1(c1; x)),

min Ne∩ (g2(c1; x), g2(c2; x))
)

. (13)

Sanity check: Consider the casep11 > p01 (positively
correlated arm). Ifc1 < x < c2, it is easy to see that

L(x; c1, c2) = 0. Indeed, in (11), eitherg1(c2; x) < 0 and
g1(c1; x) > 0 (if x ≥ x0), or g2(c1; x) < 0 andg2(c2; x) > 0
(if x < x0), yielding L(x; c1, c2) = 0. If x, x0 ≥ c2 or
x, x0 ≤ c1, it is easy to see thatL(x; c1, c2) = ∞. Indeed,
for x, x0 ≥ c2, eitherg1(c2; x) = ∞ andg1(c1; x) = ∞ (if
x ≥ x0), or g2(c1; x) < 0 andg2(c2; x) < 0 (if x < x0); for
x, x0 ≤ c1, eitherg1(c2; x) < 0 andg1(c1; x) < 0 (if x ≥ x0),
or g2(c1; x) = ∞ and g2(c2; x) = ∞ (if x < x0), both

yieldingL(x; c1, c2) = ∞ (define(∞, ∞)
∆
=∅ andmin ∅

∆
=∞).

Similar sanity check holds forp11 < p01.
Due to the integral requirement,L(x; c1, c2) is always a

piecewise-constant function ofx for any c1, c2 andp01, p11,
as illustrated in Fig. 2.
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Fig. 2. Piece-wise constant property ofL(x; c1, c2) (c1 = 0.35, c2 =
0.65): (a) p01 = 0.25, p11 = 0.65 (positively correlated); (b)p01 = 0.65,
p11 = 0.25 (negatively correlated).

B. Computing Auxiliary Function f(x; L)

First of all, note that sinceL may be infinity, we cannot
always computef(x; L) by the definition. Fortunately, due
to its special structure, we can provide a closed-form solution
as follows. The computation is based on the observation that
f(x; L) is a piecewise power series. We will treat positively-
correlated and negatively-correlated arms separately.

For positively-correlated arms (i.e., p11 > p01), let
L1/2 denote the hitting time (i.e., smallest l) for T l(x)
to cross 1/2, if the crossing occurs withinL steps.

That is, L1/2
∆
=min(L, L(x; 1/2, 1)) if x ≤ 1/2, and

min(L, L(x; 0, 1/2)) if x > 1/2. It is easy to see that

f(x; L)=























L1/2−1
∑

i=0

βi(1 − T i(x)) +
L−1
∑

i=L1/2

βiT i(x) if x ≤ 1
2 ,

L1/2−1
∑

i=0

βiT i(x) +
L−1
∑

i=L1/2

βi(1 − T i(x)) o.w.
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By plugging in the expression ofT l(x), it can be shown that
for x ≤ 1/2,

f(x; L) =
1 − βL1/2

1 − β
−

x0(1 − 2βL1/2 + βL)

1 − β

+
(x0 − x)(1 − 2(β(p11 − p01))

L1/2 + (β(p11 − p01))
L)

1 − β(p11 − p01)
, (14)

and forx > 1/2,

f(x; L) =
βL1/2 − βL

1 − β
+

x0(1 − 2βL1/2 + βL)

1 − β

−
(x0 − x)(1 − 2(β(p11 − p01))

L1/2 + (β(p11 − p01))
L)

1 − β(p11 − p01)
. (15)

For negatively-correlated arms (i.e., p11 < p01), the even
steps T 2k(x) and the odd stepsT 2k+1(x) will converge
towardx0 from opposite directions. LetK(x; c1, c2)

∆
=min{k :

T 2k ∈ (c1, c2)} denote the hitting time of(c1, c2) from
x by taking two steps at a time, andK1/2(x) the number
of step pairs needed to first cross1/2 starting fromx, i.e.,

K1/2(x)
∆
=K(x; 1/2, 1) if x ≤ 1/2, andK1/2(x)

∆
=K(x; 0, 1/2)

if x > 1/2. DefineK1/2
∆
= min(K1/2(x), ⌊(L − 1)/2⌋ + 1),

and K ′
1/2

∆
=min(K1/2(T (x)), ⌊(L − 2)/2⌋ + 1). Note that

K(x; c1, c2) (thus K1/2, K ′
1/2) can be computed similarly

asL(x; c1, c2) (see Section III-A). We can writef(x; L) as

f(x; L)=

K1/2−1
∑

k=0

β2k max(T 2k(x), 1 − T 2k(x)) (16)

+

⌊L−1

2
⌋

∑

k=K1/2

β2k max(T 2k(x), 1 − T 2k(x)) (17)

+

K′

1/2
−1

∑

k=0

β2k+1 max(T 2k+1(x), 1 − T 2k+1(x)) (18)

+

⌊L−2

2
⌋

∑

k=K′

1/2

β2k+1 max(T 2k+1(x), 1 − T 2k+1(x)).(19)

This decomposition guarantees that (16) is on the same side
of 1/2 asx, (17) on the other side, (18) on the same side as
T (x), and (19) on the other side.

We now calculate (16–19) by cases. Ifx ≤ 1/2,

then (16) is equal to
K1/2−1

∑

k=0

β2k(1 − T 2k(x)) and (17) to

⌊L−1

2
⌋

∑

k=K1/2

β2kT 2k(x). Calculation will yield the closed-form

results as in (20–21). Otherwise (i.e., x > 1/2), (16) becomes
K1/2−1

∑

k=0

β2kT 2k(x) and (17) becomes
⌊L−1

2
⌋

∑

k=K1/2

β2k(1−T 2k(x)),

which yield (22–23). Similarly, ifT (x) ≤ 1/2, then (18)

becomes
K′

1/2
−1

∑

k=0

β2k+1(1 − T 2k+1(x)) and (19) becomes

⌊L−2

2
⌋

∑

k=K′

1/2

β2k+1T 2k+1(x), which gives the results in (24–25).

Otherwise (i.e., T (x) > 1/2), (18) is
K′

1/2
−1

∑

k=0

β2k+1T 2k+1(x)

and (19) is
⌊L−2

2
⌋

∑

k=K′

1/2

β2k+1(1 − T 2k+1(x)), yielding (26–27).

C. Computing Value Function Vβ,m(x)

It is shown in [1] that givenm, τ−(m), and τ+(m), we
can compute the value function of the single-armed bandit
with subsidym by

Vβ,m(x) =
(1 − βL)m

1 − β
+ f(x; L) + βL

+βL+1T L(x)Vβ,m(p11) + βL+1(1 − T L(x))Vβ,m(p01).(28)

The only unknowns left areVβ,m(p11), Vβ,m(p01). Note that
x = p11 or p01 should also satisfy (28), giving us two
equations with two unknowns. Solving these equations yields
the results in (29, 30).

IV. A DDITIONAL NUMERICAL RESULTS

We first verify the properties ofa(x), b(x) given in Propo-
sition 2.4. As shown in Fig. 3,a(x) and b(x) are indeed
piecewise-linear functions ofx.
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Fig. 3. Coefficientsa(x), b(x) vs. x (β = 0.8, p01 = 0.25, p11 = 0.65,
m = 0.4039, τ−(m) = 0.35, τ+(m) = 0.6329).

We then verify the convexity ofVβ,m(x) with respect tom,
which is needed to ensure that the performance upper bounds
derived in [1] are well-defined and the associated subsidies
are unique. We plot the value functionVβ,m(x0) (with the
steady state as the initial state) for the single-armed bandit as a
function of subsidym under positive and negative correlation,
respectively, as shown in Fig. 4. In both cases,Vβ,m(x) is a
monotone increasing, convex function ofm. This observation
holds even if we vary the parameters (not shown). Therefore,
the expressions within the minimization of the bounds are
convex inm (or m), and hence the bounds are well-defined
and the dual variables (subsidies) achieving them are unique.
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x ≤
1

2
: (16) =

(1 − x0)(1 − β2K1/2)

1 − β2
+

(x0 − x)[1 − (β2(p11 − p01)
2)K1/2 ]

1 − β2(p11 − p01)2
, (20)

(17) =
x0(β

2K1/2 − β2(⌊L−1

2
⌋+1))

1 − β2
−

(x0 − x)[(β2(p11 − p01)
2)K1/2 − (β2(p11 − p01)

2)⌊
L−1

2
⌋+1]

1 − β2(p11 − p01)2
; (21)

x >
1

2
: (16) =

x0(1 − β2K1/2)

1 − β2
−

(x0 − x)[1 − (β2(p11 − p01)
2)K1/2 ]

1 − β2(p11 − p01)2
, (22)

(17) =
(1 − x0)(β

2K1/2 − β2(⌊L−1

2
⌋+1))

1 − β2
+

(x0 − x)[(β2(p11 − p01)
2)K1/2 − (β2(p11 − p01)

2)⌊
L−1

2
⌋+1]

1 − β2(p11 − p01)2
.(23)

T (x) ≤
1

2
: (18)=

(1 − x0)β(1 − β2K′

1/2)

1 − β2
+

(x0 − x)β(p11 − p01)[1 − (β2(p11 − p01)
2)K′

1/2 ]

1 − β2(p11 − p01)2
, (24)

(19)=
x0β(β2K′

1/2 − β2(⌊L−2

2
⌋+1))

1 − β2
−

(x0 − x)β(p11 − p01)[(β
2(p11 − p01)

2)K′

1/2 − (β2(p11 − p01)
2)⌊

L−2

2
⌋+1]

1 − β2(p11 − p01)2
;

(25)

T (x) >
1

2
: (18)=

x0β(1 − β2K′

1/2)

1 − β2
−

(x0 − x)β(p11 − p01)[1 − (β2(p11 − p01)
2)K′

1/2 ]

1 − β2(p11 − p01)2
, (26)

(19)=
(1 − x0)β(β2K′

1/2 − β2(⌊L−2

2
⌋+1))

1 − β2
+

(x0 − x)β(p11 − p01)[(β
2(p11 − p01)

2)K′

1/2 − (β2(p11 − p01)
2)⌊

L−2

2
⌋+1]

1 − β2(p11 − p01)2
.

(27)

Vβ,m(p01)=
(1 − βL1+1T L1(p11))v2 + βL2+1T L2(p01)v1

η
, (29)

Vβ,m(p11)=
(1 − βL2+1(1 − T L2(p01)))v1 + βL1+1(1 − T L1(p11))v2

η
, (30)

whereL1
∆
=L(p11; τ

−(m), τ+(m)), L2
∆
=L(p01; τ

−(m), τ+(m)), v1
∆
= (1−βL1)m

1−β +f(p11; L1)+βL1 , v2
∆
= (1−βL2)m

1−β +f(p01; L2)+

βL2 , andη
∆
=(1 − βL1+1T L1(p11))(1 − βL2+1(1 − T L2(p01))) − βL1+L2+2(1 − T L1(p11))T L2(p01).
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Fig. 4. Vβ,m(x) vs. m (β = 0.8): (a) p01 = 0.05, p11 = 0.45; (b)
p01 = 0.45, p11 = 0.05.


