IBM Research Report

Tracking Dynamic Networks under Sampling Constraints: Supporting Materials

Ting He ${ }^{\mathbf{1}}$, Animashree Anandkumar ${ }^{2}$, Dakshi Agrawal ${ }^{1}$
${ }^{1}$ IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598
${ }^{2}$ Department of EECS
MIT
Cambridge, MA

[^0]
Tracking Dynamic Networks under Sampling Constraints: Supporting Materials

Ting He, Animashree Anandkumar, and Dakshi Agrawal

I. Introduction

This report contains supporting materials such as proofs, discussions, and additional numerical results, for [1]. See the original paper for terms and definitions.

II. Proofs of Selected Theorems

A. Relationship between Whittle's Index and Myopic Index

Proposition 2.1: For the link sampling problem, the Whittle's index (if exists) is no smaller than the myopic index, i.e., $W(x) \geq Y(x) \forall x \in[0,1]$. Moreover, $W(x) \rightarrow Y(x)$ as $\left|p_{11}-p_{01}\right| \rightarrow 0$.

Proof: Due to the convexity of $V_{\beta, m}(x)$ [2], $V_{\beta, m}(\mathcal{T}(x)) \leq x V_{\beta, m}\left(p_{11}\right)+(1-x) V_{\beta, m}\left(p_{01}\right)$. Since Whittle's index must satisfy $V_{\beta, W(x)}(x ; U=0)=$ $V_{\beta, W(x)}(x ; U=1)$, plugging in the Bellman equations for $V_{\beta, m}(x ; U=0)$ and $V_{\beta, m}(x ; U=1)$ gives $W(x)+\max (x, 1-x) \geq 1$ and hence $W(x) \geq Y(x)$. As $p_{11} \rightarrow p_{01}$, equality will be achieved.

B. Threshold Structure of the Optimal Policy for Single-Armed Bandit with Subsidy

Lemma 2.2: The optimal policy for the single-armed bandit with subsidy m is a threshold policy: $\pi_{m}^{*}(x)=1$ if and only if $\tau^{-}(m)<x<\tau^{+}(m)$, i.e., $\mathcal{P}(m)=\left[0, \tau^{-}(m)\right] \cup\left[\tau^{+}(m), 1\right]$.

Proof: Note that $V_{\beta, m}(x ; U=1)$ is linear in x. By the convexity of the value function [2], we have that $V_{\beta, m}(x ; U=$ $0)$ is also convex in x. At $x=0$ or 1 , we have

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{\beta, m}(0 ; U=0)=m+1+\beta V_{\beta, m}\left(p_{01}\right), \\
V_{\beta, m}(1 ; U=0)=m+1+\beta V_{\beta, m}\left(p_{11}\right) ;
\end{array}\right. \\
& \left\{\begin{array}{l}
V_{\beta, m}(0 ; U=1)=1+\beta V_{\beta, m}\left(p_{01}\right), \\
V_{\beta, m}(1 ; U=1)=1+\beta V_{\beta, m}\left(p_{11}\right),
\end{array}\right.
\end{aligned}
$$

which implies that the endpoints of $V_{\beta, m}(x ; U=0)$ are above, equal to, or below those of $V_{\beta, m}(x ; U=1)$ for $m>0, m=0$, or $m<0$, respectively, as illustrated in Fig. 1. Due to the convexity of $V_{\beta, m}(x ; U=0)$, it must have at most two intersections with $V_{\beta, m}(x ; U=1)$, denoted by $\tau^{-}(m)$ and $\tau^{+}(m)$; for cases without intersection, define $\tau^{-}(m)=\tau^{+}(m) \triangleq \tau^{*}$, where τ^{*} is the tangent point under a certain $m_{\max }$. Then as in Fig. 1, $V_{\beta, m}(x ; U=1)>V_{\beta, m}(x ; U=0)$ if and only if $x \in\left(\tau^{-}(m), \tau^{+}(m)\right)$.
T. He and D. Agrawal are with IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA. E-mail: \{the, agrawal\}@us.ibm.com.
A. Anandkumar is with Dept. of EECS, Massachusetts Institute of Technology, Cambridge, MA, USA. E-mail: animakum@mit. edu.

Research was sponsored in part by the U.S. National Institute of Standards and Technology under Agreement Number 60NANB10D003 and a MURI funded through ARO Grant W911NF-06-1-0076.

Fig. 1. Threshold structure of the optimal policy: Value function $V_{\beta, m}(x ; U=0)$ for (a) $m>0$, (b) $m=0$, and (c) $m<0$.

C. Pseudo-Linear Form of Value Function $V_{\beta, m}(x)$

Lemma 2.3: Given thresholds $\tau^{-}(m)$ and $\tau^{+}(m)$, define coefficients $a_{i}, b_{i}(i=1,2)$ as in (3-6) and define functions

$$
\begin{align*}
a(x) \triangleq & \frac{1-\beta^{L(x)}}{1-\beta}+\beta^{L(x)+1} \mathcal{T}^{L(x)}(x) a_{2} \\
& +\beta^{L(x)+1}\left(1-\mathcal{T}^{L(x)}(x)\right) a_{1} \tag{1}\\
b(x) \triangleq & f(x ; L(x))+\beta^{L(x)}+\beta^{L(x)+1} \mathcal{T}^{L(x)}(x) b_{2} \\
& +\beta^{L(x)+1}\left(1-\mathcal{T}^{L(x)}(x)\right) b_{1} \tag{2}
\end{align*}
$$

where $L(x) \triangleq \xlongequal{\triangleq} \mathcal{L}\left(x ; \tau^{-}(m), \tau^{+}(m)\right)$. Then the value function is equal to $V_{\beta, m}(x)=a(x) m+b(x)$, with end values $V_{\beta, m}\left(p_{01}\right)=a_{1} m+b_{1}$, and $V_{\beta, m}\left(p_{11}\right)=a_{2} m+b_{2}$.

Proof: The linear forms of $V_{\beta, m}\left(p_{01}\right)$ and $V_{\beta, m}\left(p_{11}\right)$ are obtained by simply rewriting their expressions in (29, 30). Substituting them into (28) gives the linear form of $V_{\beta, m}(x)$.

D. Piecewise-Linear Property of $a(x), b(x)$

Proposition 2.4: The functions $a(x), b(x)$ defined in Lemma 3 of [1] are both piecewise-linear functions of x.

Proof: The proof is based on the piecewise-constant property of $L(x)$. For fixed $L(x) \equiv l$, it is easy to see that $\mathcal{T}^{L(x)}(x)$ and $f(x ; L(x))$ are both linear in x, which implies the linearity of $a(x)$ and $b(x)$. Thus, each constant piece of $L(x)$ corresponds to a linear piece of $a(x)$ and $b(x)$, respectively.

E. Monotonicity of $\tau^{-}(m), \tau^{+}(m)$

Lemma 2.5: The thresholds $\tau^{-}(m), \tau^{+}(m)$ are monotone increasing and decreasing, respectively, with m for $\beta \leq 0.5$.

Proof: It suffices to show ([3]) that for any given thresholds $\left(\tau^{-}\left(m^{\prime}\right), \tau^{+}\left(m^{\prime}\right)\right)$ corresponding to some $m^{\prime} \in\left[0, m_{\max }\right]$,

$$
\begin{equation*}
\frac{\partial}{\partial m} V_{\beta, m}(x ; U=0) \geq \frac{\partial}{\partial m} V_{\beta, m}(x ; U=1) \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& a_{1} \triangleq \frac{\left(1-\beta^{L_{1}+1} \mathcal{T}^{L_{1}}\left(p_{11}\right)\right)\left(\frac{1-\beta^{L_{2}}}{1-\beta}\right)+\beta^{L_{2}+1} \mathcal{T}^{L_{2}}\left(p_{01}\right)\left(\frac{1-\beta^{L_{1}}}{1-\beta}\right)}{\eta}, \tag{3}\\
& b_{1} \triangleq \frac{\left(1-\beta^{L_{1}+1} \mathcal{T}^{L_{1}}\left(p_{11}\right)\right)\left(f\left(p_{01} ; L_{2}\right)+\beta^{L_{2}}\right)+\beta^{L_{2}+1} \mathcal{T}^{L_{2}}\left(p_{01}\right)\left(f\left(p_{11} ; L_{1}\right)+\beta^{L_{1}}\right)}{\eta}, \tag{4}\\
& a_{2} \triangleq \frac{\left(1-\beta^{L_{2}+1}\left(1-\mathcal{T}^{L_{2}}\left(p_{01}\right)\right)\right)\left(\frac{1-\beta^{L_{1}}}{1-\beta}\right)+\beta^{L_{1}+1}\left(1-\mathcal{T}^{L_{1}}\left(p_{11}\right)\right)\left(\frac{1-\beta^{L_{2}}}{1-\beta}\right)}{\eta}, \tag{5}\\
& b_{2} \triangleq \frac{\left(1-\beta^{L_{2}+1}\left(1-\mathcal{T}^{L_{2}}\left(p_{01}\right)\right)\right)\left(f\left(p_{11} ; L_{1}\right)+\beta^{L_{1}}\right)+\beta^{L_{1}+1}\left(1-\mathcal{T}^{L_{1}}\left(p_{11}\right)\right)\left(f\left(p_{01} ; L_{2}\right)+\beta^{L_{2}}\right)}{\eta} . \tag{6}
\end{align*}
$$

for $x=\tau^{-}\left(m^{\prime}\right), \tau^{+}\left(m^{\prime}\right)$, because this condition guarantees that for all $m>m^{\prime}, V_{\beta, m}(x ; U=0) \geq V_{\beta, m}(x ; U=1)$ at $x=\tau^{-}\left(m^{\prime}\right)$ and $\tau^{+}\left(m^{\prime}\right)$, implying $\tau^{-}(m) \geq \tau^{-}\left(m^{\prime}\right)$, $\tau^{+}(m) \leq \tau^{+}\left(m^{\prime}\right)$. Next, by Lemma 2.3, we have
$V_{\beta, m}(x ; U=0)=m+\max (x, 1-x)+\beta a(\mathcal{T}(x)) m$

$$
+\beta b(\mathcal{T}(x)),
$$

$V_{\beta, m}(x ; U=1)=1+\beta x\left(a_{2} m+b_{2}\right)+\beta(1-x)\left(a_{1} m+b_{1}\right)$.
Substituting these into (7) and noting that a_{i}, b_{i} and $a(\cdot), b(\cdot)$ are constants for fixed thresholds reduce (7) into
$1+\beta a(\mathcal{T}(x)) \geq \beta x a_{2}+\beta(1-x) a_{1}, \quad x=\tau^{-}\left(m^{\prime}\right), \tau^{+}\left(m^{\prime}\right)$.
For $\beta \leq 1 / 2,1+\beta a(\mathcal{T}(x)) \geq 1 \geq \beta /(1-\beta)$. Meanwhile, $a_{1}, a_{2} \leq 1 /(1-\beta)$ (since they are the discounted total passive time) implies $\beta /(1-\beta) \geq \beta x a_{2}+\beta(1-x) a_{1}$, proving (8).

III. Supporting Steps in Computing Whittle’s Index

A. Computing Hitting Time $\mathcal{L}\left(x ; c_{1}, c_{2}\right)$

For the ease of presentation, we introduce the following auxiliary functions:

$$
\begin{align*}
g_{1}(y ; x) & \triangleq \frac{\log \left(\max \left(y-x_{0}, 0\right)\right)-\log \left|x-x_{0}\right|}{\log \left|p_{11}-p_{01}\right|} \tag{9}\\
g_{2}(y ; x) & \triangleq \frac{\log \left(\max \left(x_{0}-y, 0\right)\right)-\log \left|x-x_{0}\right|}{\log \left|p_{11}-p_{01}\right|} \tag{10}
\end{align*}
$$

Then some calculation will show that for $p_{11}>p_{01}$,
$\mathcal{L}\left(x ; c_{1}, c_{2}\right)=\left\{\begin{array}{l}\min \mathbb{N} \cap\left(g_{1}\left(c_{2} ; x\right), g_{1}\left(c_{1} ; x\right)\right) \text { if } x \geq x_{0}, \\ \min \mathbb{N} \cap\left(g_{2}\left(c_{1} ; x\right), g_{2}\left(c_{2} ; x\right)\right) \text { if } x<x_{0},\end{array}\right.$
where \mathbb{N} denotes the set of nonnegative integers. For $p_{11}<$ p_{01}, if $x \geq x_{0}$,

$$
\begin{array}{r}
\mathcal{L}\left(x ; c_{1}, c_{2}\right)=\min \left(\min \mathbb{N}_{\mathrm{O}} \cap\left(g_{2}\left(c_{1} ; x\right), g_{2}\left(c_{2} ; x\right)\right),\right. \\
\left.\min \mathbb{N}_{\mathrm{e}} \cap\left(g_{1}\left(c_{2} ; x\right), g_{1}\left(c_{1} ; x\right)\right)\right), \tag{12}
\end{array}
$$

where \mathbb{N}_{e} is the set of nonnegative even numbers $(0,2, \ldots)$ and \mathbb{N}_{o} the set of nonnegative odd numbers $(1,3, \ldots)$. Similarly, if $x<x_{0}$,

$$
\begin{array}{r}
\mathcal{L}\left(x ; c_{1}, c_{2}\right)=\min \left(\min \mathbb{N}_{\mathrm{O}} \cap\left(g_{1}\left(c_{2} ; x\right), g_{1}\left(c_{1} ; x\right)\right),\right. \\
\left.\min \mathbb{N}_{\mathrm{e}} \cap\left(g_{2}\left(c_{1} ; x\right), g_{2}\left(c_{2} ; x\right)\right)\right) . \tag{13}
\end{array}
$$

Sanity check: Consider the case $p_{11}>p_{01}$ (positively correlated arm). If $c_{1}<x<c_{2}$, it is easy to see that
$\mathcal{L}\left(x ; c_{1}, c_{2}\right)=0$. Indeed, in (11), either $g_{1}\left(c_{2} ; x\right)<0$ and $g_{1}\left(c_{1} ; x\right)>0$ (if $x \geq x_{0}$), or $g_{2}\left(c_{1} ; x\right)<0$ and $g_{2}\left(c_{2} ; x\right)>0$ (if $x<x_{0}$), yielding $\mathcal{L}\left(x ; c_{1}, c_{2}\right)=0$. If $x, x_{0} \geq c_{2}$ or $x, x_{0} \leq c_{1}$, it is easy to see that $\mathcal{L}\left(x ; c_{1}, c_{2}\right)=\infty$. Indeed, for $x, x_{0} \geq c_{2}$, either $g_{1}\left(c_{2} ; x\right)=\infty$ and $g_{1}\left(c_{1} ; x\right)=\infty$ (if $\left.x \geq x_{0}\right)$, or $g_{2}\left(c_{1} ; x\right)<0$ and $g_{2}\left(c_{2} ; x\right)<0$ (if $\left.x<x_{0}\right)$; for $x, x_{0} \leq c_{1}$, either $g_{1}\left(c_{2} ; x\right)<0$ and $g_{1}\left(c_{1} ; x\right)<0$ (if $x \geq x_{0}$), or $g_{2}\left(c_{1} ; x\right)=\infty$ and $g_{2}\left(c_{2} ; x\right)=\infty$ (if $x<x_{0}$), both yielding $\mathcal{L}\left(x ; c_{1}, c_{2}\right)=\infty($ define $(\infty, \infty) \triangleq \emptyset$ and $\min \emptyset \triangleq \infty)$. Similar sanity check holds for $p_{11}<p_{01}$.

Due to the integral requirement, $\mathcal{L}\left(x ; c_{1}, c_{2}\right)$ is always a piecewise-constant function of x for any c_{1}, c_{2} and p_{01}, p_{11}, as illustrated in Fig. 2.

Fig. 2. Piece-wise constant property of $\mathcal{L}\left(x ; c_{1}, c_{2}\right)\left(c_{1}=0.35, c_{2}=\right.$ 0.65): (a) $p_{01}=0.25, p_{11}=0.65$ (positively correlated); (b) $p_{01}=0.65$, $p_{11}=0.25$ (negatively correlated).

B. Computing Auxiliary Function $f(x ; L)$

First of all, note that since L may be infinity, we cannot always compute $f(x ; L)$ by the definition. Fortunately, due to its special structure, we can provide a closed-form solution as follows. The computation is based on the observation that $f(x ; L)$ is a piecewise power series. We will treat positivelycorrelated and negatively-correlated arms separately.

For positively-correlated arms (i.e., $p_{11}>p_{01}$), let $L_{1 / 2}$ denote the hitting time (i.e., smallest l) for $\mathcal{T}^{l}(x)$ to cross $1 / 2$, if the crossing occurs within L steps. That is, $L_{1 / 2} \triangleq \min (L, \mathcal{L}(x ; 1 / 2,1))$ if $x \leq 1 / 2$, and $\min (L, \mathcal{L}(x ; 0,1 / 2))$ if $x>1 / 2$. It is easy to see that
$f(x ; L)= \begin{cases}\sum_{i=0}^{L_{1 / 2}-1} \beta^{i}\left(1-\mathcal{T}^{i}(x)\right)+\sum_{i=L_{1 / 2}}^{L-1} \beta^{i} \mathcal{T}^{i}(x) & \text { if } x \leq \frac{1}{2}, \\ \sum_{i=0}^{L_{1 / 2}-1} \beta^{i} \mathcal{T}^{i}(x)+\sum_{i=L_{1 / 2}}^{L-1} \beta^{i}\left(1-\mathcal{T}^{i}(x)\right) & \text { o.w. }\end{cases}$

By plugging in the expression of $\mathcal{T}^{l}(x)$, it can be shown that for $x \leq 1 / 2$,

$$
\begin{align*}
& f(x ; L)=\frac{1-\beta^{L_{1 / 2}}}{1-\beta}-\frac{x_{0}\left(1-2 \beta^{L_{1 / 2}}+\beta^{L}\right)}{1-\beta} \\
& +\frac{\left(x_{0}-x\right)\left(1-2\left(\beta\left(p_{11}-p_{01}\right)\right)^{L_{1 / 2}}+\left(\beta\left(p_{11}-p_{01}\right)\right)^{L}\right)}{1-\beta\left(p_{11}-p_{01}\right)} \tag{14}
\end{align*}
$$

and for $x>1 / 2$,

$$
\begin{align*}
& f(x ; L)=\frac{\beta^{L_{1 / 2}}-\beta^{L}}{1-\beta}+\frac{x_{0}\left(1-2 \beta^{L_{1 / 2}}+\beta^{L}\right)}{1-\beta} \\
& -\frac{\left(x_{0}-x\right)\left(1-2\left(\beta\left(p_{11}-p_{01}\right)\right)^{L_{1 / 2}}+\left(\beta\left(p_{11}-p_{01}\right)\right)^{L}\right)}{1-\beta\left(p_{11}-p_{01}\right)} . \tag{15}
\end{align*}
$$

For negatively-correlated arms (i.e., $p_{11}<p_{01}$), the even steps $\mathcal{T}^{2 k}(x)$ and the odd steps $\mathcal{T}^{2 k+1}(x)$ will converge toward x_{0} from opposite directions. Let $\mathcal{K}\left(x ; c_{1}, c_{2}\right) \triangleq \min \{k$: $\left.\mathcal{T}^{2 k} \in\left(c_{1}, c_{2}\right)\right\}$ denote the hitting time of $\left(c_{1}, c_{2}\right)$ from x by taking two steps at a time, and $\mathcal{K}_{1 / 2}(x)$ the number of step pairs needed to first cross $1 / 2$ starting from x, i.e., $\mathcal{K}_{1 / 2}(x) \triangleq \mathcal{N}(x ; 1 / 2,1)$ if $x \leq 1 / 2$, and $\mathcal{K}_{1 / 2}(x) \stackrel{\Delta}{=} \mathcal{K}(x ; 0,1 / 2)$ if $x>1 / 2$. Define $K_{1 / 2} \triangleq \min \left(\mathcal{K}_{1 / 2}(x),\lfloor(L-1) / 2\rfloor+1\right)$, and $K_{1 / 2}^{\prime} \triangleq \min \left(\mathcal{K}_{1 / 2}(\mathcal{T}(x)),\lfloor(L-2) / 2\rfloor+1\right)$. Note that $\mathcal{K}\left(x ; c_{1}, c_{2}\right)$ (thus $\left.K_{1 / 2}, K_{1 / 2}^{\prime}\right)$ can be computed similarly as $\mathcal{L}\left(x ; c_{1}, c_{2}\right)$ (see Section III-A). We can write $f(x ; L)$ as

$$
\begin{align*}
f(x ; L)= & \sum_{k=0}^{K_{1 / 2}-1} \beta^{2 k} \max \left(\mathcal{T}^{2 k}(x), 1-\mathcal{T}^{2 k}(x)\right) \tag{16}\\
& +\sum_{k=K_{1 / 2}}^{\left\lfloor\frac{L-1}{2}\right\rfloor} \beta^{2 k} \max \left(\mathcal{T}^{2 k}(x), 1-\mathcal{T}^{2 k}(x)\right) \tag{17}\\
& +\sum_{k=0}^{K_{1 / 2}^{\prime}-1} \beta^{2 k+1} \max \left(\mathcal{T}^{2 k+1}(x), 1-\mathcal{T}^{2 k+1}(x)\right) \tag{18}\\
& +\sum_{k=K_{1 / 2}^{\prime}}^{\left\lfloor\frac{L-2}{2}\right\rfloor} \beta^{2 k+1} \max \left(\mathcal{T}^{2 k+1}(x), 1-\mathcal{T}^{2 k+1}(x)\right) . \tag{19}
\end{align*}
$$

This decomposition guarantees that (16) is on the same side of $1 / 2$ as x, (17) on the other side, (18) on the same side as $\mathcal{T}(x)$, and (19) on the other side.

We now calculate (16-19) by cases. If $x \leq 1 / 2$, then (16) is equal to $\sum_{k=0}^{K_{1 / 2}-1} \beta^{2 k}\left(1-\mathcal{T}^{2 k}(x)\right)$ and (17) to $\sum_{k=K_{1 / 2}}^{\left\lfloor\frac{L-1}{2}\right\rfloor} \beta^{2 k} \mathcal{T}^{2 k}(x)$. Calculation will yield the closed-form results as in (20-21). Otherwise (i.e., $x>1 / 2$), (16) becomes $\sum_{k=0}^{K_{1 / 2}-1} \beta^{2 k} \mathcal{T}^{2 k}(x)$ and (17) becomes $\sum_{k=K_{1 / 2}}^{\left\lfloor\frac{L-1}{2}\right\rfloor} \beta^{2 k}\left(1-\mathcal{T}^{2 k}(x)\right)$, which yield (22-23). Similarly, if $\mathcal{T}(x) \leq 1 / 2$, then (18) becomes $\sum_{k=0}^{K_{1 / 2}^{\prime}-1} \beta^{2 k+1}\left(1-\mathcal{T}^{2 k+1}(x)\right)$ and (19) becomes $\sum_{k=K_{1 / 2}^{\prime}}^{\left\lfloor\frac{L-2}{2}\right\rfloor} \beta^{2 k+1} \mathcal{T}^{2 k+1}(x)$, which gives the results in (24-25).

Otherwise (i.e., $\mathcal{T}(x)>1 / 2)$, (18) is $\sum_{k=0}^{K_{1 / 2}^{\prime}-1} \beta^{2 k+1} \mathcal{T}^{2 k+1}(x)$ and (19) is $\sum_{k=K_{1 / 2}^{\prime}}^{\left\lfloor\frac{L-2}{2}\right\rfloor} \beta^{2 k+1}\left(1-\mathcal{T}^{2 k+1}(x)\right)$, yielding (26-27).

C. Computing Value Function $V_{\beta, m}(x)$

It is shown in [1] that given $m, \tau^{-}(m)$, and $\tau^{+}(m)$, we can compute the value function of the single-armed bandit with subsidy m by

$$
\begin{align*}
& V_{\beta, m}(x)=\frac{\left(1-\beta^{L}\right) m}{1-\beta}+f(x ; L)+\beta^{L} \\
& +\beta^{L+1} \mathcal{T}^{L}(x) V_{\beta, m}\left(p_{11}\right)+\beta^{L+1}\left(1-\mathcal{T}^{L}(x)\right) V_{\beta, m}\left(p_{01}\right) \tag{28}
\end{align*}
$$

The only unknowns left are $V_{\beta, m}\left(p_{11}\right), V_{\beta, m}\left(p_{01}\right)$. Note that $x=p_{11}$ or p_{01} should also satisfy (28), giving us two equations with two unknowns. Solving these equations yields the results in $(29,30)$.

IV. Additional Numerical Results

We first verify the properties of $a(x), b(x)$ given in Proposition 2.4. As shown in Fig. 3, $a(x)$ and $b(x)$ are indeed piecewise-linear functions of x.

Fig. 3. Coefficients $a(x), b(x)$ vs. $x\left(\beta=0.8, p_{01}=0.25, p_{11}=0.65\right.$, $\left.m=0.4039, \tau^{-}(m)=0.35, \tau^{+}(m)=0.6329\right)$.

We then verify the convexity of $V_{\beta, m}(x)$ with respect to m, which is needed to ensure that the performance upper bounds derived in [1] are well-defined and the associated subsidies are unique. We plot the value function $V_{\beta, m}\left(x_{0}\right)$ (with the steady state as the initial state) for the single-armed bandit as a function of subsidy m under positive and negative correlation, respectively, as shown in Fig. 4. In both cases, $V_{\beta, m}(x)$ is a monotone increasing, convex function of m. This observation holds even if we vary the parameters (not shown). Therefore, the expressions within the minimization of the bounds are convex in m (or \mathbf{m}), and hence the bounds are well-defined and the dual variables (subsidies) achieving them are unique.

References

[1] T. He, A. Anandkumar, and D. Agrawal, "Index-Based Sampling Policies for Tracking Dynamic Networks under Sampling Constraints," 2010. draft.
[2] E. Sondik, "The optimal control of partially observable markov processes over the infinite horizon: Discounted costs," Operations Research, vol. 26, no. 2, pp. 282-304, 1978.
[3] K. Liu and Q. Zhao, "Indexability of Restless Bandit Poblems and Optimality of Whittle's Index for Dynamic Multichannel Access." Submitted to IEEE Trans. on Information Theory, Jan 2010.

$$
\begin{align*}
x \leq \frac{1}{2}:(16) & =\frac{\left(1-x_{0}\right)\left(1-\beta^{2 K_{1 / 2}}\right)}{1-\beta^{2}}+\frac{\left(x_{0}-x\right)\left[1-\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{K_{1 / 2}}\right]}{1-\beta^{2}\left(p_{11}-p_{01}\right)^{2}}, \tag{20}\\
(17) & =\frac{x_{0}\left(\beta^{2 K_{1 / 2}}-\beta^{2\left(\left\lfloor\frac{L-1}{2}\right\rfloor+1\right)}\right)}{1-\beta^{2}}-\frac{\left(x_{0}-x\right)\left[\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{K_{1 / 2}}-\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{\left.\left\lfloor\frac{L-1}{2}\right\rfloor+1\right]}\right.}{1-\beta^{2}\left(p_{11}-p_{01}\right)^{2}} ; \tag{2}\\
x>\frac{1}{2}:(16) & =\frac{x_{0}\left(1-\beta^{2 K_{1 / 2}}\right)}{1-\beta^{2}}-\frac{\left(x_{0}-x\right)\left[1-\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{\left.K_{1 / 2}\right]}\right.}{1-\beta^{2}\left(p_{11}-p_{01}\right)^{2}}, \tag{22}\\
(17) & =\frac{\left(1-x_{0}\right)\left(\beta^{2 K_{1 / 2}}-\beta^{2\left(\left\lfloor\frac{L-1}{2}\right\rfloor+1\right)}\right)}{1-\beta^{2}}+\frac{\left(x_{0}-x\right)\left[\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{K_{1 / 2}}-\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{\left\lfloor\frac{L-1}{2}\right\rfloor+1}\right]}{1-\beta^{2}\left(p_{11}-p_{01}\right)^{2}} . \tag{23}
\end{align*}
$$

$$
\begin{align*}
& \mathcal{T}(x) \leq \frac{1}{2}:(18)=\frac{\left(1-x_{0}\right) \beta\left(1-\beta^{2 K_{1 / 2}^{\prime}}\right)}{1-\beta^{2}}+\frac{\left(x_{0}-x\right) \beta\left(p_{11}-p_{01}\right)\left[1-\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{\left.K_{1 / 2}^{\prime}\right]}\right.}{1-\beta^{2}\left(p_{11}-p_{01}\right)^{2}}, \tag{24}\\
&(19)=\frac{x_{0} \beta\left(\beta^{2 K_{1 / 2}^{\prime}}-\beta^{2\left(\left\lfloor\frac{L-2}{2}\right\rfloor+1\right)}\right)}{1-\beta^{2}}-\frac{\left(x_{0}-x\right) \beta\left(p_{11}-p_{01}\right)\left[\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{K_{1 / 2}^{\prime}}-\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{\left.\left\lfloor\frac{L-2}{2}\right\rfloor+1\right]}\right.}{1-\beta^{2}\left(p_{11}-p_{01}\right)^{2}} ;
\end{align*}
$$

$$
\begin{align*}
\mathcal{T}(x)>\frac{1}{2}:(18) & =\frac{x_{0} \beta\left(1-\beta^{2 K_{1 / 2}^{\prime}}\right)}{1-\beta^{2}}-\frac{\left(x_{0}-x\right) \beta\left(p_{11}-p_{01}\right)\left[1-\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{\left.K_{1 / 2}^{\prime}\right]}\right.}{1-\beta^{2}\left(p_{11}-p_{01}\right)^{2}}, \tag{25}\\
(19) & =\frac{\left(1-x_{0}\right) \beta\left(\beta^{2 K_{1 / 2}^{\prime}}-\beta^{2\left(\left(\frac{L-2}{2}\right\rfloor+1\right)}\right)}{1-\beta^{2}}+\frac{\left(x_{0}-x\right) \beta\left(p_{11}-p_{01}\right)\left[\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{K_{1 / 2}^{\prime}}-\left(\beta^{2}\left(p_{11}-p_{01}\right)^{2}\right)^{\left\lfloor\frac{L-2}{2}\right\rfloor+1}\right]}{1-\beta^{2}\left(p_{11}-p_{01}\right)^{2}} . \tag{26}
\end{align*}
$$

$$
\begin{align*}
& V_{\beta, m}\left(p_{01}\right)=\frac{\left(1-\beta^{L_{1}+1} \mathcal{T}^{L_{1}}\left(p_{11}\right)\right) v_{2}+\beta^{L_{2}+1} \mathcal{T}^{L_{2}}\left(p_{01}\right) v_{1}}{\eta}, \tag{29}\\
& V_{\beta, m}\left(p_{11}\right)=\frac{\left(1-\beta^{L_{2}+1}\left(1-\mathcal{T}^{L_{2}}\left(p_{01}\right)\right)\right) v_{1}+\beta^{L_{1}+1}\left(1-\mathcal{T}^{L_{1}}\left(p_{11}\right)\right) v_{2}}{\eta},
\end{align*}
$$

where $L_{1} \triangleq \mathcal{L}\left(p_{11} ; \tau^{-}(m), \tau^{+}(m)\right), L_{2} \triangleq \mathcal{L}\left(p_{01} ; \tau^{-}(m), \tau^{+}(m)\right), v_{1} \triangleq \frac{\left(1-\beta^{L_{1}}\right) m}{1-\beta}+f\left(p_{11} ; L_{1}\right)+\beta^{L_{1}}, v_{2} \triangleq \frac{\Delta\left(1-\beta^{L_{2}}\right) m}{1-\beta}+f\left(p_{01} ; L_{2}\right)+$ $\beta^{L_{2}}$, and $\eta \triangleq\left(1-\beta^{L_{1}+1} \mathcal{T}^{L_{1}}\left(p_{11}\right)\right)\left(1-\beta^{L_{2}+1}\left(1-\mathcal{T}^{L_{2}}\left(p_{01}\right)\right)\right)-\beta^{L_{1}+L_{2}+2}\left(1-\mathcal{T}^{L_{1}}\left(p_{11}\right)\right) \mathcal{T}^{L_{2}}\left(p_{01}\right)$.

(a) positively-correlated arm (b) negatively-correlated arm Fig. 4. $\quad V_{\beta, m}(x)$ vs. $m(\beta=0.8)$: (a) $p_{01}=0.05, p_{11}=0.45$; (b) $p_{01}=0.45, p_{11}=0.05$.

[^0]: $\overline{\overline{\underline{E}} \overline{\overline{\underline{E}}} \overline{\bar{E}}}$
 $\underline{\underline{\underline{E}}}$
 Research Division
 Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

