
RC25026 (W1007-092) July 27, 2010
Computer Science

IBM Research Report

Outline Wizard: Presentation Composition and Search

Lawrence Bergman, Jie Lu, Ravi Konuru, Julie MacNaught, Danny Yeh
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Outline Wizard: Presentation Composition and Search
Lawrence Bergman, Jie Lu, Ravi Konuru, Julie MacNaught, Danny Yeh

IBM T.J. Watson Research Center
Hawthorne, NY USA

{bergmanl, jielu, rkonuru, jmacna, dlyeh}@us.ibm.com

ABSTRACT
Assembling electronic presentations from existing
presentation material is a commonly-performed task. Yet
current tools provide inadequate support – search tools are
unable to return individual slides, and the linear model
employed by presentation creation tools lacks structure and
context. We propose a novel method for presentation
creation, implemented in a tool called Outline Wizard,
which enables outline-based composition and search. An
Outline Wizard user enters a hierarchically-structured
outline of a presentation; using that structure, the tool
extracts user requests to formulate contextual queries,
matches them against presentations within a repository,
taking into account both content and structures of the
presentations, and presents the user with sets of slides that
are appropriate for each outline topic. At the heart of
Outline Wizard is an outline-based search technique, which
conducts content search within the context derived from the
hierarchical structures of both user requests and
presentations. We present a heuristic outline-extraction
technique, which is used to reverse engineer the structures
of presentations, thereby making the structures available for
our search engine. Evaluations show that the outline-
extraction technique and outline-based search both perform
well, and that users report a satisfying experience when
using Outline Wizard to compose presentations from
libraries of existing material.

Author Keywords
Presentation composition, presentation search, outline-
based search, context-sensitive information retrieval

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces ⎯ User interaction styles, User-centered design;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval ⎯ Query formulation, Search process

1. INTRODUCTION
Presentations, created and presented using software tools
such as Microsoft PowerPoint1 and OpenOffice Impress2
are widely used, with millions produced each day [9]. In a
series of informal interviews with corporate executives and
managers, we have discovered that creating new
presentations by assembling slides from previously existing
presentations is a common practice. For example, slides
from presentations of individual products may be needed
for inclusion in a marketing presentation; slides from
presentations of various projects may be required for a
management report.

Using today’s tools, collating slides into new presentations
is a painful process. The user must first search for the
slides. Current search tools are unable to operate at the
level of individual slides, which causes two problems.
First, because the search is at the presentation level, any
presentation containing all search terms anywhere within it
will be returned, even though the objective may be to obtain
a single slide containing all search terms. Second, the user
must sift through entire presentations returned by the search
to find and extract relevant slides, which is often a time-
consuming and difficult task.

In an attempt to address these issues, our group has
developed a slide-level presentation repository, known as
SlideRiver. Presentations (in PowerPoint or OpenOffice
formats) are uploaded into SlideRiver, which automatically
indexes individual slides within presentations. These slides
can then be browsed, shared, and searched.

Simply providing a slide-level search facility, however, is
not a panacea. First, presentations often include slides
whose content does not contain sufficient context for slide-
level search. Consider searching for a slide that contains
“goals” for the “SlideRiver” project. Presentations on
SlideRiver may contain slides that describe goals (and
contain the word “goals”), but do not have the word
“SlideRiver” in their content. As a result, these slides may
not be considered relevant when judged on their content
alone without considering context, i.e., the presentations
they come from. An additional complication is introduced
when the desired material for a given topic spans multiple
slides. For instance, a scenario or use case may consist of a

1 http://office.microsoft.com/en-us/powerpoint/default.aspx
2 http://www.openoffice.org/product/impress.html

sequence of slides, but the search terms “scenario” or “use
case” may not be present on all slides of the sequence. A
slide-level search method that lacks knowledge of
presentation structure will be incapable of identifying and
returning relevant groups of slides under such
circumstances.

Once slides are located, the new presentation must be
composed. Composition consists of two portions – the
structure of the presentation must be designed, and
materials must be created/inserted into the structure.
Current tools provide almost no support for designing
presentation structure. Users often structure presentations
hierarchically – this can be seen in the large number of
presentations that begin with an agenda or outline slide.
Yet, most of today’s tools represent a presentation solely as
a linear sequence of slides. Insertion of materials from
multiple sources is typically accomplished by the laborious

process of opening each source presentation, then cutting-
and-pasting between source and target using separate
windows for each.

Our work attempts to provide support for search and
composition through a new model of creating presentations
from existing slides. Based on the common practice of
structuring presentations via outlines, we present a
methodology that unifies search and composition. In our
system, entitled Outline Wizard, a user creates an outline,
using text editing operations, which defines the structure of
a presentation. As she does, a query is constructed at each
level of the hierarchical outline, with nested context from
the outline used to scope the query. To address the
shortcomings of single-slide search discussed earlier, we
employ a novel outline-based search technique. The
technique matches scoped queries against sets of existing
presentations to find candidate slides or groups of slides by
considering both presentation content and structure. Since
the structure of currently existing presentations is not
typically available, we introduce an outline-extraction
technique to reverse engineer presentation structures that
can be used for search.

As an example of using Outline Wizard for presentation
composition and search, we consider a user who wants to
construct a presentation detailing the SlideRiver software
system. She creates an outline (shown in Figure 1 (b) and
(c)) that includes the title of the presentation – “SlideRiver,”
topics – “Goals,” “Scenario,” “Application,” and subtopics
(of “Scenario”) – “Teamwork,” “Collect materials.” The
hierarchically structured outline provides context used for
search. In Figure 1(c), for example, the highlighted topic
specifies that a “Collect materials” scenario is being sought
for SlideRiver. Outline Wizard derives contextual queries
based on the outline, conducts search over a repository of

(a)

(b)

(c)

Figure 1. Outline Wizard user interface

Figure 2. Presentation composition using Outline Wizard

presentations, associates sets of search results with these
contextual queries, and supplies them in-context. By
clicking on a topic within the outline, the user is able to
preview the content of retrieved slides associated with that
topic (Figure 1(b)). Outline Wizard automatically
constructs a series of outline slides for the presentation
based on the user-specified outline. The user can select
particular slides from the search results for inclusion at the
appropriate place in the presentation, as shown in Figure 2.

Compared to existing tools, Outline Wizard offers users
three distinct benefits. First, it provides a mechanism for
the user to design a presentation using a much more
structured representation than that provided by traditional
linear presentation tools. Second, Outline Wizard
automatically formulates queries and conducts search based
on the outline specified by the user, which frees her from
manually crafting and issuing multiple queries to search for
content. Third, Outline Wizard allows the user to easily
inspect search results, and incorporate selected results into
the presentation without cutting-and-pasting between
multiple windows.

Below, we briefly discuss related work, followed by an
overview of Outline Wizard. We then describe Outline
Wizard’s key components and our evaluation.

2. RELATED WORK
Our work is related to several systems that extend the
typical linear presentation model to support hierarchical or
graph-based representations of presentation structures [1, 6,
8]. We go beyond these systems by addressing not only
how to organize presentation materials, but also how to
locate them through search. [5] addresses the issue of
composing presentations from multiple versions of a
particular presentation; our focus is on assembling
presentations from heterogeneous sources.

Chen [3, 4] presents a system that uses extracted
presentation structures to search a PowerPoint database. It
focuses on finding particular items (slides, diagrams,
images, etc.) with queries specified via a generated
ontology. In contrast, our system allows the user to specify
the complete presentation structure via free-text, and
automatically formulates queries from the structure.

XML information retrieval matches “content and structure”
(CAS) queries, which specify requested or required content
structure, against Extensible Markup Language (XML)
documents. In outline-based search, contextual similarity
plays a bigger role than structural similarity in determining
the relevance of a slide to a user request. In spite of this
difference between outline-based search and XML retrieval,
our work is inspired by the body of research in XML
retrieval, particularly the work on extending the vector
space model for structured-based search [2, 7].

Our outline-based search technique creates and uses context
vectors to conduct context-sensitive information retrieval,
which is related to work on context-aware, adaptive
information retrieval [10]. Context-aware retrieval uses
context vectors, created from a graph of user actions which
represents the user’s investigative context, to augment
explicit user queries. In comparison, outline-based search
creates context vectors based on user-specified outlines and
presentation structures, and these context vectors are used
to inform context-sensitive search.

3. SYSTEM DESCRIPTION
Here we provide an overview of Outline Wizard, starting
with its user interface, followed by its system architecture.

User Interface
Outline Wizard was developed as a PowerPoint plug-in.
When the user clicks the Outline Wizard toolbar button
(highlighted in Figure 1(a)), a new PowerPoint presentation
is initiated, and the Outline Wizard user interface is
displayed (Figure 1(b)). The user enters a presentation
outline in the panel on the left. The top-most item is the
presentation title (“SlideRiver” in Figure 1), with
presentation topics and subtopics contained in a nested tree
structure. The outline tree is editable; with tree items
indented or dedented via keystrokes.

As the user completes entry of each topic, a search is
initiated; when results are obtained, a spyglass icon is
presented to the left of the topic. In Figure 1(b), search
results returned for the highlighted topic “Scenario” are
presented in the right-hand panel as thumbnails, each
representing a single PowerPoint slide. The user can select
any of the slides, as shown in Figure 1(c), and then insert
that slide into the PowerPoint presentation, by clicking on
the “Insert” button. The user can see a larger preview of a
slide thumbnail by double-clicking on it; the preview panel
also contains an “Insert” button. Figure 2 shows a portion
of the PowerPoint user interface, containing the
presentation being constructed. Outline slides are
automatically inserted for each topic, showing the current
topic (“Collect materials” in Figure 2) highlighted within
the full outline context. Slides that have been inserted are
displayed immediately following the topic they represent.

System Architecture
Figure 3 shows the architecture of the Outline Wizard
system. It has two subsystems comprised of five main
components: a front end containing an input processor and
output processor, and a back end containing an outline
processor, outline searcher, and outline extractor.

As the user types a presentation outline into the Outline
Wizard user interface, the input processor processes user
input and creates an XML-based representation of the
outline to send to the outline processor. Given the outline,
the outline processor first constructs and updates a

hierarchical tree structure to represent the outline. Next it
extracts content and context information from the hierarchy
to formulate contextual queries. The outline searcher
matches each query against context-sensitive
representations of presentation content. Query results are
passed to the output processor, which displays sets of
results and supports user interaction with them.

The outline extractor is responsible for reverse engineering
presentation outlines which are used for creating context-
sensitive representations of presentation content. It reads
and parses PowerPoint presentations stored in the
repository, and infers an outline structure for each based on
a variety of heuristic rules. Outline extraction is executed
during an offline process.

4. OUTLINE EXTRACTION
Outline extraction is the process of reverse engineering an
outline using content contained within an existing
presentation. We began development of this component
with an informal study of presentation structure. We
examined about 100 presentations collected from
colleagues. The presentations included project reviews and
summaries, proposals, and technical materials. We noted a
number of regularities in many of the presentations,
including repeated structures (e.g., multiple slides in
sequence with identical or similar titles indicating a slide
group), and explicit organizational aids (e.g., introductory
outline or agenda slides). Based on this examination, we
initially focused on presentations containing agenda slides
(slides typically titled “outline,” “agenda,” “table of
contents,” “roadmap,” or “overview;” we will use the term
agenda to refer to all of these).

We randomly selected 755 PowerPoint presentations from a
large corporate information repository containing sales and

marketing presentations. We developed an automated
agenda extractor which identified 229 (30%) of these as
having agenda slides. We randomly selected 100 of these
agenda-containing presentations for use as a development
set. A more detailed examination of these 100 yielded the
results displayed in Table 1. This table displays both the
results discussed here (in the column labeled
“Development”), and the breakdown of a test set used for
evaluation.

11% of the presentations had agenda slides that on
inspection clearly did not indicate the structure of the
presentation, but instead presented workshop timetables,
gave product highlights, etc. Although we were able to
distinguish these non-structural agenda slides from those
that reflect presentation structure, we felt it would be
difficult for an algorithm to do so.

55% of the presentations contained a single agenda slide
near the start of the presentation. Often the agenda topics
matched the titles of particular slides within the
presentation, either exactly or near-exactly. In other cases,
the agenda might contain the topic (e.g., “Why it sells”)
with the associated slides containing titles that give specific
reasons, but with no keyword matches.

34% of the presentations contained multiple agenda slides.
Typically, these multiples were replicas of the agenda slide
marking the start of each topic. Often, the current topic
would be highlighted, usually by changing the color or by
bolding the font (59% of multiple-agenda presentations), or
by visually changing the background via a box or
background highlight (26% of multiple-agenda
presentations).

Based on these results, we developed an outline inference
module. Figure 4 shows a display of output from the
module. The leftmost panel displays slide titles, one line
per slide. The middle panel shows the topics on the agenda
slide. The rightmost panel shows the inferred outline.
Topics from the agenda slide have become group titles
(shown in blue), with each group containing zero or more
slides (shown in red).

The inference module extracts topics from an agenda slide,
then assigns individual slides to agenda topics using a
segmentation-based algorithm, which assumes that slides
appear in the same order as agenda topics (usually, but not
universally true). The segmentation algorithm seeks to find
a starting slide for each topic, and assumes that all slides
that follow belong to the topic, until the slide that starts the
next topic. Note that this approach allows hierarchically
nested topics.

For a presentation with a single agenda, the
correspondences between slides and agenda topics are
determined by matching agenda topics with slide titles

 Development Test
Non-structural 11 14
Single agenda slide 55 46
Multiple agenda slides 34 40
 Color/bold for current topic (20) (22)
 Box/highlight for current topic (9) (11)
 Other schemes for current topic (5) (7)
Total 100 100

Table 1. Types of agenda slides contained in presentation
samples

Figure 3. Outline Wizard architecture

based on the keywords extracted from each. Keywords are
stopped with a stopword list derived from Lucene3 and
stemmed using the Snowball package4. Quoted strings are
retained intact. A match score M between a slide title S and
an agenda topic A is computed as the percentage of
keywords from the slide title found in the topic:

M(S, A) = |Ks ∩ Ka| / |Ks|
where Ks is the set of keywords in the slide title, and Ka is
the set of keywords in the agenda topic. Any value of
M(S, A) that exceeds an empirically determined cutoff level
is considered a match.

When there are multiple identical or near-identical agenda
slides in a presentation, the inference module uses these
slides to segment the presentation; each marks the start of a
topic. The topic associated with each agenda slide is
identified by recognizing color or bold highlighting.
Details of this method are omitted due to space limitation.

If no color/bold highlighting is found, and the number of
agenda slides is equal to the number of agenda topics, we
assume a one-to-one correspondence between agenda slides
and topics. Otherwise, the inference module ignores the
multiple agenda slides, and segments the presentation via
title matching as if it contains a single agenda slide, as
described earlier.

5. OUTLINE-BASED SEARCH
In this section, we present our approach to outline-based
search. First, we introduce the hierarchical tree-based
representations used for modeling user-specified outlines
and existing presentations. Second, we describe how we
derive context-sensitive vectors from these representations
to represent queries and presentation elements (e.g., slides
or groups of slides). Third, we present the process that,
given a user-specified outline, retrieves and ranks

3 http://lucene.apache.org/
4 http://snowball.tartarus.org/

presentation elements based on their estimated relevance to
the queries, and determines which slides to return.

Hierarchical Representations of Outlines and
Presentations
Any outline, whether user-specified, or derived from an
existing presentation, is represented by a hierarchical tree of
nodes. For a user-specified outline, a node corresponds to
one topic in the hierarchical outline, e.g., “Scenario,”
“Teamwork,” etc. in Figure 1(b). We refer to these as query
nodes, since they are used to automatically formulate
searches. For an outline derived from an existing
presentation in the repository, a node corresponds to a
presentation element, which can be the entire presentation,
a group of slides associated with a topic in the presentation
outline, or a single slide. We refer to these as repository
nodes.

The content of a node is determined by the type of the node.
For a repository node representing a presentation, its
content corresponds to the title of the presentation. For a
repository node that represents a slide or a query node that
represents an outline topic, its content is the text contained
in the slide5 or the topic. For a repository node that
represents a group of slides, its content corresponds to the
group title, which comes from the presentation outline topic
with which these slides are associated.

The links between nodes in the hierarchical tree are
determined by the parent-child relations as indicated by the
outline structure. A top-level outline topic such as
“Overview of ESMT” shown in Figure 4 is a child of the
node that corresponds to the entire presentation. An outline
data structure organizes all the nodes of a hierarchical
outline, and provides methods for its navigation.

5 We extracted text from all text areas within a slide, but not
text embedded within graphics or images, nor did we use
text within the notes areas.

Figure 4. Outline extraction interface, showing slide titles, agenda topics, and extracted structure

The representation of a user-specified outline is created and
updated dynamically as the user creates and edits the
outline structure. The representations of presentation
elements in the repository are created and indexed by an
offline process and are loaded on demand at run time.

Context-Sensitive Vector Representations of Queries
and Presentation Elements
We employ a vector space model to capture both content
and context of query nodes and repository nodes. The
context of a node is defined as the aggregate content of all
of its ancestors and descendants in the hierarchical tree of
nodes. A node’s context-sensitive vector integrates the
node’s content with its context. It is created in two steps.
First, the content term vector of the node is created, based
on the content it encodes, without considering its context.
Second, this content term vector is integrated with all
content term vectors from the node’s context to create its
context-sensitive vector. Next we describe these two steps
in detail.

We construct a node’s content term vector by removing
punctuation marks and stopwords, then stemming the set of
words and quoted strings. For a query node, the weight of a
term is determined by the term’s frequency in the node’s
content. For a repository node, the weight of a term is
computed based on its frequency in the node’s content as
well as its location and overall popularity in the
presentation. Location refers to the hierarchical nesting
level of a term, from inner to outer – slide content, slide
title, outline topic, presentation title. Following the
common practice of assigning location-based term weights
in information retrieval, we give a higher weight to a term
when it occurs at an outer level than when it occurs at an
inner level in the hierarchy. Specifically, the location-based
weight wlocation of a term t in a node n’s content is set to 1.0
for the node’s content that corresponds to presentation title,
0.8 for outline topic, 0.6 for slide title, and 0.4 for slide
content. The simple linear weighting scheme is used due to
the lack of training data for determining the relative
importance of terms at different locations in a presentation.

A term’s overall popularity is inversely related to its
discriminative power, which is typically measured by
inverse document frequency (idf) in traditional information
retrieval. Because the basic result unit for outline-based
search is a slide, we use inverse slide frequency isf to
measure a term t’s discriminative power within a
presentation p:

isf(p, t) = log(Np / Np,t)
where Np is the total number of slides in the presentation p,
and Np,t is the number of p’s slides containing the term t.

The weight w of a term t in the content term vector vc of the
node n for a presentation element is therefore calculated as
the product of the term’s frequency f in the node’s content,
its location-based weight wlocation, and its inverse slide

frequency isf in the presentation to which the node belongs:
w(t) = f(t) × wlocation(t) × isf(p, t)

To create a context-sensitive vector vs for the node n, its
content term vector vc is integrated with all of the content
term vectors from n’s context as follows:
 vs(n) = vc(n) + Σn’∈ context(n) min(0, 1 − 0.2d(n, n’)) × vc(n’)

where each content term vector vc(n’) from the context is
discounted based on the distance (i.e., path length) d(n, n’)
between its node n’ and the targeted node n in the
hierarchical tree, so that terms located closer to the targeted
node are given higher weights. The discount factor of 0.2 is
determined empirically.

As with the node representations, context-sensitive vectors
that represent queries are created dynamically as the user
edits the outline; vectors that represent presentation
elements are created and indexed offline then dynamically
loaded at run time.

Process of Outline-Based Search
As the user creates and edits an outline in the interface, the
outline topics are dynamically sent to the outline processor,
which updates the hierarchical representation created for
the outline, extracts from it a set of nodes for topics that
have new/changed content or context, and creates context-
sensitive query vectors for these nodes. Each query vector
is passed to the outline searcher, which conducts search in
three steps. First, the query is sent to a Lucene text search
engine, which uses the traditional tf.idf-based ranking

Input: the list of ranked presentation elements Le
Output: the list of slides to return as the search result Ls

Procedure:
 foreach presentation element e in Le

if e.type == Slide
 Ls.add(e)
 else if e.type == SlideGroup || Presentation
 L = all the slides that belong to e
 foreach slide s in L
 if s.score < e.score

// boost the slide score
 s.score = (s.score + e.score) / 2
 endif
 Ls.add(s)
 endfor
 endif
 endfor

Ls = sort(Ls)
foreach slide s in Ls
 // normalize the score to be between 0 and 1

s.score = (s.score – min(Ls)) / (max(Ls) – min(Ls))
endfor
Ls = sub-list of Ls including all the unique slides with ranks

higher than a cutoff c or scores greater than a threshold t
return Ls

Figure 5. The method for determining which slides to
return as the search result for a query

algorithm to rank its indexed presentations and returns a list
of top-ranked presentations as candidates. Second, the
outline searcher retrieves the context-sensitive vectors of
the presentation elements contained in these candidate
presentations, and estimates the relevance r of each
presentation element e to the query q based on a
combination of the standard cosine similarity Simcos
between the query vector and the vector of the presentation
element, the Boolean similarity Simbool between them, and
the relevance score of the presentation p to which the
presentation element belongs:

r(e, q) = Simcos(vs(e), vs(q)) × Simbool(vs(e), vs(q)) × r(p, q)

The Boolean similarity Simbool is calculated as the
percentage of query terms that are matched. It is introduced
to favor presentation elements that match all query terms.
Third, the outline searcher ranks the presentation elements
by their relevance scores, and generates a result list.

Currently the basic result unit for outline-based search is a
slide. Figure 5 describes the method used by the outline
searcher to determine which slides to return as the search
result for the query. It uses the scores of the presentation
elements at the level of presentation or slide group to boost
the scores of the slides that belong to them, so that a slide is
more likely to be returned when it belongs to a presentation
or a slide group that is deemed relevant, even if this slide
seems less relevant judged on its own. Slides which exceed
a rank-based cutoff, c, or a score-based threshold, t, (both
constants determined empirically) are included in a ranked
list of return results.

6. EVALUATION
The evaluation consisted of three portions: 1) evaluation of
the outline-extraction technique, 2) evaluation of the
outline-based search, and 3) evaluation of the Outline
Wizard user experience.

Outline Extraction Evaluation: Methodology
Outline extraction was initially evaluated on the
development set of 100 agenda-containing presentations
described in Section 4. Two of the authors (Bergman and
Lu) independently assigned slides to agenda topics using a
manual assignment process. The tool shown in Figure 4
allowed us to select a set of slides, select a topic (from the
automatically identified agenda slide), and assign the slides
to the topic. We ran the automated outline extractor on the
same 100 presentations.

We devised an outline similarity metric S for comparing
two outlines o1 and o2 representing a presentation p. It
calculates the average degree of agreement between two
outlines as follows:

S(o1, o2) = ∑s∈pA(t1(s), t2(s)) / |p|
where for each slide s in p, t1(s) and t2(s) denote the agenda
topics to which s is assigned in the two representations, A
denotes the agreement between them, and |p| denotes the

number of slides in the presentation p.

A has a non-zero value if t1(s) and t2(s) are located on the
same sub-tree in the topic hierarchy of p’s agenda, with the
degree of agreement discounted by a measure of their
“distance” from each other. Specifically, it is computed as:

A(t1, t2) = 1 – min(1, 0.2 × D(t1, t2))
where D is a measure of the “distance” between two agenda
topics in the presentation agenda’s topic hierarchy:

D(t1, t2) = max(d(t*, t1), d(t*, t2))
where t* is the closest common topic to t1 and t2 among the
set of agenda topics that includes t1, t2 and their ancestors in
the topic hierarchy, and d(•, •) is the distance (i.e., path
length) between two topics. If t1 and t2 refer to the same
topic, D is set to 0. The discount factor of 0.2 is determined
empirically.

If a slide is assigned to a topic by the outline extractor but is
left unassigned by manual assignment, A is set to 0.5. If a
slide is assigned manually but is left unassigned
automatically, A is set to 0.

For each presentation in the development set, we calculated
similarity scores on three pairs – comparing the two manual
assignments, and then comparing the automatic extract with
each of the manual assignments.

Once we had completed development of the algorithm, we
randomly selected an additional 100 agenda-containing
presentations, and repeated this set of evaluation
procedures.

Outline Extraction Evaluation: Results
Results comparing the assigned outlines are shown in Table
2. Note that the two human annotators (designated as
Annotator 1 and Annotator 2) corresponded well (but not
perfectly) in their assignments, both with the development
set as well as the test set. The degree of agreement between
the outline assignments of the automated outline extraction
and both humans was satisfactory – about 70% for the
development set, and about 60% for the test set, indicating
the effectiveness of our outline-extraction technique.

The lower scores for the automated outline extraction can
be attributed to several factors. First, there were errors in
outline extraction for a small handful of presentations. This
was primarily due to the algorithm looking for indented
bullets, but being unable to recognize other form of
indenting, such as tabs. Second, the algorithm did not
handle all forms of structure marking within the
presentation sets. In particular, some presentations with
multiple agenda slides contained a different two-level
structure on each agenda slide; our algorithm did not handle
this case, and performed poorly. Finally, the keyword
matching approach failed in some cases, particularly where
the text in the agenda did not correspond well with the
terms on the slide titles.

The lower scores on the test set (relative to the development

set) can be attributed to a lack of homogeneity between the
two sets. First, the test set had a higher number of non-
structural agendas (14 vs. 11). Second, the test set had a
larger number of multiple-agenda presentations highlighted
with outline boxes (11 vs. 9) which we are currently not
handling. Finally, the test set had a number of multiple-
agenda presentations containing agenda slides with more
than two highlights per slide; these were quite a bit less
common in the development set, and we did not handle
these in our algorithm.

Outline-Based Search Evaluation: Methodology
We evaluated search on two separate sets of presentations,
which came from two different organizations within our
corporation – sales and development. The presentations
within each set shared a common theme, e.g., providing a
profile of a potential corporate customer, or documenting a
development process. Each set of presentations was
specified by a template, but individuals who created the
presentations were free to either delete elements of the
template, or add additional elements. The presentations for
customer profiles contained explicit agenda slides.
Although the development process presentations did not
contain explicit agenda slides, we asked two colleagues
who are somewhat familiar with this development process
to manually construct agendas for eight of them.

We simulated two use cases of presentation composition
and search, one for each data set. The first use case was
composing a presentation to compile particulars (e.g.,
executive summary, industry analysis, company overview)
of several potential corporate customers. The second use
case was constructing a presentation to summarize common
development aspects (e.g., functional description, design
requirements) of several projects. We simulated a two-
level user-specified outline for each use case, with the outer
level specifying various particulars/aspects required for
composing the presentation, and the inner level specifying
names of different customers/projects. The outlines
resulted in a total of 30 queries, 18 for the first use case and
12 for the second.

We added both sets of presentations to the presentation
repository, and created context-sensitive vectors of
presentation elements based on the presentation outlines
generated by the outline extractor. Then we ran our outline
searcher to obtain a set of top-ranked slides for each outline

topic query. We manually compiled a list of relevant slides
by inspecting the presentations about targeted customers
and projects. For each query, we calculated accumulative
precision and recall as well as F-measure (the harmonic
mean of precision and recall) for the top 20 ranked slides.
The average number of relevant slides per topic was 8 for
the first use case and 2.75 for the second use case.

As a baseline, we used the slide-level search facility
provided by the SlideRiver system, which employed a
Lucene text search engine to index both presentations and
individual slides from these presentations as documents.
Given a query, the search engine retrieved documents
ranked using Lucene’s default tf.idf-based ranking
algorithm. The Boolean AND query operator was applied
to multiple query terms. We measured precision and recall
for the baseline results using two different methods. The
first method measured the performance of slide-level search
and ignored presentation results. The second method
expanded each presentation result to include all the slides
from this presentation in the search result. Here we refer to
the evaluation result using the first method as “baseline-
slide” and that using the second method as “baseline-all”.

We also compared context-sensitive search – outline-based
search using context-sensitive vectors (created from
presentation structures) with content-only search – standard
slide-level search using only content term vectors of slides
without context.

Outline-Based Search Evaluation: Results
Figure 6 shows evaluation results of outline-based search in
both use case 1 (composing a presentation to profile
potential corporate customers) and use case 2 (constructing
a presentation to summarize projects under development).
Figure 6(a) and Figure 6(c) plot precision against recall,
averaged over all the queries in each use case. Figure 6(b)
and Figure 6(d) depict the change in F-measure as the
document (slide) rank increased from top 1 to top 20.
Because on average the number of slide results returned by
the baseline approach was very small (1.72 per query for
use case 1 and 1.58 for use case 2) due to the Boolean query
constraint, “baseline-slide” had fewer data points than the
other methods.

The results indicate that outline-based context-sensitive
search performed well in both use cases, no matter whether
it was recall-oriented (use case 1, with an average of 8
relevant slides per query) or precision-oriented (use case 2,
with an average of 2.75 relevant slides per query). By
contrast, baseline-slide (which only considered slide
results) yielded very low recall in recall-oriented use case 1,
while baseline-all (which included individual slide results
and all the slides from presentation results) had very low
precision in precision-oriented use case 2, indicating that no
single strategy worked well in both cases for the SlideRiver
baseline system.

Development set Test set Average StDev Average StDev
Annotator 1 vs.

Annotator 2 0.90 0.15 0.85 0.20

Annotator 1 vs.
Automatic 0.71 0.25 0.60 0.28

Annotator 2 vs.
Automatic 0.69 0.28 0.57 0.28

Table 2. Evaluation results of outline extraction

For both use cases, context-sensitive search outperformed
both the baseline and content-only search, demonstrating
the promise of incorporating context information derived
from outline structures for more effective slide-level search.

User Experience Evaluation: Methodology
We conducted an informal evaluation of the Outline Wizard
user experience. We asked six people – five of them
researchers or software engineers within our organization,
one of them the retired head of corporate communications
for a Fortune 50 company – to compose a presentation from
existing materials using the Outline Wizard from within
PowerPoint. Three of the participants were men, three
women, all of whom use PowerPoint as part of their job.
The repository used for this study was populated with the
eight project development presentations used for evaluating
outline-based search. The task involved constructing a
presentation on a set of specified themes (e.g., “design
requirements”, “usage scenarios”), each theme to contain
information on several projects. Thus, the task naturally
contained a two-level information structure. After being
given a short demo of Outline Wizard, the users were asked
to use the tool to create a presentation outline and select
slides. The users were observed using the tool, and then
asked to complete a brief questionnaire. They were also
asked to comment on the tool, and to offer suggestions for
improvement.

User Experience Evaluation: Results
The user study participants all successfully performed the
task, with few difficulties. Four of the six produced
hierarchical outlines. The remaining two produced flat
structures, with all topics at the same level. When asked
why, one had misinterpreted the instructions; the other
stated that he had not read them carefully.

Three of the four participants that produced a two-level
hierarchy, created one that very closely modeled the written
structure of the task, which nested development projects
within themes (such as “design requirements”). An
example is shown in Figure 7(a). One participant re-
factored the hierarchical structure – nesting themes within
projects – to produce the outline shown in Figure 7(b). We
noted that in both cases, similar sets of search results were
returned, and the users were able to successfully complete
the task. This indicates that our approach is not dependent
on a particular hierarchical structure, but supports a variety
of specifications.

We also noted two distinct working styles. Most
participants typed in the outline, then when the outline was
complete, went back and selected slides. A minority of the
participants interleaved typing topics and selecting slides.

The users were all enthusiastic about Outline Wizard.
Comments included, “I like this very much,” and “It would
be very useful for big worldwide companies; it could save
hours of time.” Several participants stated a belief that the
tool would be particularly useful in sales, where assembling
presentations to customers from libraries of presentation
materials is a common practice.

Figure 8 shows results from the questionnaire. All
questions received positive responses (numbers in
parentheses are averages on a 1-5 Likert scale with 5 the
most positive) – Q1: “I could easily construct a
presentation with Outline Wizard” (4.3), Q2: “The concept
of outline-based search and composition is easy to
understand and use” (4.5), and Q3: “I would use Outline
Wizard for my own work, if available” (4.3). The single
response of “Undecided” for Q3 was from a participant
who said that he always produces his presentations “from

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Pr
ec

is
io

n

(a) Use case 1

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17

Rank

F-
m

ea
su

re
(b) Use case 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Pr
ec

is
io

n

(c) Use case 2

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17

Rank

F-
m

ea
su

re

(d) Use case 2

♦ context-sensitive search ▲ content-only search
 ■ baseline-slide • baseline-all

Figure 6. Evaluation results of outline-based search

(a) (b)

Figure 7. Different outline structures reflecting the same task

scratch”, so would not find a tool that supports reuse of
value to him.

The users had a number of suggestions for improvements to
Outline Wizard. These included: 1) visual indicators
showing that slides had been inserted into topics, 2) user
selectable options to control formatting for the generated
outline slides, including level-of-detail control, 3) the
ability to add additional search specifications (keywords,
Boolean operators, scope, etc.) in addition to the topic titles,
4) support for easy reorganization of an outline, perhaps via
drag-and-drop operations, and 5) adding social networking
functions, such as display of ratings, tags, comments, for
individual slides returned from the search.

7. CONCLUSIONS AND FUTURE WORK
We have presented an outline-based model for composition
of presentations based on searching existing material. The
user composes a presentation by specifying a
hierarchically-structured free-text outline. The outline
provides both search terms and contextual structure for a
contextual outline-based search. The content to be searched
is also represented hierarchically, by means of extracted
outlines which are reverse engineered from the existing
presentations. We have shown the outline extraction
process to perform reasonably well on a random selection
of presentations. Furthermore, we have shown the outline-
based search technique to be effective at returning
appropriate individual slides. Users of the Outline Wizard
system, which embodies the outline-based search,
successfully used it to create “new presentations from old”,
and were enthusiastic about the tool. Although the system
as presented operates only on English-language text, there
is nothing in either the extraction or search algorithms that
is inherently language-dependent.

We have plans to extend this research in several directions.
First, we wish to extend the outline extraction algorithm to
handle presentations that do not contain agendas. We note
that many presentations contain local regularity – for
example, repeated keywords in sequences of slides – that
could be used to extract local structure. Because our search
algorithm is layered on a standard keyword search, partial
structures, even very minimal ones, should yield an
improvement. Second, we wish to support more than single

slide results. In many cases, the results of a query should
be a group of related slides, for example, several slides that
compose a scenario. This would require identifying a tight
relationship between these slides, delivering them together
from the search engine, and providing the appropriate user
interface elements for displaying and manipulating them.
Related to this is our desire to support previously-created
topics as searchable elements; the ability to search and
compose using topics from a “topic library” would extend
the power of the outline-based model. Finally, we would
like to extend the outline-based model to include aspects of
workflow typically encountered within an organization –
enabling sharing, distribution, and collaborative editing via
topics.

ACKNOWLEDGMENTS
We thank Rich Thompson and Robert Flavin of the
SlideRiver team for suggestions and feedback, as well as
development support. We also thank Jennifer Lai and
Ramesh Gopinath for their support of this work.

REFERENCES
1. Apple Keynote ’09,

http://www.apple.com/iwork/keynote/
2. D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass, and

A. Soffer. “Searching XML documents via XML
fragments.” In SIGIR 2003.

3. C. Y. Chen, R. Ribier, and S. P. Liou. “An automatic
poster summarization for microsoft powerpoint
presentation.” In IASTED EuroIMSA, 2005.

4. C. Y Chen. “An integrated system supporting effective
indexing, browsing and retrieval of Microsoft
PowerPoint presentation database.” In 22nd Intl. Conf.
on Data Engineering Workshops (ICDEW'06).

5. S. M. Drucker, G. Petschnigg, and M. Agrawala.
“Comparing and managing multiple versions of slide
presentations.” In UIST 2006.

6. D. Holman, P. Stojadinović, T. Karrer, and J. Borchers.
“Fly: An organic presentation tool.” In CHI 2006.

7. S. Liu, Q. Zou, and W. Chu. “Configurable indexing
and ranking for XML information retrieval.” In SIGIR
2004.

8. T. Moscovich, K. Scholz, J. F. Hughes, D. H. Salesin.
“Customizable presentations.” Technical Report CS-
04-03, Computer Science Department, Brown
University.

9. I. Parker. “Absolute PowerPoint: Can a software
package edit our thoughts?” The New Yorker, 2001.

10. Z. Wen, M. Zhou, and V. Aggarwal. “Context-aware
adaptive information retrieval for investigative tasks.”
In IUI 2007.

0

1

2

3

4

5

Q1 Q2 Q3

Undecided
Agree
Strongly Agree

Figure 8. User responses to questionnaire items. Questions
are documented in the text

