
RC25028 (W1007-097) July 28, 2010
Computer Science

IBM Research Report

Experiences with a Lightweight Supercomputer Kernel:
Lessons Learned from Blue Gene's CNK

Mark Giampapa1, Thomas Gooding2, Todd Inglett2, Robert W. Wisniewski1

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

2IBM Rochester

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Experiences with a Lightweight Supercomputer Kernel:
Lessons Learned from Blue Gene’s CNK

Mark Giampapa∗ Thomas Gooding+

Todd Inglett+ Robert W. Wisniewski∗

Abstract—The Petascale era has recently been ushered in
and many researchers have already turned their attention to
the challenges of exascale computing[2]. To achieve petascale
computing two broad approaches for kernels were taken, a
lightweight approach embodied by IBM Blue Gene’s CNK, and
a more fullweight approach embodied by Cray’s CNL. There
are strengths and weaknesses to each approach. Examining the
current generation can provide insight as to what mechanisms
may be needed for the exascale generation. The contributions of
this paper are the experiences we had with CNK on Blue Gene/P.

We demonstrate it is possible to implement a small lightweight
kernel that scales well but still provides a Linux environment and
functionality desired by HPC programmers. Such an approach
provides the values of reproducibility, low noise, high and stable
performance, reliability, and ease of effectively exploiting unique
hardware features. We describe the strengths and weaknesses of
this approach.

Index Terms—Lightweight Kernel, Supercomputer, HPC sys-
tem

I. INTRODUCTION

Approaches to HPC operating system kernels differ in
the amount of functionality provided by the kernel. Kernels
that provide less than full functionality are typically referred
to as lightweight. Traditional wisdom viewed such kernels
as lacking significant function and providing an unfamiliar
programming environment. Supporting this notion were previ-
ous generation kernels such as Catamount[19] (from Sandia,
UNM, and Cray) for Cray supercomputers and IBM’s CNK
for Blue Gene/L[14], [23].

There are two approaches to get software to scale well to
large supercomputers. It is possible to start with an existing
software base, analyze its scalability bottlenecks, fix them, and
iterate. Alternatively, a new code base can be designed from
the beginning to scale to large numbers of nodes. This was the
approach for the kernel on Blue Gene/L and Catamount. The
current generation instantiations of Blue Gene/P’s CNK[17],
CNW[12], and Kitten[3] and Palacios[22], [21] maintain the
scalability philosophy, but provide more functionality and
are dispelling the notion that a lightweight kernel has to be
lightweight on functionality.

In June 2007 Blue Gene/P became available. The Compute
Node Kernel (CNK) running on BG/P is consistent in design

∗IBM T. J. Watson Research Center. ”The Blue Gene/P project has been
supported and partially funded by Argonne National Laboratory and the
Lawrence Livermore National Laboratory on behalf of the U.S. Department
of Energy, under Lawrence Livermore National Laboratory subcontract no.
B554331.”

+IBM Rochester

philosophy with BG/L’s kernel. It is lightweight, very low
noise, designed to scale to hundreds of thousands of nodes, and
continues to provide performance reproducibility. However, on
BG/P we leveraged open source software to provide a large
range of POSIX semantics and a familiar Linux programming
environment. In addition to leveraging open source software,
much of the software stack on BG/P is itself open source, see
Figure 1.

Fig. 1. Blue Gene/P Open Source Software Stack

Concerns expressed about the Light-Weight Kernel (LWK)
approach tend to focus on the [lack of] completeness of a
Linux environment. There are different reasons why a Linux
environment is viewed positively. Ordered by decreasing re-
quirements these include: 1) desire to run standard applications
out-of-the-box, 2) ability to work in an open source environ-
ment and leverage the pool of people familiar with the Linux
model, 3) desire for a familiar runtime environment, pthreads,
glibc, etc., 4) ability to make standard Posix system calls. We
will denote providing a standard Linux code base running on
a compute node with all functionality allowing applications to
run out-of-the-box, as a Full-Weight Kernel (FWK) approach.
A common distinguishing characteristic of LWKs it that they
set up resources that are then passed to the application to use
directly, while FWKs tend to maintain ownership.

Although Linux provides advantages, from a research per-
spective it does not allow as much flexibility or ease of explo-
ration. Thus, for researchers wanting to explore the effects of
different kernel policies on HPC applications, CNK or Kitten
provides a more easily modifiable base. Further, the Linux
community has not eagerly embraced HPC patches, while they
fit well into CNK or Kitten. The downside of exploring HPC
innovations in an LWK is that all applications may not run out-
of-the-box and thus it may be more difficult understanding the
benefits of an idea on a particular application of interest. In

addition to the research advantages of being unencumbered by
the Linux model and weight, an LWK approach offers other
advantages:

1) High performance: the focus of an LWK is on perfor-
mance. System design involves tradeoffs. LWKs tend to
choose the high performance path, while FWKs tend to
focus on generality

2) Low noise and performance stability: an LWK approach
provides a low noise environment with stable application
performance facilitating optimization.

3) Ability to work with partial or broken hardware: bring-
ing up a new chip is challenging. For supercomputer
vendors who innovate with hardware, a simple small
kernel to bring up a new chip offers a more controllable
environment, allowing quick work-arounds to hardware
bugs, and facilitates testing.

4) Reproducibility: related to the previous item, CNK pro-
vides a cycle-by-cycle reproducible environment critical
to debugging within a chip and diagnosing problems
across 100,000s of nodes.

5) Ability to customize to unique hardware features and
system software requirements: An LWK is nimble, al-
lowing it to be easily modified to leverage unique hard-
ware for HPC applications, and to provide customized
features for the system software to increase performance.

We chose to continue the LWK approach on Blue Gene/P.
We do, however, recognize the value of having a Linux-like
environment. By leveraging open source software components,
CNK on BG/P provides a Linux-like environment while main-
taining the above LWK advantages.

There are advantages and disadvantages to both LWKs and
FWKs. The goals and contributions of this paper are not to
argue that the community should pick one over the other, but
to

• 1a: describe the benefits new chip bringup derives from
a self-designed and fully-controllable LWK that have not
been previously documented,

• 1b: describe design features of the BG/P CNK that were
not included in the BG/L CNK[23]

• 2a: detail the advantages of using an LWK that would be
difficult to achieve on an FWK Linux code base, and

• 2b: detail the advantages of using an FWK that are
difficult to achieve with an LWK approach, and

• 3: dispel the notion that an LWK of necessity lacks Linux
functionality, and

• 4: describe how we will extend CNK for next-generation
machines with higher core and thread counts.

The rest of the paper is structured as follows. We start
by setting our work in context by describing related work
in Section II. In Section III we address contribution 1a by
describing the technology we employed to help early debug-
ging and reproducibility. Section IV addresses contributions
1b and 3 and describes how we leverage open source software
and provide a Linux-like environment with CNK. Although a
design and experiences paper, we present results in Section V
from two perspectives: a description of the broad range of
applications that can run on CNK to address contribution 3,

and we show the low noise and performance benefits both
in terms of absolute and stable performance to address 2a.
We address contribution 2b in Sections VI and VII where we
describe what from a standard Linux is not available under
CNK, and We address 4 in Section VIII where we discuss
CNK’s extended thread affinity model and the challenge it
presents in maintaining the LWK design philosophy. We
conclude in Section IX.

II. RELATED WORK

The two important aspects of our work are providing
a lightweight design focusing on low noise and ability to
customize to specific hardware and HPC applications’ needs,
and providing a familiar Linux programming environment for
the application. Work focusing on a lightweight design at
Sandia and the University of New Mexico has been ongo-
ing for well over a decade[25]. That collaboration produced
operating systems for several top computer systems including
the Catamount[19] operating system that is part of the Red
Storm[6] project. Catamount was designed to be lightweight
to facilitate scalability. Its strategy of providing only the
features necessary to support the application, and then giving
control of the processor and hardware to the application, is
consistent with CNK’s implementation and yields a very low-
noise kernel. On BG/P we enriched the operating environment,
providing more flexibility and functionality, by leveraging and
integrating Linux code e.g., glibc, NPTL. On-going work on
Kitten[3] in combination with Palacios[22], [21] has similar
goals of providing a much richer environment that more easily
supports existing codes.

Another approach, taken by ZeptoOS[10], is to start with
a Linux image and make modifications such as reserving
memory during boot before Linux accesses it, and removing
auxiliary daemons to reduce the noise. By doing so, ZeptoOS
can study operating system issues for petascale architectures
with 10K to 1M CPUs. A similar study undertaken by Shmueli
et al.[26] looked at the issues that caused Linux not to
scale to 10s of 1000s of nodes. They too observed that by
modifying the memory management system of Linux, reducing
the number of daemons, and synchronizing the remaining
daemons, it was possible to get Linux to scale. Both these
approaches inherit the structure and algorithms of Linux,
and though they can be modified, Linux is a moving target
and is not focused on the high-end HPC space. These types
of solutions offer a viable approach to meet the needs of
many HPC applications. We faced the additional challenge of
providing a cycle-reproducible environment for chip bringup
capable of running on partial or broken hardware. This would
be challenging with Linux.

Other groups have taken the approach of providing a full-
feature Linux allowing programs to run out-of-the-box. Both
SGI’s Altix[7] ICE Pleiades SUSE-based Linux machine in-
stalled at NASA[5], and Cray’s CNL[18], [27] on Jaguar take
this approach. The goal behind a full Compute-Node Linux
(CNL) approach is to provide the rich set of operating system
services and system calls that users and developers expect, and
that their applications may require. These groups provide this

functionality by reducing daemons and working on memory
allocation issues, but try to upstream their work so the end
system can be built by config options. The Linux commu-
nity is not always receptive to all the changes needed, so
sometimes this approach also requires additional patches. This
approach also tends not to be as performance reproducible as a
lightweight approach demonstrated by application groups[11].
As we discussed in the introduction, each approach is a viable
alternative and neither is necessarily superior to the other.
Exploration along both paths is healthy for the community
as learning from the other approach strengthens each.

Although not specifically targeted for supercomputers, the
L4 Microkernel[4] provides an efficient lightweight microker-
nel on which addition operating service can be constructed.
The microkernel itself shares many aims with an LWK
approach. Another related project has been to get Plan 9
running on supercomputers[16]. This approach exposes the
power of a supercomputer to applications allowing user-mode
and kernel-mode components to be interchanged, and with
services provided by these components able to be used by
the application transparently whether the components are local
or remote. The approaches provide different and potentially
useful design points. As the HPC community progresses from
petascale to exascale, it is likely combinations of aspects from
many of these approaches will be useful.

III. USING CNK FOR SOC CHIP DESIGN AND BRINGUP

In this section we describe experiences we had using CNK
as an active participant in the design of our BG/P chip and
our experience with the critical role it played during chip
bringup. While this primarily addresses contribution 1a, it also
implicitly provides support for 2a.

The Blue Gene family of supercomputers utilizes System-
On-a-Chip (SOC) technology. SOC has reliability advantages,
and enables performance, cost, and packaging optimizations,
but comes with some challenges. We found it valuable to
employ a lightweight kernel approach so that CNK could
participate actively in the Blue Gene/P chip architecture,
design and analysis process, and the logic verification and
debug process. To be engaged in these early stages, CNK was
designed to be functional without requiring the entire chip
logic to be working. The startup and runtime configuration
of CNK contains independent control flags and configuration
parameters that support it running even when many features
of the BG/P hardware did not exist (during design) or were
broken (during chip bringup). Computational kernels of im-
portant applications were extracted and executed in simulation,
enabling performance measurements on a wide range of con-
figurations even before major units of the chip were in place.
As an example, the BG/P memory system contains L2 Cache
configuration parameters that control the mapping of physical
memory to cache controllers and to memory banks within the
cache. CNK enabled application kernels to be run with varied
mappings of code and data memory traffic to the L2 cache
banks, allowing measurement of cache effects, and optimizing
the memory system hierarchy to minimize conflicts. Sensitiv-
ities of applications to cache sizes and prefetching algorithms

were measured. Using these controls also enabled verification
of the logic, and measurement of performance, in the presence
of artificially created conflicts.

A key feature of CNK is the ability to provide perfect,
cycle by cycle, reproducibility on hardware of test cases and
application codes. The CNK kernel low-core leverages aspects
of the Blue Gene/L Advanced Diagnostic Environment[14].
Reproducibility enables debugging the hardware via logic
scans, which are destructive to the chip state. This technique
requires performing logic scans on successive runs, each scan
taken one cycle later than on the previous run. The scans are
assembled into a logic waveform display that spans hundreds
or thousands of cycles, enabling logic designers to see events
leading up to the problem under investigation.

CNK support for reproducibility requires that the kernel be
able to tolerate a chip reset at any point, and be able to restart
identically from that state each time. The only persistent state
that exists in a BG/P chip is located in DRAM during Self-
Refresh. CNK prepares for full reset by performing a barrier
over all cores, rendezvousing all cores in the Boot SRAM,
flushing all levels of cache to DDR, placing the DDR in self-
refresh, and finally toggling reset to all functional units, which
causes the chip to boot. Upon boot, CNK checks if it has
been restarted in reproducible mode, and if so, rather than
interacting with the service node, initializes all functional units
on the chip and takes the DDR out of self-refresh. Following
those steps, CNK runs through its initial startup sequence to
reinitialize all critical memory contents. The number of cycles
that CNK can run in reproducible mode is bounded only by
the point at which external I/O becomes necessarily.

BG/P provides “Clock Stop” hardware that assists the kernel
in stopping on specific cycles. A challenge with this hardware
is that it only supports a single chip, and thus debugging a
communication bug that spans multiple chips is difficult. To
overcome this problem, the CNK reboot process was modified
to use the BG/P Global Barrier network to coordinate reboots
across multiple chips. Across these reboots intended to be
multichip reproducible, the barrier network was set to remain
active and configured, but special code ensured a consistent
state in all arbiters and state machines involved in the barrier
network hardware. This allowed one chip to initiate a packet
transfer on exactly the same cycle relative to the other chip
that was used to capture logic scans.

There are many bugs encountered when bringing up a new
chip. As an example, we describe a bug where the above
capabilities proved immensely helpful. In one area of the
chip there was a borderline timing bug whose manifestation
was dependent both on manufacturing variability and on local
temperature variations or electrical noise during execution. The
bug thus did not occur on every chip, nor did it occur on every
run on a chip that had the potential to exhibit the problem.
Consistent re-creation of the problem therefore proved elusive,
and its nature prevented recreating it in simulation. One piece
of evidence that lead to the bug being tracked down was wave
forms (hardware traces) gathered on reproducible runs across
multiple chips, and using those to determine characteristics
of a chip at the point it diverged from the expected cycle-
reproducible run.

Another important aspect of a lightweight approach mani-
fests itself during chip design. During chip design the VHDL
cycle-accurate simulator runs at 10HZ. In such an environ-
ment, CNK boots in a couple of hours, while Linux takes
weeks. Even stripped down, Linux takes days to boot, making
it difficult to run verification tests. The examples in this
section illustrate the advantages we garnered with CNK’s
reproducibility; these would be more difficult to achieve with
non-lightweight approaches.

IV. THE CNK LINUX ENVIRONMENT

As described in the introduction, keeping CNK small and
lightweight offers advantages. However, a trend in HPC
applications over the last decade has been towards more
complex applications requiring more functionality from the
operating system environment. As Linux has gained broader
acceptance in the HPC space, more applications are written
assuming a Linux environment. To combine the objectives
of a lightweight kernel, more functionality, and a Linux
environment, we leveraged components from the open source
community such as glibc, pthreads, etc., and layered them
on top of CNK. Although work was needed to provide this
integration, it was not significantly more than providing our
own proprietary limited-functionality libraries, threading, etc.
Once we provided the base layer of support for Linux packages
in CNK, additional Linux functionality was also available. A
strategy that leverages Linux is affected when modifications
are made in the code base. The one advantage of drawing the
line between glibc and the kernel, is that that interface tends
to be more stable, while internal kernel interfaces tend to be
more fluid. In this section we describe the three key areas
of support, namely file I/O, runtime environment, including
threading and dynamic linking, and memory management that
are part of CNK’s base layer of support.

A. File I/O

In previous work[23] we described how we achieved I/O
scalability on BG/L. The strategy we took on BG/P reduced
the complexity of maintaining POSIX semantics and increased
the performance and scalability of I/O. A key difference from
BG/L is that on BG/P each MPI process has a dedicated I/O
proxy process, and each thread within the MPI process has
a dedicated thread within the I/O proxy process. As with
BG/L, the offload strategy performs aggregation allowing a
manageable number of filesystem clients, and reduces the
noise on the compute nodes. In this section, we describe the
details of how I/O offload works on BG/P

When an application makes a system call that performs I/O,
CNK marshals the parameters into a message and “function-
ships” that request to a Control and I/O Daemon (CIOD)
running on an I/O node. For example, a write system call
sends a message containing the file descriptor number, length
of the buffer, and the buffer data. As illustrated in Figure 2,
CIOD retrieves messages from the collective network and
directs them to an ioproxy program using a shared buffer.
Each ioproxy process is associated with a specific process on
a compute node. The ioproxy’s filesystem state mirrors the

CNK process’s state (e.g., file seek offsets, current working
directory, user/group permissions). The ioproxy decodes the
message, demarshals the arguments, and performs the system
call that was requested by the compute node process. When
the system call completes, the results are marshaled and sent
back to the compute node that originated the request.

Fig. 2. The CNK ⇔ CIOD Function-Shipped Protocol

From the Linux perspective, the ioproxies perform standard
I/O operations, e.g., a filesystem operation from CNK behaves
as if it was performed from Linux (although the blocking
of data is different due to the collective network and CIOD
protocol). The calls produce the same result codes, network
filesystem nuances, etc. Additionally, filesystems that are in-
stalled on the I/O nodes (such as NFS, GPFS, PVFS, Lustre)
are available to CNK processes via the ioproxy. Thus, in a
lightweight and low-noise manner, CNK can provide the full
suite of I/O system calls available to Linux.

Our experiences with the I/O offload strategy, and in partic-
ular the 1-to-1 mapping of ioproxies to Compute Node (CN)
processes have been positive. The amount of code required in
CNK to implement the offload is minimal, and running Linux
allows us to easily inherit all of the POSIX semantics.

B. CNK Runtime Support

Unlike on BG/L, on BG/P we had a design objective to
use glibc unmodified. The goal was to unify the toolchains
between a standard Linux software stack and the CNK soft-
ware stack, resulting in less maintenance and better testing
coverage. In this section we describe how we leveraged open-
source implementations to provide the core CNK support for
Linux-compatible threading and dynamic linking.

1) Threading: We examined what it would take to use the
NPTL threading package in glibc on CNK. An investigation
showed it required only a small number of system calls beyond
our current set. A subset of both clone and set tid address
were needed for thread creation (e.g., pthread create). For
atomic operations, such as pthread mutex, a full implementa-
tion of futex was needed. For thread signaling and cancellation,
we needed to implement sigaction. Although we probably
could have had a basic custom threading package implemented
sooner, by leveraging NPTL, CNK provides a full-featured
pthread package that is well understood by application devel-
opers.

This path was not without concerns. One was that Linux
uses clone support for both thread and process creation. We

analyzed the glibc code and determined that glibc uses the
clone system call with a static set of flags. The flags to
clone are validated against the expected flags, but we did
not need to reference the flags elsewhere in the kernel. Other
parameters to clone included the child’s stack and thread local
storage pointers, as well as the child-parent thread IDs. The
glibc library performs a uname system call to determine the
kernel capabilities so we set CNK’s version field in uname to
2.6.19.2 to indicate to glibc that we have the proper support.
For stack creation, glibc uses standard malloc calls to allocate
the storage. Many stack allocations exceed 1MB, invoking the
mmap system call as opposed to brk. However, CNK supports
both brk and mmap, so this is not an issue.

One of the simplifications we made to the threading support
was in the thread scheduler. Unlike Linux and other full-
featured kernels, CNK provides a simple non-preemptive
scheduler, with a small fixed number of threads per core.

2) Dynamic Linking: On BG/P we support Python. Al-
though Python is an interpreted language, it can be extended
via libraries. Traditionally, those libraries are demand-loaded
through dynamic libraries. One option to provide dynamic
linking was to merge the application’s dynamic libraries
outside of the compute nodes as an additional step in job
launch. This would have been simple, but may not have been
practical because dlopen()-type functionality would be needed.
Another option was to support the ld.so dynamic linker from
glibc or implement a dynamic linker similar to it. Similar to
our analysis of NPTL, we determined that ld.so did not need
many system calls in order to achieve functionality, and again
by going this path we provided a more standard and well-
understood solution. Concretely, ld.so needed to statically load
at a fixed virtual address that was not equal to the initial virtual
addresses of the application, and ld.so needed MAP COPY
support from the mmap() system call.

One of the simplifications we made was that a mapped file
would always load the full library into memory, rather than
page-faulting many small pages across the network. We also
decided not to honor page permission settings, i.e., read, write,
or execute, on the dynamic library’s text/read-only data. For
example, applications could therefore unintentionally modify
their text or read-only data. This was a conscious design
decision consistent with the lightweight philosophy. Providing
this permission support would have required dynamic page
misses and faulting pages from across networked storage.
This would have significantly increased complexity of the
kernel and introduced noise. By loading the entire library into
memory at load-time, this OS noise is contained in application
startup or use of dlopen and can be coordinated between nodes
by the application.

C. Memory Management

Most operating systems maintain logical page tables and
allow for translation misses to fill in the hardware page tables
as necessary. This general solution allows for page faults, a
fine granularity of permission control, and sharing of data.
There are, however, costs to this approach. For example, there
is a performance penalty associated with the translation miss.

Further, translation misses do not necessarily occur at the same
time on all nodes, and become another contributor of OS
noise. Another complication arises from the power-efficient
network hardware that does not implement sophisticated page
translation facilities.

To meet performance and simplicity goals, CNK imple-
ments a memory translation mapping that is static for the
duration of the process. A process can query the static map
during initialization and reference it during runtime without
having to coordinate with CNK. In order to keep the mapping
simple, CNK implements the following four address ranges
that are contiguous in physical memory: 1) text (and read-
only data) (.text, .rodata), 2) data (globals) (.bss, .data), 3)
heap and stack, and 4) shared memory.

Fig. 3. CNK Memory Layout

When an application is loaded, the ELF (Executable and
Linkable Format) section information of the application indi-
cates the location and size of the text and data segments. The
number of processes per node and size of the shared memory
region are specified by the user. This information is passed into
a partitioning algorithm, which tiles the virtual and physical
memory and generates a static mapping that makes effective
use of the different hardware page size (1MB, 16MB, 256MB,
1GB) and that respects hardware alignment constraints.

During application execution, memory may be allocated via
the standard brk and mmap system calls. The mmap system
call tracks which memory ranges have been allocated. It also
coalesces memory when buffers are freed, or permissions on
those buffers change. However, since CNK statically maps
memory, the mmap system call does not need to perform any
adjustments, or handle page faults. It merely provides free
addresses to the application. With this strategy, glibc could
be enhanced to perform all of the memory management in
user space, but that would have led to a customized version
of glibc.

A useful memory protection feature is a guard page to
prevent stack storage from descending into heap storage, see
Figure 4. CNK provides this functionality by using the Blue
Gene Debug Address Compare (DAC) registers. The guard
range is determined by the application. The glibc NPTL library
performs a mprotect() system call prior to the clone(). CNK
remembers the last mprotect range and makes an assumption

Fig. 4. Guard Page Functionality in CNK

during the clone syscall that the last mprotect applies to
the new thread. The guard page covering the main thread
is special. It resides on the heap boundary and a memory
allocation performed by another thread could move the heap
boundary. That newly allocated storage could be legitimately
referenced by the main thread. So when the heap boundary is
extended, CNK issues an inter-processor interrupt to the main
thread in order to reposition the guard area.

D. Persistent memory

Data management is becoming increasingly important to
HPC applications as the relative cost of storage bandwidth
to flops increases. A standard HPC data model is for an
application to start with a clean memory slate, load the data
from disk, perform computation, and store the data to disk.
For consecutive applications accessing the same data, this
can add unnecessary overhead. To address this challenge,
on BG/P, we developed a feature that allows an application
to tag memory as persistent. When the next job is started,
memory tagged as persistent is preserved, assuming the correct
privileges. The application specifies the persistent memory by
name, in a manner similar to the standard shm open()/mmap()
methods. One important feature for persistent memory is that
the virtual addresses used by the first application are preserved
during the run of the second application. Thus, the persistent
memory region can contain linked-list-style pointer structures.
The persistent memory could also be used by an application
in a manner similar to ramfs offered by Linux.

V. LOW NOISE, FUNCTIONALITY, AND PERFORMANCE

STABILITY OF CNK

Although this paper focuses on CNK’s design and expe-
riences with it, in this section we provide the performance
results of that design. In particular, we present results demon-
strating that CNK yields very low noise (contribution 2a),
describe a set of applications that run on CNK unmodified
demonstrating (contribution 3), describe the high performance
achieved through CNK’s design by the messaging layers, and
we finish by showing the performance stability of CNK on
sample applications (contribution 2a). Throughout the section
we describe the features of CNK that would be more chal-
lenging on an FWK (contribution 2a).

A. Low Noise

OS jitter or noise in a large parallel system is magnified
when an application synchronizes across a large number of
nodes. Delays incurred by the application at random times
each cause a delay in an operation, and at large scale many
nodes compound the delay causing a noticeable performance
impact[24]. There has been a lot of work on understanding
noise and more recent characterizations[13] have described
the salient characteristics of noise that affect applications
performance. Potential techniques to address this problem are
1) coordinate the delays so they are not compounded by scale,
or 2) eliminate the delays. There are limits to how effective the
former is, and its effectiveness is also application dependent.
CNK takes the latter approach.

One way to measure the noise of a kernel is performed
by the FWQ (Fixed Work Quanta) benchmark[8]. This is a
single node benchmark, i.e., no network communication, that
measures a fixed loop of work that, without noise, should take
the same time to execute for each iteration.

The configuration we used for CNK included 12,000 timed
samples of a DAXPY (double precision ax + y linear algebra
routine) on a 256 element vector that fits in L1 cache. The
DAXPY operation was repeated 256 times to provide work
that consumes approximately 0.0008 seconds (658K cycles)
for each sample on a BG/P core. This is performed in parallel
by a thread on each of the four cores of a Blue Gene/P node.

Figures 5 through 7 show the results from running the FWQ
on a BG/P node. The graphs show the number of cycles (Y
axis) it takes to complete a given iteration (X axis). Ideally,
all iterations would take the same number of cycles at the
minimum value of 658,958. The figures plots the cycle times
for each the 12,000 samples. The left graph, Figure 5, shows
the values for Linux, the middle graph, Figure 6, plots the data
for CNK with the same Y axis, and right graph, Figure 7, is
the same data with a considerably zoomed in Y axis to show
detail of the CNK values. The node was running Linux based
on SUSE kernel version 2.6.16. Efforts were made to reduce
noise on Linux; all processes were suspended except for init, a
single shell, the FWQ benchmark, and various kernel daemons
that cannot be suspended.

The minimum time on any core for any iteration was
658,958 processor cycles. This value was achieved both on
Linux and on CNK. The CNK graphs demonstrate the low
noise achievable with an LWK strategy. The maximum varia-
tion is less than 0.006%. For Linux the maximum cycle time
varied by 38,076 cycles on core 0, 10,194 cycles on core 1,
42,000 cycles on core 2 and 36,470 cycles on core 3. This is
variation is greater than 5% on cores 0, 2 and 3.

The impact of noise reduction on application performance
is not necessarily a linear mapping. Small amount of noise
may not affect behavior, while moderate amounts may have
an additive impact. Other work[13] has done a good job
characterizing the impact of noise on application performance.

B. Functionality

One indication of CNK functionality is the applications it
supports. OpenMP-based benchmarks such as AMG, IRS, and

Fig. 5. FWQ for Linux core 0 Fig. 6. FWQ for CNK core 0 Fig. 7. FWQ for CNK core 0 zoomed Y axis

Protocol Latency(µs)
DCMF Eager One-way 1.6
MPI Eager One-way 2.4
MPI Rendezvous One-way 5.6
DCMF Put 0.9
DCMF Get 1.6
ARMCI blocking Put 2.0
ARMCI blocking Get 3.3

TABLE I
LATENCY FOR VARIOUS PROGRAMMING MODELS IN SMP MODE

SPhot run threaded on CNK without modification. The UMT
benchmark also runs without modification, and it is driven by
a Python script, which uses dynamic linking. UMT also uses
OpenMP threads. FLASH, MILC, CPS, Chroma, NEK, GTC,
DOCK5/6, QBOX, MGDC, RXFF, GMD, DNS3D, HYPO4D,
PLB, LAMMPS, and CACTUS are known to scale on CNK
to more than 130,000 cores.

Additional functionality for unique hardware features was
demonstrated in an earlier version of CNK to support the
2007 Gordon Bell Prize for “Kelvin-Helmholtz instability
in molten metals.”[15] CNK was able to handle L1 parity
errors by signaling the application with the error to allow the
application to perform recovery without need for heavy I/O-
bound checkpoint/restart cycles.

C. Achieving High Performance for System Software

Another important metric is how well and with how much
effort other system software can achieve high performance.
A key performance area for HPC software is messaging
performance. Some applications are latency sensitive due to a
reliance on many short messages, while others’ performance
depends on achieving high bandwidth. The Blue Gene DCMF
(Deep Computing Messaging Framework) relies on CNK’s
ability to allow the messaging hardware to be used from user
space, the ability to know the virtual to physical mapping from
user space, and the ability to have large physically contiguous
chunks of memory available in user space. Data taken from
previous work[20] is shown in Table I that illustrates low la-
tency obtained through the use of user space accessibility, and
Figure 8 that shows DCMF achieving maximum bandwidth
by utilizing large physically contiguous memory. These came
effectively for free with CNK’s design and implementation,
but modifying a vanilla Linux, especially to provide large
physically contiguous memory, would be difficult.

Fig. 8. Throughput of rendezvous protocol for near-neighbor exchange

D. Performance Stability

To demonstrate performance stability we ran 36 runs of
LINPACK on Blue Gene/P racks. Each rack produced 11.94
TFLOPS. The execution time varied from 16080.89 seconds
to 16083.00 seconds, for a maximum variation of 2.11 seconds
(.01%) over a 4 hour and 28 minute run and a standard
deviation of less than 1.14 seconds. Another example of
repeatability is demonstrated by repeated execution of a
benchmark under CNK compared to the same benchmark
under Linux. This experiment measured the performance of
the mpiBench Allreduce test, which is a test in the Phloem
benchmark suite[9]. The test measured the time to perform
a double-sum allreduce on 16 Blue Gene/P nodes over one
million iterations. Over this time the test produced a standard
deviation of 0.0007 microseconds (effectively 0, likely a
floating point precision error).

A similar test was performed with Linux on Blue Gene/P
I/O nodes interconnected by 10Gbps ethernet. Background
daemons where suspended as allowed, but NFS was required
to capture results between tests. This test was the same double-
sum allreduce, but executing on only 4 Blue Gene/P I/O nodes
over 100,000 iterations. The Linux test was executed twenty
times and produced a standard deviation of 8.9 microseconds.

Whether or not this level of variance has a significant
application impact would need more study, but application
groups[11] have found that BG/P’s performance stability al-
lowed them to more easily and more effectively tune their
applications

VI. WHAT IS NOT IN CNK

CNK is designed to be simple. We have consciously limited
the functionality of CNK to stay consistent with our scalability

design philosophy. This philosophy makes kernel implemen-
tation feasible for a small team and improves its reliability.
Simplification is performed across the major components of
the kernel. However, there are applications for which the
functionality is not sufficient and need a more complete set
of Linux functionality. In this section we describe what is not
in CNK and in the next section describe the pros and cons
of the boundaries we have drawn and describe how easy or
difficult it is to achieve a given functionality in Linux and
CNK.

A. I/O Subsystem

The I/O subsystems in CNK are virtually non-existent.
This is accomplished by function shipping the requests to a
dedicated I/O node. Correct semantics are difficult to achieve
in POSIX I/O and would take considerable time to stabilize if
they were implemented in CNK. This is true for both network
filesystems and standard networking protocols such as TCP/IP.
Delegating the filesystem to a separate Linux node means
that complex problems such as filesystem caching, readahead,
writebehind, client consistency, and scalability need not be
implemented in CNK. CNK also does not need to provide
a virtual filesystem layer or module loading layer to support
such filesystems, nor do filesystems need to be ported to CNK.
Linux provides this functionality and leverages a large user
and development community for finding and fixing problems.
Also, a driver layer for the Blue Gene specialized network
hardware is unnecessary because this hardware is fixed on
Blue Gene. Although this does keep CNK simple, there are
some consequences. For example, to mmap a file, CNK copies
in the data and only allows read-only access.

B. Memory Management

Much of CNK’s memory management architecture is driven
by the goal of providing static TLB mapping for an applica-
tion’s address space. CNK does not implement demand paging,
or copy-on-write, and as a filesystem is not implemented by
CNK there is no need to implement a unified page cache
between the virtual memory manager and filesystem. Further,
CNK has simplified its own use of memory by placing strict
limits on sizes of kernel data structures, allocating all of
its structures statically. CNK does not maintain a heap of
intermingled data structures throughout physical memory. This
simple strategy for memory management makes debugging
memory corruption problems easier, and makes protection of
DMA directly programmed by application code straightfor-
ward.

C. Scheduling

Thread scheduling under CNK is non-preemptive with fixed
affinity to a core. The “scheduler” has a simple decision
limited to threads sharing a core when a thread specifically
blocks on a futex or explicitly yields. Sharing a core is rare in
HPC applications so generally a thread enters the kernel only
to wait until a futex may be granted by another core rather than
yield to a thread on the same core. I/O function shipping is

made trivial by not yielding the core to another thread during
an I/O system call. This has the side effect of never switching
kernel context during execution of a system call on a kernel
stack. Instead, the scheduler only has to consider the case of
context switching user state.

VII. PROS AND CONS FOR HPC APPLICATIONS

The design point we chose for CNK has its advantages and
disadvantages. In this section we describe the pros and cons
we have had from our experiences with CNK and then how
easy or difficult it is to achieve a given functionality in Linux
and CNK.

A. Pros for HPC Applications

Many of the design simplifications in CNK enhance the
performance of HPC applications without requiring applica-
tion effort. CNK provides strict processor affinity for processes
and threads. This avoids unnecessary context switch overhead
and improves L1 cache use. As this is common in HPC
application, this “limitation” rarely has a negative impact,
and instead relieves the application of affinity responsibility.
Similarly, CNK pins memory with huge TLB entries to avoid
TLB misses. Using huge TLB pages in Linux is often a non-
trivial enhancement to an application, especially if the huge
pages are used to back the application code or stack or are
requested on-the-fly, for example for messaging. CNK requires
no application modification to take advantage of the large
pages. Linux has become easier over time, but still requires
tuning and is not automatic. Another advantage of the memory
layout provided by CNK is that nearly the full 4GB 32-bit
address space of a task can be mapped on a 32-bit processor.
Linux typically limits a task to 3GB of the address space due
to 32-bit limitations. While this was on issue on BG/P, on next
generation Blue Gene hardware, with 64-bit processors, it will
no longer be.

Simple memory mappings allow CNK applications to di-
rectly drive the DMA torus hardware without concern of
corrupting the kernel. This results in simplified hardware and
improved DMA latency because a special I/O memory man-
agement unit and the related system call overhead for setting
up communication windows is unnecessary. Function-shipping
the I/O system calls provides up to two orders of magnitude
reduction in filesystem clients. Finally, the simplicity of CNK
allows it to initialize quickly and makes it easier to provide
cycle reproducible debugging.

B. Cons for HPC Applications

There are downsides to the simplification of CNK. The strict
affinity enforced by the scheduler does not allow applications
to use threads in creative ways. For example, it is not possible
to run low-priority background threads while a primary thread
performs compute work. CNK also does not allow a node
to be divided non-uniformly. MPI cannot spawn dynamic
tasks because CNK does not allow fork/exec operations. Some
applications overcommit threads to cores for load balancing
purposes, and the CNK threading model does not allow

Description CNK Linux

Large page use easy medium
Using multiple large page sizes easy medium1

Large physically contiguous memory easy easy - hard2

No TLB misses easy not avail
Full memory protection not avail easy
General dynamic linking not avail easy
Full mmap support not avail easy

Predictable scheduling easy medium
Over commit of threads easy - not avail3 medium
Performance reproducible easy medium - hard
Cycle reproducible execution easy not avail

TABLE II
EASE OF USING DIFFERENT CAPABILITIES IN CNK AND LINUX

that, though Charm++ accomplishes this with a user-mode
threading library.

In order to provide static mapping with a limited number
of TLB entries, the memory subsystem may waste physical
memory as large pages are tiled together. The dynamic linker
does not protect read-only and text sections of dynamic
libraries loaded after the application starts. The lack of a
unified page cache means that pages of code and read-only
data can not be discarded when memory pressure is high. The
lack of a page cache also means that dynamic objects are not
shared between tasks that physically share a node.

Other disadvantages include that CNK divides memory on
a node evenly among the tasks on the node. If one task’s
memory grows more than another, the application could run
out of memory before all the memory of a node was consumed.
Also, CNK requires the user to define the size of the shared
memory allocation up-front as the application is launched.
Finally, the application cannot take advantage of the scripting
environment offered by a full featured operating system; an
application cannot be structured as a shell script that forks off
related executables.

C. Ease of functionality for CNK versus Linux

In this section we combine and summarize the previous
sections on design and experience. Table II lists a series
of mechanisms, capabilities, and requirements that HPC
applications may be interested in using. Columns two and
three indicate how difficult it is to use that feature in each
of the systems: easy, medium, or hard. For the features that
are listed as not-avail in Table II, Table III indicates the
difficulty of implementing them in that OS. The Linux that
was evaluated was from the 2.6.30 generation, and CNK is
BG/P’s CNK.
1multiple page sizes just became available in Linux
2it is easy to request, but depending on memory layout may not be granted
3BG/P introduced three threads per core in November, next generation CNK

is planned to have a variable number available at compile time

VIII. MOVING FORWARD WITH CNK

We have been working on the software design for the next
generation machine over the last couple years. For the kernel,
we plan to continue with the LWK approach with CNK. Given

Description CNK Linux

Large physically contiguous memory avail medium
No TLB misses avail hard
Full memory protection medium avail
General dynamic linking medium avail
Full mmap support hard avail

Cycle reproducible execution avail medium

TABLE III
EASE OF IMPLEMENTING CAPABILITIES IN CNK AND LINUX

the increasing demands on the system software ecosystem, this
decision was made only after considerable examination. Given
the trends in multicore and multithreaded architectures, as
indicated above, we introduced the capability to have multiple
software threads per core on BG/P. To handle this we are
moving to an extended thread affinity model. This model
provides a good example of the tensions, which we are always
balancing, between the LWK philosophy and the desire to
support general computing models.

A. Extended Thread Affinity Control

Until recently on BG/P, CNK allowed only one software
thread (pthread) per core. In preparation for the next generation
machine, this was relaxed to multiple pthreads per core.
However, the assignment of cores to processes is set statically
at job launch time, and a given core executes only on behalf
of the process to which it is assigned. This static assign-
ment clashes with a programming model in which programs
alternate between phases with many processes executing in
parallel and phases with a few processes using many threads.
A specific example is an application that starts with n MPI
tasks per node, one per core, and then enters an OpenMP
phase in which one of the processes wants to use all the
cores. Under Linux this can easily be accommodated through
standard threading mechanisms.

The exploration of possible thread-affinity extensions in
CNK is representative of other design explorations and illus-
trates how maintaining an LWK philosophy while providing
familiar functionality can be challenging. Supporting a fully
general thread-affinity model would prevent the static TLB
mapping that is a hallmark of the LWK design, and would
lead to questions of ownership for such hardware subsystems
as the messaging unit. Instead we plan an extension that
allows a given core to alternate between executing a pthread
from its assigned process and executing a pthread from a
single designated ”remote” process. By partnering with and
understanding the needs of our application developers, we
were able to put together a thread-affinity extension that
supports the actual usage models that programmers need while
staying within the design philosophy of CNK.

IX. CONCLUSIONS

We described the salient new features of BG/P’s CNK and
our experiences with them. We showed that we could keep
the lightweight kernel approach, but still provide a Linux-like
operating environment. We did this by leveraging open source
Linux components including glibc and the NPTL threading

package, and function shipping I/O requests from the compute
nodes to the I/O nodes. We demonstrated the resultant kernel
has extremely low noise. It is reliable and scales well to
hundreds of thousands of nodes.

The interesting exploration of lightweight, Linux-based, or
other approaches will continue, with advances in one approach
positively benefiting the others. Our solution marks another
interesting point in the space of possible solutions. Because
CNK’s code base is open source[1], it provides the opportunity
for the community to leverage and participate in the on-going
effort. Whether the exascale answer will be an LWK or FWK
or more likely a mixture remains to be seen. The description
in this paper serves to bring forward tradeoffs that will be
important as the system’s community investigates the needs
of exascale computing.

ACKNOWLEDGMENTS

A kernel development project is a large undertaking, and
requires the efforts of many people. We would like to thank
many of the other developers who have contributed to the
kernel including John Attinella, Michael Mundy, Thomas
Musta, Bryan Rosenburg, Richard Shok, and Andy Tauferner.
We would like to thank Roy Musselman and the performance
team for their help with gathering the FWQ and application
data. Thank you to Sameer Kumar and the messaging team
for the DCMF performance data. We would also like to thank
Philip Heidelberger and Martin Ohmacht for their help and
insight with many of the low-level issues and performance.
Thank you to Bryan Rosenburg for his time in editing; his
many suggestions have improved the paper’s quality and
readability. Thank you to Craig Stunkel for his careful read of
this document.

REFERENCES

[1] Argonne’s Blue Gene/P open source repository. http://wiki.bg.anl-
external.org/index.php.

[2] International exascale software project. www.exascale.org.
[3] Kitten lightweight kernel. https://software.sandia.gov/trac/kitten.
[4] The l4 microkernel. http://ertos.nicta.com.au/research/l4/.
[5] NASA’s Pleiades Machine. http://www.nas.nasa.gov/Resources/ Sys-

tems/pleiades.html.
[6] Red Storm web page. http://www.sandia.gov/ASC/redstorm.html.
[7] SGI’s Altix Family. http://www.sgi.com/products/servers/altix/.
[8] The FTQ/FWQ Benchmark at LLNL.

https://asc.llnl.gov/sequoia/benchmarks/ FTQ summary v1.1.pdf.
[9] The Phloem Benchmark at LLNL. https://asc.llnl.gov/sequoia/ bench-

marks/PhloemMPIBenchmarks summary v1.0.pdf.
[10] ZeptoOS: The small linux for big computers.

http://www.mcs.anl.gov/research/projects/zeptoos/.
[11] S. Alam, R. Barrett, M. Bast, M. Fahey, J. Kuehn, C. McCurdy,

J. Rogers, P. Roth, R. Sankaran, J. Vetter, P. Worley, and W. Yu. Early
evaluation of BlueGene/P. In Supercomputing, 2008.

[12] R. Brightwell. Catamount N-Way Lightweight Kernel.
http://www.sandia.gov/mission/ste/r&d100/2009winners/CNWFinal.pdf.

[13] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application
sensitivity to os interference using kernel-level noise injection. In
Supercomputing, 2008.

[14] M. E. Giampapa, R. Bellofatto, M. A. Blumrich, D. Chen, M. B.
Dombrowa, A. Gara, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V.
Kopcsay, B. J. Nathanson, B. D. Steinmacher-Burow, M. Ohmacht,
V. Salapura, and P. Vranas. Blue gene/l advanced diagnostics envi-
ronment. IBM Journal for Research and Development, 49(2), 2005.

[15] J. N. Glosli, K. J. Caspersen, J. A. Gunnels, D. F. Richards, R. E.
Rudd, and F. H. Streitz. Extending stability beyond cpu millennium
a micron-scale atomistic simulation of kelvin-helmholtz instability. In
Supercomputing, Reno, November 2007.

[16] E. V. Hensbergen, C. Forsyth, J. McKie, and R. Minnich. Petascale Plan
9 on Blue Gene. In Usenix 2007, Santa Clara, CA, June 17-22 2007.

[17] IBM Blue Gene Team. Overview of the Blue Gene/P project. IBM
Journal for Research and Development, 52(1/2), January 2008.

[18] L. S. Kaplan. Lightweight Linux for high-performance comput-
ing. Linux World.com, http://www.linuxworld.com/news/2006/120406-
lightweight-linux.html, December 2006.

[19] S. Kelly and R. Brightwell. Software architecture of the lightweight
kernel, Catamount. In Cray Users’ Group Annual Technical Conference,
Albuquerque, New Mexico, June 2005.

[20] S. Kumar, G. Dozsa, G. Almasi, D. Chen, M. E. Giampapa, P. Hei-
delberger, M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith,
and C. Archer. The deep computing messaging framework: Generalized
scalable message passing on the Blue Gene/P Supercomputer. In ICS,
June 2008.

[21] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell. Palacios: A
new open source virtual machine monitor for scalable high performance
computing. In IPDPS, April 2010.

[22] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
S. Jaconette, M. Levenhagen, R. Brightwell, and P. Widener. Palacios
and Kitten: High performance operating systems for scalable virtualized
and native supercomputing. Technical report, EECS Northwestern
University, July 2009.

[23] J. Moreira, M. Brutman, J. Castanos, T. Engelsiepen, M. Giampapa,
T. Gooding, R. Haskin, T. Inglett, D. Lieber, P. McCarthy, M. Mundy,
J. Parker, and B. Wallenfelt. Designing a highly-scalable operating
system. In Supercomputing, November 2006.

[24] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q. In Supercomputing 2003, November 2003.

[25] R. Riesen, R. Brightwell, P. G. Bridges, T. Hudson, A. B. Maccabe,
P. M. Widener, and K. Ferreira. Designing and implementing lightweight
kernels for capability computing. Concurrency and Computation:
Practice and Experience, 21(6):793–817, April 2009.

[26] E. Shmueli, G. Almasi, J. Brunheroto, J. Castanos, G. Dozsa, S. Kumar,
and D. Lieber. Evaluating the effect of replacing CNK with Linux on the
compute-nodes of Blue Gene/L. In 22nd ACM International Conference
on Supercomputing, Island of Kos, Aegean Sea, Greece, June 7-12 2008.

[27] D. Wallace. Compute Node Linux: Overview,
progress to date & roadmap. http://www.nccs.gov/wp-
content/uploads/2007/08/wallace paper.pdf, 2007.

