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Abstract. Monitoring plays a key role in today’s business environment, as large
volumes of data are collected and processed on a regular basis. Ability to detect
onset of new data regimes and patterns quickly is considered an important compet-
itive advantage. Of special importance is the area of monitoring product reliability,
where timely detection of unfavorable trends typically offers considerable opportu-
nities of cost avoidance. We will discuss detection systems for reliability issues built
by combining Monte-Carlo techniques with modern statistical methods rooted in
the theory of Sequential Analysis, Change-point theory and Likelihood Ratio tests.
We will illustrate applications of these methods in computer industry.
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1 Introduction

This paper will focus on problems of data monitoring related to so-called
time-managed lifetime data streams that are frequently encountered in re-
liability applications. Specifically, consider a sequence of lifetime tests cor-
responding to points in time t = 1,2,.., T. In what follows we will refer to
these points as ”vintages”. They could, for example, correspond to dates at
which batches of items were produced; as time goes by, these batches generate
lifetime data. In other words, data corresponding to a given vintage can be
viewed as an outcome of a lifetime test (Fig. 1). The results pertain to a spe-
cific point in time (typically, time at which the table has been compiled). For
example, in Fig. 1 the table was compiled on 2007-08-02; however, the most
recent vintage for which data is available is 2009-07-21. The lifetime tests
corresponding to a given vintage typically have a Type-I censoring structure.
For example, for the first vintage the number of items on test is 120; of these,
6 items failed, 2 items got right-censored in midstream, and the remaining
112 items survived till the present point in time and thus are type-1 censored.
The table shows a distinct triangular structure due to the fact that for very
recent vintages only results for relatively short time horizons are available.

In many applications the key problem is one of detection: one is interested
in statistical methodology that enables rapid detection of unfavorable process
conditions that manifest themselves through the data of type shown in Fig.
1. In essence, the situation here is similar to one handled by conventional
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Fig. 1. A sequence of lifetime tests corresponding to range of vintages (2007-06-15,
2009-07-21), as compiled on 2009-08-02.

Statistical Process Control (SPC) methods: one would like to detect rapidly
unfavorable changes in parameters of the process driving lifetime data, while
keeping the rate of false alarms at some fixed low level. However, the con-
ventional SPC performance measures are not applicable in situations of type
described in Fig. 1 because the central premise of the SPC setup (that re-
quires the observations corresponding to a given time to remain unchanged
as the data is compiled for subsequent points in time) is no longer valid. For
example, for the first vintage in Fig. 1 one could expect to see additional fail-
ures and censored points as we compile data for subsequent points in time.
So, if a given characteristics of a vintage is represented as a point on a control
chart, then this point will continue to change as the new points on the control
chart are coming online. Furthermore, this point will continue to change even
if there are no new data points (vintages) coming online. For example, if we
recompile the data in Fig.1 on the next day (2009-08-03), we could end up
with a situation where the last vintage for which the data is available is the
same as before, i.e., 2009-07-21 (yet, the data for every vintage would need
to be adjusted). Therefore, the concept of Run Length would not be suitable
for assessing the performance of this type of control charts. We call such
setup as ”control charting with dynamically changing observations (DCO)”
to emphasize the fact that the previous data points on a control chart would
continue to change as the new data comes in.

Another practical aspect one has to deal with is the ”time-management”
of the lifetime data: the data corresponding to older vintages is likely to be-
come either gradually underpopulated (especially with respect to items with
longer lifetimes) or become unavailable altogether because of the administra-
tive constraints of the data management. For example, if a machine carrying
a 3-year warranty is introduced into the field at some point in time (corre-
sponding to its ”vintage”), then one could expect to find in the database only
lifetimes occurring in the first 3 years of service. Information on subsequent
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failures would typically be either unavailable or unreliable, in light of missing
infrastructure for keeping track of censoring and failure events beyond a 3-
year horizon. As the vintage becomes too ”old”, it could also disappear from
the ”rolling” database completely - another artifact of a standard warranty
data management policy. For example, after recompiling the data in Fig.1 on
the next day (2007-08-03), one could find that the data for the first vintage
2007-06-15 is no longer available.

The computational challenges in the phases of design, analysis and im-
plementation of this type of control schemes are substantial. In conventional
control charting one can typically convert the sequence of observations to a
sequence of control schemes (e.g., Cusum or EWMA) that obey some form of
a Markov property. This enables one to design and analyze monitoring pro-
cedures by taking advantage of the theory of Markov Chains (though more
complex cases still require Monte Carlo approach). In contrast, in the case
of schemes with DCO, no such Markovian representation is apparent and we
have to rely almost exclusively on simulation.

A number of articles and books have been published that deal with vari-
ous aspects of monitoring lifetime data. For example, likelihood ratio meth-
ods for monitoring parameters of lifetime distributions in non-DCO setting
were discussed in Olteanu and Vining (2009) and Sego et al. (2009). Several
methods for monitoring warranty data by using Shewhart-type procedures
are discussed in Dubois et al. (2008), Wu and Meeker (2002). Steiner and
McKay (2000, 2001) discuss methods and applications related to monitoring
of type I censored data. This type of data (in conjunction with an EWMA
monitoring procedure and Weibull observations) was considered in Zhang and
Chen (2004). Analysis of warranty claims data is discussed in Blischke and
Murthy (2000), Doganaksoy et al. (2006), Kalbfleisch et al. (1991), Lawless
(1998) and Lawless and Kalbfleisch (1992). Methods for analysis of failure
data based on marginal counts of warranty claim (and under incomplete in-
formation about items introduced into the field) are discussed in Karim et
al. (2001). Finally, methods based on change-point analysis for hazard curves
have also be considered by a number of authors, e.g., Patra and Dey (2002).

In the next section we will present the basic approach to design and analy-
sis of non-DCO control schemes. In Sec. 3 we will focus on computational and
Monte-Carlo issues. In Sec. 4 we discuss the problem of detecting wearout
conditions.

2 Basic Approach

The base methodology is based on using a version of the weighted Cusum
approach, e.g. see Yashchin (1993). The key steps are as follows:

1. Sort data in accordance with vintages of interest. This will make sure that
the control scheme is tuned to detect unfavorable changes that happen on
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the time scale of these vintages. Typically, several representations of type
shown in Fig. 1 are available for the same data collection. For example, a
given component of a PC can be associated with a component manufac-
turing vintage, machine ship vintage or calendar time vintage. If one is
interested, for example, in detection of a problem at the component man-
ufacturer’s then the vintages in Fig. 1 should correspond to component
manufacturing dates. If one is interested in detection of problems at the
PC assembly plant then one should organize Fig. 1 so that the vintages
correspond to machine ship dates. To detect changes related to introduc-
tion of a new version of an operating system one should construct Fig. 1
data with vintages corresponding to calendar time (i.e., a row in Fig. 1
represents machines that were in the field at the respective date).

2. Introduce time scale transformation that corresponds to reference haz-
ard behavior, so as to reduce the number of monitored parameters. For
example, let us suppose that one anticipates a hazard curve that is pro-
portional to some known function h0(t) exhibiting complex behaviour
(for example, U-shaped). Then it may be beneficial to switch from the
natural time scale t to a scale determined by

∫ t

0
h0(z)dz. Data presented

on such a scale would generally be easier to model parametrically: for
example, if the anticipated hazard pattern indeed holds exactly then the
lifetimes on the transformed scale are exponentially distributed. If, on
the other hand, the anticipated pattern holds only approximately then
there is a good possibility that one could model lifetimes through one of
numerous extensions of the exponential law, e.g., Weibull family. In what
follows we will assume that we are already working on a scale where a
relatively simple parametric model applies. For the sake of simplicity, we
will assume that the lifetime distribution is Weibull.

3. For every lifetime distribution parameter (or a function of parameters
of interest, say, λ), establish a sequence of statistics Xi, i = 1, 2, . . . to
serve as a basis of monitoring scheme. In general, one should try to use
control sequences that represent unbiased estimates of the underlying
parameters (typically, any loss of statistical power due to this strategy will
be minimal - and it will be more than offset by the ensuing visualization
and design advantages). For example, such a parameter could represent
the expected lifetime or an expected rate of failures. Another parameter of
interest could be a measure of wearout (for example, under the Weibull
assumption one can use the shape parameter as such a measure). Yet
another one could be the scale parameter of the lifetime distribution.
One will generally choose parameters that are meaningful to the users
and facilitate problem diagnostics.

4. For control sequences of interest, obtain corresponding weights. These
weights determine the impact of individual vintages based on inherent
properties of control sequence members (such as number of failures ob-
served for the vintages or number of Machine-Months (MM) for the vin-
tages; we will refer to such weights as wi ≥ 0, i = 1, 2, . . .) or based on
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desired properties of the monitoring scheme (such as weights that enhance
the importance of more recent vintages).

5. For every parameter establish acceptable and unacceptable regions. For
example, if λ represents the expected failure rate (say, expected number
of fails per 1000 MM of service), then we could set the acceptable level
of failure rate to λ0 and the unacceptable rate to λ1 > λ0.

6. For every parameter establish the acceptable rate of false alarms. As
noted earlier, in the context of schemes with DCO we cannot use the
criteria related to Run Length (such as ARL); one reasonable criterion
appears to be related to the probability of flagging a parameter. One can
control the rate of false alarms in the monitoring system by setting this
probability to a low level that reflects the desirable degree of trade-off
between false alarms and sensitivity.

7. Deploy the designed scheme to every relevant data set; flag this data
set if out-of-control conditions are present. For some monitoring systems
the deployment will involve massive re-computing of control sequences,
thresholds and control schemes on a regular basis. For example, for PC
manufacturing operation it was considered suitable to activate the system
on a weekly basis (note, however, that the vintages in Fig. 1 were still
being summarized on a daily basis). For other systems re-computing could
be, at least in part, event-driven.

3 Computational and Monte-Carlo Aspects

For every monitored parameter we convert the control sequence Xi, i =
1, 2, . . . , N to the values of a control scheme Si, i = 1, 2, . . . , N via the weighed
Cusum algorithm. For example, for a parameter λ we can use the Weighted
Geometric Cusum defined by

S0 = 0, Si = max[0, γSi−1 + wi(Xi − k)], i = 1, 2, . . . , N, (1)

where γ is typically chosen in [0.7, 1] and the reference value k ≈ (λ0 +λ1)/2
(”optimal” values for k are obtained based on behavior of likelihood ratios
for Xi, see Hawkins and Olwell (1998)).

For schemes with DCO we define S = max[S1, S2, . . . , SN ] and refer to
the current point in time as T . The data set (i.e., sequence of lifetime tests)
is flagged at time T if S > h, where the threshold h is chosen based on

Prob[S > h|N,λ = λ0] = α0, (2)

where typically α0 < 0.01. Thus, test(1) is a series of repeated Cusum tests
in the sense that at every new point in time the whole sequence (1) is re-
computed from scratch.

We should note immediately that in many cases the scheme (1) alone
is not sufficient for efficient detection of change in the process level, and so
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supplemental tests may be needed. For example, consider the situation where
Xi is the replacement rate (number of replacements per 1000 MM for parts
of vintage i) and wi is the number of MM accumulated by parts of vintage
i. As data for new vintages continues to come in, the value of the threshold
h will be moving up (note that threshold violation could occur not only at
the last vintage, but for some earlier vintages as well) - and this could de-
sensitize the scheme with respect to more recent vintages, especially given
the fact that weights wi will tend to be large for early vintages and small for
recent vintages. Use of γ < 1 will typically help somewhat to ameliorate the
extreme manifestations of this problem - however, supplemental tests specif-
ically geared towards detection of unfavorable events for later vintages are
sometimes needed. Such tests will be discussed later in the section. Anal-
ogously to the case of conventional (non-DCO) schemes, use of γ < 1 is
advisable when the primary mode of change in the process level is in the
form of drifts rather than shifts.

The immediate computational problem spawned by (1) is related to ob-
taining h by solving (2). The algorithm needs to be efficient because in mas-
sive data monitoring systems (such as a warranty data system) the number of
schemes run in parallel can easily reach 100,000 - and the computing opera-
tion typically needs to complete within a narrow time window. For procedures
of type (1) Monte Carlo methods have proven to be effective, provided that
certain measures are taken to enhance their efficiency. For example:

• Use parallel computation and elemental procedures (i.e., procedures de-
signed to be applied to every element of an array simultaneously). In the
PC warranty data application we use a set of K (typically, about 2000)
simulated replications of the trajectory (1). For every replication a value
of S is computed and h is obtained by solving (2) based on the empirical
distribution of the K values of S. To reduce the computing time, the
values of K replications for a given point in time are treated as a K-
dimensional vector; its values are computed for i = 1, 2, . . . , N , and the
corresponding vector of S values is computed progressively in time. This
is much more efficient than computing the statistics for every trajectory
(1) and repeating the process K times. What helps us here is that the
characteristics S of every trajectory (1) can be computed recursively in
time i.
A key element enhancing the efficiency of this vector-based operation
is also related to generation of random variables Xi. Special algorithms
of random variable generation, optimized for simultaneous production of
K variables simultaneously, enable one to complete the computation of
trajectories for each time i in an efficient manner.

• Take advantage of asymptotic properties of statistics S that can be de-
rived on the basis of theory of stochastic processes. For example, one
can expect that for distributions of Xi that have first two moments, the
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distribution of S can be approximated based on the tail property

Prob[S > h|λ = λ0] ∼ A× exp[−ah], h→∞, (3)

where A is a constant and a is a function of the first two moments and γ.
When γ = 1, relations of type (3) can typically be justified (for analysis
of in-control situations only) based on the approximation of (1) by a
Brownian motion with reflecting barrier at zero (e.g., see Cox and Miller
(1977), Bagshaw and Johnson (1975)). Our experience suggests that (3)
continues to hold even when γ < 1, though we have no proof of it at this
time.
If for a given in-control situation it is known a-priori that (3) holds, one
can reduce substantially the number of replications K that is needed
to achieve the required level of accuracy. In particular, one can use a
relatively low K, obtain the replications and obtain a non-parametric es-
timate of the upper 25-th percentile q̂75 of S. Subsequently, one can fit an
exponential distribution to the excess points above q̂75, taking advantage
of (3). Finally, the equation (2) is solved by using the pair of estimates
(q̂75, â). This approach can be used not only for threshold derivation, but
also for computing the severity of an observed trajectory, expressed in
terms of a p-value corresponding to S observed for the data set at hand.
Note that test based on (1) effectively triggers an alarm if the p-value of
the test falls below α0.

• When ancillary statistics are available, try to condition on them in the
course of Monte-Carlo replications, in line with usual recommendations of
statistical theory. For example, suppose that Xi are rates per 1000 MM.
Then the overall MM observed for a vintage, though a random quantity,
can typically be assumed to have a distribution that does not depend on
λ. It is, therefore, advisable to resample Xi based on the MM in period
i that was actually observed in the data.

Supplemental Tests. As noted above, tests based on (1)-(2) could turn out
to be insensitive to recent unfavorable changes - and such changes could be of
high importance to the users. In the PC warranty data system we introduce
the concept of active component. In particular, we set a threshold of, say,
Da days; a part is considered active if there are vintages present in the data
within the last Da days from the current point in time T . A warranty system
will typically contain many inactive parts that are no longer produced (even
though these parts are still in the field, continue to contribute data and could
present a risk to the manufacturer). For inactive parts there is little benefit
from emphasis on recent vintages because all the parts are anyway out of
manufacturer’s reach and so there is no longer an opportunity to prevent an
escape of unreliable parts into the field. In contrast, for active parts such an
opportunity does exist. Therefore, supplemental tests are applied to active
parts only.
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The first supplemental criterion for currently active part calls for testing
the hypothesis that the collection of Xi observed within the last Da days
correspond to the in-control parameter not exceeding λ0. The corresponding
p-value can sometimes be computed numerically. The criterion triggers an
alarm if this p-value is smaller than a pre-specified threshold.

The second supplemental criterion is based on the final value SN of the
scheme (1). The corresponding p-value is computed via Monte-Carlo method,
by using the same runs that were used for the analysis of (1). Techniques
described earlier for enhancing efficiency of the computations fully apply to
this criterion; in many situations the relationship of type (3) can also shown
to be relevant for it.

The overall severity (p-value) of the battery of (1) and two supplemental
tests can be approximated by a function of the individual p-values ψ(p1, p2, p3)
of these tests. Typically, correlation between the supplemental test statistics
and S is negligible and can be ignored. However, the supplemental tests do
tend to be correlated - and, therefore, one important issue here is obtaining
a suitable form for ψ.

4 Monitoring of Wearout

One of issues of primary concern to engineers is onset of wearout. Such an
event can substantially damage the reputation of a company - but when
wearout occurs within the warranty period, this could lead to substantial ad-
ditional losses and even to loss of the whole operation. Organizing an effective
system for lifetime data monitoring that detects onset of wearout should,
therefore, be a key priority for many manufacturing operations, especially
those involved in mass manufacturing.

The computational strategy for wearout monitoring could be developed
along the lines of that in Sec. 2. It is important to note, however, that in
many situations it is unpractical to compute the wearout indicator for every
vintage, for example, because of issues of parameter estimability. Therefore,
data is typically grouped by vintages: for example, the rows of Fig. 1 are
consolidated so as to yield just one row per month.

One can use several characteristics that are sensitive to wearout; any
given characteristic can be used as a basis for a monitoring scheme of type
(1). Given that (possibly after time scale transformation as mentioned in
Sec. 1) the data under acceptable conditions is likely to show behavior that is
”similar” to exponential, we could select an index that represents the estimate
of the Weibull shape parameter. Note that we do not really have to believe
that the data is Weibull: the estimated shape parameter can be used as a form
of ”wearout index” even in many situations where the lifetime distribution is
non-Weibull, as it retains a substantial graphical and analytical appeal.

Denoting by c the shape parameter of the Weibull distribution we can
specify the acceptable and unacceptable levels as c0 and c1 > c0 (in many
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practical situations, c0 = 1 is a good choice). One way to proceed is to com-
pute consecutive unbiased estimates ĉ1, ĉ2, . . . , ĉM , where M is the number of
months for which data is available. These values are then used in the Cusum
test:

S0w = 0, Siw = max[0, γwSi−1,w + wiw(ĉiw − kw)], i = 1, 2, . . . ,M, (4)

where γw is the geometric parameter (typically close to 1) and kw ≈ (c0 +
c1)/2. The weight wiw is the number of failures observed in the period i (and
not the overall number of MM for period i, as in (1)). This is because a period
with large MM but very few failures does not contain much information
about c). Now we can see why we want the sequence of estimates ĉi to be
bias-corrected: with such a choice we can use the same reference value kw

for every period. Since we operate under the DCO conditions, the decision
statistics is Sw = max[S1w, S2w, . . . , SMw] and we flag the data set at time
T if Sw > hw, where hw is chosen from the equation:

Prob[Sw > hw|M, c0] = α0. (5)

As before, Monte-Carlo approach is used to derive the threshold hw and
p-value of the test. In the course of replications we assume that the scale
parameter β of the Weibull law can change from period to period, and we
focus our attention entirely on c. Under such an assumption the number
of fails wiw in period i can be treated as an ancillary statistic for c and
we condition the replications for this period on the number of fails being
equal to wiw. For period i we then estimate the scale parameter β̂i under
the hypothesized assumption c = c0 and produce replications of wiw failures
under the assumption that lifetimes for this period are distributed Weibull
(β̂i, c0), taking into account the censoring times. Processing such replications
for our collection of periods enables one to evaluate the null distribution of
Sw and obtain the corresponding threshold hw and a p-value for the observed
value of Sw. In some situations one may want to consider using a supplemental
test (for active components) similar to the second supplemental test described
above, i.e.: flag a component on wearout if the last value SMw of the sequence
(4) exceeds a suitably chosen threshold (or if the associated p-value becomes
sufficiently small). Such a test could help in catching a relatively recent onset
of wearout somewhat earlier. One shought weigh the additional benefit of
such a test against the necessity to raise thresholds for other tests, in order to
maintain the target protection against false alarms. Such a supplemental test
can be designed in parallel with the main test, by using the same simulation
runs.

Note that a process similar to that described above can also be used to
deploy schemes for monitoring the scale parameter β.
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5 Conclusions

Design and analysis of systems for monitoring reliability, especially in the
DCO environment is a highly complex task, both from the methodological
and computational points of view. The main technical challenges include
(a) establishing ”on the fly” the thresholds for a large number of tests and
efficient use of Monte Carlo techniques (b) establishing ”newsworthiness”
of the detected conditions based on p-values and similar indices of severity
and (c) deployment in the field that satisfies the requirements for low rate
of false alarms, detection capability, user interface and report generation. In
this article we discuss a possible approach that was deployed several years
ago at the IBM PC company. Our impression, based on user feedback, was
that this approach can lead to usable and powerful system for monitoring
massive streams of reliability and warranty data.
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