
RC25032 (W1008-013) August 5, 2010
Computer Science

IBM Research Report

On the Ontological Nature of Software-Intensive Systems

Grady Booch
IBM Research Division

Boulder, CO
gbooch@us.ibm.com

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



On The Ontological Nature of Software-Intensive Systems 
 

Grady Booch 
IBM Fellow 

February 2010 
 
As Dr. Ellis has noted, “the computer metaphor is dominant in most discussions 
of neuroscience1.” Now, I am not a neuroscientist: the only defensible 
qualifications I have in that domain are the possession of a brain, a mind, and a 
singular instance that I self-identify as an I. However, I do have a modest 
understanding of computing, and thus as an outsider (coming from the domain of 
software-intensive systems) looking in (to the domain of the neurosciences), I 
suggest that one must be careful not to apply that metaphor too naively. To do 
so, if I may be direct, would be akin to my trying to reason about the New York 
Stock Exchange by studying the traces from a few digital logic analyzers 
scattered about the globe. These may be the only things that I think I can 
measure. I undoubtedly would learn some things. But I doubt I’d learn much 
about macroeconomics. 
 
The computer metaphor is an understandable one – it does have many 
appealing elements that offer a predictive framework for reasoning about a 
variety of non-computer systems such as the mind, but the reality that underlies 
that metaphor is far more richly textured that one might first realize. Indeed, I 
assert that software-intensive systems are among the most complex artifacts 
ever created. 
 
First, I use the term systems rather than programs. In my world, all economically- 
interesting computing thingies2 are very much systems – they have a unique 
identity, they have discernible boundaries, they are composed of reducible 
constituent parts, they exhibit certain behaviors as a whole, and - unless they are 
closed systems - they live as a society of systems with which they dance in 
context with their peers. By software-intensive, I mean to suggest that these 
thingies are manifest in the co-dependent and co-evolved artifacts of software 
and hardware. While hardware represents the physical form of a computing 
thingy, any such device would be no more powerful than a rock were it not for the 
software that directs its actions; at the same time, any chunk of software without 
a hardware platform on which it may execute would be a spirit in search of a 
body, neither alive nor dead but rather an unrealized entity. Hardware is the 
visible platform, the place where computation takes place; software is the 

den from view, that animates that hardware and collection of instructions, hid                                                        
1 Dr. George Ellis, letter to author, June 21, 2009. 
2 By economically interesting I mean that it presents some measurable value in some context; by 
thingie, I mean just that – a thing of some vague sort; I purposely chose this ambiguous word, so 
as to not suffer the consequences of any other overloaded word that carries historical or 
emotional baggage such as component or program or object. Even so, the word program is 
largely meaningless in the context of contemporary software-intensive systems. 



draws it to action.  
 
Second, I use the terms artifact and created to acknowledge that humans directly 
or indirectly (though other computing thingies) make a computing thingy. 
Developing hardware is fully an engineering activity, today involving the creation 
of digital circuitry containing hundreds of millions of transistors, each transistor 
forged from a hundred or so atoms. Similarly, developing software is an 
incredibly labor-intensive activity that works on the cusp of engineering and art, 
of mathematical formalisms and creative writing; it’s not unusual to find tens of 
millions of lines of code in any given software-intensive system, each line of code 
originally crafted by some person. Furthermore, a quick back of the envelope 
calculation3 suggests that, worldwide, some 33 billion source lines of code 
(SLOC) of new or modified software are produced yearly, giving approximately 
one trillion SLOC produced since the late 1940’s (when high order programming 
languages began to gain traction). Collectively, these artifacts have changed the 
way we live, and it is at once surprising (that relatively so few people have 
labored to produce these artifacts) and humbling (that these artifacts have woven 
themselves into the interstitial spaces of the world). 
 
Third, there is the matter of complexity4. One may use classical system 
measures to name the complexity of the hardware components of computing 
thingies, but measuring the complexity of its software components is less well 
codified. Elsewhere5 I have posited that software architectural complexity may be 
measured in terms of mass6, the enumeration of things, the enumeration of 
connections, and the presence of patterns across views. Complexity7 may also 
be measured by consideration of the number of possible states that a system 
might embody8. By that measure, at many levels of abstraction, a boulder is 
arguably simple, recognizing that any state changes it may undergo are few in 
nature and spread across geological time. In contrast, even the most modest 
software-intensive system will embody an enormous number of possible states, 
and it is only by abstracting away a myriad of details that we may have any 
degree of confidence in the correctness of that system. Now, lest the formalists 
berate me, remember that I’m also talking about the state of software-intensive 
systems in the real world, wherein the discrete, digital world collides with the 
harsh reality of a very continuous, very analog real world. The fact that we may 
have to attend to a combinatorial explosion of possible states in the digital world 

context of possible states in the real world. Fred is nothing compared to the                                                         
3 Which considers the number of software professionals world-wide, the percentage of those who 
a urce lines of code per person year. The 

 low. 
ctually cut code, and the approximate number of so

numbers I offer are likely very conservative and thus4 See also Simon, H. “The Architecture of Complexity.” Proceedings of the American Philosphical 
Society, vol. 106 (6), 1962. 
5 Booch, G. “Measuring Architectural Complexity.” IEEE Software, vol. 25 (4), 2008. 
6 As calculated in SLOC, though recognizing that software has no weight. 
7 Booch, G. “The Defenestration of Superfluous Architectural Accoutrements.” IEEE Software, 
vol. 26 (4), 2009. 
8 Sessions, R. Simple Architectures for Complex Enterprises, Microsoft Press, 2008, p. 58. 



Brooks9 speaks of this as an element of the essential (and inescapable) 
complexity of software-intensive systems. 
 
A software-intensive system may be considered Turing complete; it manifests no 
irreducible complexity; it is potentially time-invertible10; it may even be 
introspective, reflective and self-healing. 
 
If we determine something to be computable (say, for example, the brain11), then 
theoretically it could be manifest as a software-intensive system12. The fact that a 
software-intensive system has no irreducible complexity leads to the implication 
that even if we execute something as (formally) unpredictable as a neural net or 
a genetic algorithm on a Turing complete platform, no Deus ex machina is 
needed to explain its behavior. Logical reversibility means that a software-
intensive system may, functionally, ignore the arrow of time. Reflection means 
that a software-intensive system may aware of itself, through meta agents 
(themselves being software-intensive) that observe the system, and thus permit 
the system to “know thyself” and change and evolve. 
 
Software-intensive systems do not spring up whole from the primordial soup of 
bits. Rather, they are created through an astonishingly labor-intensive activity. 
Most software-intensive systems of value go through the incremental and 
iterative cycle of development, deployment, operation, and evolution, each phase 
of which transforms the system’s architecture. In that regard, the process of 
building software has certain parallels to the process of building things. Small 
software-intensive systems are like doghouses: they don’t require any blueprints 
and are largely disposable. Modest to large software-intensive systems are like 
houses or skyscrapers: they entail more cost and risk and therefore best 
practices demand more rigorous blueprints, better tools, significant testing, a risk-
driven process, and accountability. Ultra-large, long-lived software-intensive 
systems exhibit obduracy, and thus are closer to the problem of the organic 
growth of a city and the attendant activities of urban renewal13. 
 
As an aside, there is a curious inverse relationship between the concerns of 
theoretical physics and those of software-intensive systems. In physics, one 
considers the fierce complexity of the universe and works to tease apart each 
string and make transparent the simple models from which all things are made. 
In the engineering of software-intensive systems, we take very simple things 
(Turing complete machines are wonderfully simple mathematical constructs), 

 dripping hairballs containing of millions of lines of manufacture huge, tangled,                                                        
9 Brooks, F. The Mythical Man-Month, Addison-Wesley, 1995. 
10 Landauer, R. "Irreversibility and Heat Generation in the Computing Process," IBM Journal of 
Research and Development, vol. 5, pp. 183-191, 1961. 
11 One of the open considerations of the Church-Turing thesis. 
12 Today, no software-intensive system can be said pass the Turing test, although we continue to 
advance tantalizing close. 
13 Hommels, A., Unbuilding Cities. MIT Press, 2005. 



code, then unleash them into the wild, expecting that they will fade into the 
shadows, the best ones ending up completely invisible. 
 
A naïve view of computing often focuses on the circuits from which hardware is 
formed, structured at growing levels of hierarchical abstractions (and their 
connections) from transistors to gates to circuits to chips to subsystems and so 
on. A slightly more advanced yet equally simplistic view of computing focuses on 
the expressions of the digital domain from which software rises, also found 
structured in layers of abstraction. 
 
But this is only a very small part of the story. 
 
My expertise is in software-intensive systems, so I will table for this discussion 
the already reasonably understood ontological nature of hardware, and instead 
focus on software thingies. At the lowest level of abstraction in software – 
concerning myself first to data - we find bits, which may be chunked into words, 
and those into primitive data structures, then those into composite ones, and so 
on. When we project a suitable symbolic meaning on them – their semantics - 
then we begin to approach the realm of information. Now, while data forms the 
nouns of our systems, we have also the verbs: expressions formed into 
statements leading to control structures composing functions leading to 
components and then on to subsystems and finally systems themselves. 
 
For much of the history of computing14, data and processes – nouns and verbs – 
were treated as relatively distinct. However, as the essential complexity of 
software-intensive systems grew, the then contemporary algorithmic-oriented 
languages (such as Fortran) and methods (such as structured analysis and 
design techniques) grew tired, and were over time replaced by object-oriented 
ones (such as Java and the notation and processes associated with the Unified 
Modeling Language15). Most contemporary software-intensive systems are 
object-oriented in some nature, and so at the lowest level of abstraction we have, 
not surprisingly, the object. An object has identify, state, and behavior, and thus 
represents the fusion of data and action. This also is a wonderfully recursive 
concept: objects may be composed of objects may be composed of objects and 
so on. No object is an island, however, and thus there are rich relationships that 
abound: associations, whole/part structures, and inheritance, to name the three 
most important. 
 
And yet, there is more than just these objects and relationships to be found in a 
well-tempered software-intensive system. Three in particular come to mind as 
particularly germane. 
 

                                                        
14 may find a discussion of a similar duality in the work of the Greek 

nd his student Democritus. 
 For that matter, one 

philosopher Lucippus a15 http://www.uml.org 



First, there are communicating sequential processes16. The most basic software-
intensive systems are fully sequential, having a single line of control that weaves 
through it; all others tend to have multiple lines of control, which are the warp and 
the woof in the fabric of the data and processing structures of such a system. 
This sort of parallelism may be manifest at many levels, ranging from individual 
software agents to the multicore chip to server farms to the entire computing 
cloud17. Be it just a few processes and threads or many, such concurrency 
introduces tremendous complexity associated with critical regions, 
synchronization, race conditions, and livelock or deadlock. 
 
Second, there are the issues of patterns18. A pattern denotes a common solution 
to a common problem, and most often is manifest as a named society of objects 
that collaborate in certain ways. Design patterns in particular are part of the 
texture – be it accidental or intentional – of every well-tempered software-
intensive system19 as well as of beautiful physical structures20. 
 
Finally, there are issues of crosscutting concerns, commonly called aspects. In 
richly textured software-intensive systems, one will typically find scattering (one 
aspect being manifest in multiple places) and tangling (a given software thingy 
contributing to the manifestation of more than one aspect). This is an area of 
considerable challenging research. 
 
There are a multitude of consequences of the presence of this classification of 
software-intensive system elements, but two in particular are useful in this 
context. First, most such systems have no top. One may identify certain places of 
interest, multidimensional cusps in the fabric of that system, but there is often no 
real top, no starting place. Second, to understand, to reason about, to visualize 
any such system that lies above a certain level of complexity, one must use 
multiple points of view21. 
 
Software-intensive systems allow us to form new worlds22 and yet, in any 
universe, such systems must still constrained by the laws of that universe23. 
Indeed, while the human imagination may be unlimited, there are limits to 
software-intensive systems, from the fundamental (information may not be 
transmitted faster than the speed of light24; a computation must preserve the 

ics) to the theoretical (for example, the problem of second law of thermodynam                                                        16 Hoare, C. “Communicating Sequential Proceses.” Communications of the ACM, vol. 21 (8), 1978. 
17 The Datacenter as a Computer: An introduction to the Design of Warehouse-Scale Machines. 
Google, 2010. 
18 http://www.hillside.net 
19 Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns, Addison-Wesley, 1994. 
20 Alexander, C. The Timeless Way of Building, Oxford University Press, 1979. 
21 Recommended Practice for Architectural Description of Software-Intensive Systems, ISO/IEC 
Standard 42010:2007. 
22 http://secondlife.com 
23 We believe. 
24 True or false depending on one’s stand regarding apparent faster-than-light communication. 



NP-complete class complexity) to the organic (how does one best architect a 
system? how does one best architect the organization that architects that 
system?) to the social (economic, moral, and ethical limits are often forces that 
weigh upon such systems). 
 
One parting observation. 
 
Take all the squishy bits of a human, or a cat, or a plant. Physically and 
chemically and biologically you will find astonishing similarities at a given level of 
abstraction, and yet there are fundamental, subtle differences at the bottom. 
Now, the current Wikipedia, in all of its languages, consists of over 3,500 million 
symbols, a healthy 3.5 gigabytes of information. As late as the 1960s, the 
collective capacity of every computer in the world together fell far short of a 
single gigabyte; today, I can carry far more information around in my hand, on my 
phone. By comparison, Ralph Merkel25 has estimated that the storage capacity 
of the human brain is a strikingly modest value, numbering perhaps only a few 
hundred megabytes of information. Similarly, the Power7 chip, which lies at the 
heart of IBM’s line of mainframe computers, can process over 264 gigiflops, or 
approximately 1030 floating-point operations per second. Much of this 
performance can be attributed to astonishingly fast circuitry; processing multiple 
streams of data in parallel contributes to this high performance as well. Again, by 
comparison, Merkel estimates that the human brain – a very parallel computer 
indeed - has the ability to process only about 1013 to 1016 instructions per 
second. 
 
Why, then, is there such a gulf between what we know of computability and what 
it is to live as a sentient being.26? 

                                                        
25 http://www.merkle.com 
26 The metaphor of Flatland by Edwin Abbot also comes to mind. As an agent outside of a 
software-intensive system, I have the power of life and death (as long as I have my hand on the 
power switch), I can see from beginning to the end (for I see the whole and am its context), I 
create and control its actions (a system may offer the illusion of freedom, but a deterministic 
system is, well, deterministic). Were a software object sentient, I would appear as a god to it. But 
of course that I know I am not. 


