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Abstract—Cloud based services may experience changes –
internal, external, large, small – at any time. Predicting and
quantifying the effects on the quality-of-service during and after a
change are important in the resiliency assessment of a cloud based
service. In this paper, we quantify the resiliency of infrastructure-
as-a-service (IaaS) cloud when subject to changes in demand and
available capacity. Using a stochastic reward net based model for
provisioning and servicing requests in a IaaS cloud, we quantify
the resiliency of IaaS cloud w.r.t. two key performance measures
– job rejection rate and provisioning response delay.

I. INTRODUCTION

An Infrastructure-as-a-Service (IaaS) cloud, e.g., Amazon
EC2 [1] and IBM Smart Business Development and Test Cloud
[2], delivers on-demand virtual machine instances deployed in
the cloud provider’s data center. This paper presents resiliency
analysis for IaaS cloud. A key problem in performing such
analysis is the lack of consensus on the definition and a
systematic approach for quantifying the resiliency measures.
Traditionally, resiliency has been interpreted as the fault-
tolerant capability of the system. Sterbenz et. al [3] defined it
as the combination of trustworthiness (dependability, security,
and performability) and tolerance (survivability, disruption
tolerance, and traffic tolerance). Laprie [4] and Simoncini [5]
defined resiliency as the persistence of service delivery that
can justifiably be trusted, when facing changes.

Our definition of resiliency includes this notion of change.
For IaaS cloud, changes occur because of increased work-
load, faultload, system capacity or from security attacks and
accidents (e.g., disasters). We consider two types of changes:
change in client demand (job arrival rate) and change in
system capacity (number of available physical machines). We
quantify cloud resiliency in terms of effect of changes on
two performance based quality-of-service (QoS) measures: job
rejection rate and provisioning response delay as measured by
the mean of jobs waiting to be serviced. Our contributions
are: (1) A stochastic reward net based analysis: for perfor-
mance analysis of IaaS cloud using a stochastic Petri net and
determining performance measures using reward functions; (2)
Resiliency metrics for IaaS Cloud for quantifying the effects of
change; (3) Resiliency analysis approach for IaaS cloud when
subject to changes in service demand and service capacity and
quantify these effects using performance analysis models.

Rest of the paper is organized as follows. Section II presents
IaaS cloud system model and assumptions. In Section III,
we describe the stochastic reward net approach. Resiliency
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Fig. 1: Request provisioning and servicing steps in IaaS cloud.

quantification of performance measures and numerical results
are presented in Section IV. Finally, concluding remarks and
future research are in Section V.

II. SYSTEM MODEL

Shown in Figure 1 is the life-cycle of a job as it moves
through an IaaS cloud. When a request is processed, a pre-
built image is used to create one or more Virtual Machine
(VM) instances. When the VM instances are deployed, they
are provisioned with request specific CPU, RAM, and disk
capacity. VMs are deployed on Physical Machines (PMs) each
of which may be shared by multiple VMs. To reduce overall
VM provisioning delays and operational costs, we assume that
PMs are grouped into three servers pools: hot (i.e., running),
warm (turned on, but not ready) and cold (turned off). A pre-
instantiated VM can be provisioned and brought to ready state
on hot PMs with minimum provisioning delay. Instantiating
a VM from an image and provisioning it on a warm PM
needs additional provisioning time. PMs in the cold pool
need additional startup time to be turned on before a VM
deployment.

In the subsequent discussions we use the term job to mean
a user request for provisioning a VM and making it available
for use by a cloud user. We assume that all requests are
homogeneous and each request is for one VM with fixed size
CPU cores and RAM. User requests (i.e., jobs) are submitted
to a global resource provisioning decision engine (RPDE) that
processes requests on a first-come, first-served (FCFS) basis as
follows. The request at the head of the queue is provisioned
on a hot server if there is capacity to run a VM on one of
the hot servers. If no hot PM is available, a PM from warm
pool is used for provisioning the requested VM. If all warm
machines are busy, a PM from cold pool is used. If none of
these servers are available, the request is rejected. When a



running job exits, the capacity used by that VM is released
and becomes available for provisioning the next job.

For the above described scenario, we quantify the resiliency
of IaaS w.r.t. two pure performance measures - (i) net job
rejection rate (ρreject) and (ii) mean number of jobs in RPDE
(E

RP DE
), due to changes in job arrival rate and system capac-

ity. We assume that all the inter-event times are exponentially
distributed and hence the system model is a homogeneous
continuous time Markov chain (CTMC). Since the CTMC has
a large state space, we use a variant of stochastic Petri net for
concise specification and automated solution of the model.

III. PROPOSED STOCHASTIC REWARD NET APPROACH

Stochastic reward nets (SRNs) [6] are extensions of general-
ized stochastic Petri nets (GSPNs) [7]. In SRNs, every tangible
marking of the net can be associated with a reward rate
thus facilitating the computation of a variety of performance
measures. Key features of SRNs are: (1) each transition may
have an enabling function (also called a guard) so that a
transition is enabled only if its marking-dependent enabling
function is true; (2) marking dependent arc multiplicities are
allowed; (3) marking dependent firing rates are allowed; (4)
transitions can be assigned different priorities; (5) besides
traditional output measures obtained from a GSPN, such as
throughput of a transition and mean number of tokens in a
place, more complex measures can be computed by using
reward functions.

SRN model for IaaS cloud. An SRN model for request
provisioning in an IaaS cloud is shown in Figure 2. Transition
Tarr with rate λ models the job arrivals while tokens in place
Pdh

represent job requests waiting to be served by the RPDE.
Transition Tdh

models the searching delay to find a hot PM
that can be used for resource provisioning. A token in place
Pselh represents a request that is trying to get provisioned
on a hot PM. We assume there are nh, nw, and nc PMs in
hot, warm, and cold pool, respectively and maximum number
of VMs on each PM is m. Tokens in places Pvmhi

(with
1 ≤ i ≤ nh) represent the number of jobs that the ith

PM in the hot pool can still accept. When ith PM is not
running any job, m tokens will be present in Pvmhi

place.
A job accepted in the hot pool is provisioned on a PM,
randomly selected from the set of hot PMs which are not
full. This is modeled by the conflict among transitions tyhi

(with 1 ≤ i ≤ nh) each of which takes a token from
the corresponding place Pvmhi

and inserts a token in the
corresponding place Pinsthi

. VM provisioning and deployment
delay on a hot PM is modeled by transitions Tinsthi

(with rate
βh). Places Pservhi

and transitions Tservhi
represent servicing

of jobs. In particular, the rates of transitions Tservhi
depend on

the number of tokens in places Pservhi
to model the concurrent

job executions within the same PM. If no tokens are present
in places Pvmhi

(all the PMs in the hot pool are occupied),
transition tnh

is enabled modeling the necessity for the RPDE
to start looking for a free PM in the warm pool by moving a
token from place Pselh to place Pdw . Transition Tdw models
the searching delay for the warm pool. We assume that the

...

...

...

Fig. 2: Stochastic reward net model for IaaS cloud.

RPDE can process only one request at a time and this is
represented by the inhibitor arc from place Pdw

to transition
Tdh

. The modeling of the nw PMs in the warm pool is similar
to that of PMs in the hot pool. However, when there is no job
being executed or provisioned on a warm PM, the first request
coming to the warm PM requires an additional startup delay.
For this reason, two immediate transitions are present for each
PM (t

′

ywi
and t

′′

ywi
) with proper guards. Transitions t

′′

ywi
will

be enabled only if the number of tokens in the corresponding
places Pvmwi

is equal to m, i.e., only for the first request to the
PM ([gt

′′

ywi
] = 1 if #Pvmwi

= m). In such a way, we model
the additional delay by means of places Pstupwi

and transitions
Tstupwi

(with rate γw). On the other hand, Transitions t
′

ywi
will

be enabled only if the number of tokens in places Pvmwi
is

strictly less than m, i.e., for every subsequent requests after
the first request ([gt

′

ywi
] = 1 if #Pvmwi

< m).
When PMs in the warm pool are all busy (no tokens in

places Pvmwi
), transition tnw

is enabled modeling the RPDE
trying to provision the request in the cold pool. Cold pool



is modeled similarly as the warm pool. Main difference with
warm pool is that when all PMs are busy in the cold pool,
transition tdrop is enabled and will fire. Firing of tdrop models
the rejection of a request due to insufficient machine capacity.
In our model N is the maximum number of requests that
can be present in RPDE. By associating a guard function
([gTarr] = 1 if #Pdh

+ #Pdw
+ #Pdc

< N ) to transition
Tarr we model the finite length FCFS queue of the RPDE.

Model outputs. Outputs of the model are obtained using the
Markov reward approach by assigning an appropriate reward
rate to each marking of the SRN and then computing the
expected reward rate both in transient and steady state as
the desired measures [8]. Let ri be the reward rate assigned
to marking i of the SRN in Figure 2. If πi(t) denotes the
probability for the SRN to be in marking i at time t then
the expected reward rate at time t is given by

∑
i πi(t)ri.

The expected steady state reward rate can be computed by
taking into consideration the steady state probabilities πi of the
SRN as

∑
i πiri. Our measures of interest are following. (i)

Net job rejection rate (ρreject). There are two component of
ρ

reject
. The first component results from admission control and

is denoted as ρ
block

, which results from rejection of jobs when
RPDE buffer is full. Even after job is admitted in the RPDE
queue, if during its provisioning decision step all (hot, warm
and cold) machines are fully occupied then we assume that the
job is dropped. This second component of the rejection rate is
denoted as ρ

drop
. Reward assignments to compute ρ

block
and

ρ
drop

are shown in Table I. Net rejection rate ρ
reject is the sum

of ρ
block

and ρ
drop

. (ii) Mean number of jobs in the RPDE
(E[N

RP DE
]). It is given by the sum of the number of jobs that

are waiting in the RPDE queue and the job that is currently
undergoing provisioning decision. Provisioning response delay
is a function of this measure [9]. Reward assignment for this
measure is shown in Table I.

TABLE I: Reward rates to compute different output measures

Measures Reward rates
Job rejection rate due to buffer full (ρblock ) λ if [gTarr] = 0; 0 o/w
Job rejection rate due to insufficient capacity
(ρdrop )

δc if tdrop is enabled;
0 o/w

Mean number of jobs in RPDE
(E[NRP DE ])

#Pdh
+ #Pdw + #Pdc

IV. RESILIENCY QUANTIFICATION

We use Stochastic Petri Net Package (SPNP) [10] to solve
the SRN model and quantify the IaaS cloud resiliency w.r.t.
the above performance measures. General steps of resiliency
quantification are:
(1) Determine the stead state behavior of the system to
compute steady state values of the performance measures of
interest.
(2) Apply change(s) in the system model by changing the
value(s) of input parameter(s).
(3) Analyze the transient behavior of the system model to
compute the transient performance measures using input pa-
rameters after the change. Initial probabilities for this transient

analysis are obtained from the steady state probabilities as
obtained in step (1). The SPNP package allows to easily map
the state space of the step (1) model into the state space of
the step (3) model and to compute the initial probability to be
used for step (3) analysis in a straightforward manner.

Resiliency Metrics. Let M (bc)
ss and M (ac)

ss denote the steady
state values of the measures (for which resiliency is computed)
before and after the application of change respectively. We de-
fine following metrics [11] to quantify resiliency. (1) Settling
Time (tset). This is defined as the elapsed time from the time
when the change is applied to the system until the measure
of interest reaches and stays within ±δ% of |M (bc)

ss −M (ac)
ss |.

(2) Peak Overshoot or Undershoot (PO). Let M (ac)
peak be

the maximum deviation of the measure from its steady state
value after application of change. Peak overshoot/undershoot
(in percentage) is then defined as:

PO(%) =
|M (ac)

peak −M
(ac)
ss |

M
(ac)
ss

× 100 (1)

(3) Peak Time (tpeak). Time taken to reach maximum devia-
tion M (ac)

peak of the measure, from its steady state value (M (ac)
ss )

attained after the change is applied, is defined as peak time.
(4) γ-Percentile Time (tpercentile). This is useful when the
measure of interest never goes above or below the steady state
value (M (ac)

ss ), after the change is applied. It is defined as the
elapsed time from the time when the change is applied to
the system until the output measure reaches (100 − γ)% of
|M (bc)

ss −M (ac)
ss |. (100 − γ) is always greater than δ as used

in settling time definition.
In this paper, we consider two types of changes: change

in job-arrival rate (λ) and change in the number of PMs. For
the former case, we consider two different mean provisioning
delays on hot PM (1 minute and 5 minutes). Mean provi-
sioning delay on each warm PM was assumed to be twice
the mean provisioning delay on a hot PM. Mean provisioning
delay on each cold PM was assumed to be four times the mean
provisioning delay on a hot PM. In Table II, we define ten
cases that we have analyzed and we numerically compare the
corresponding resiliency metrics (with γ = 90 and δ = 0.1).
In general, we observe that, settling time is longer for net
rejection rate compared to mean number of jobs in RPDE. We
also observe that in some cases, peak overshoot/undershoot is
not observed and hence percentile time gives better insight.

Effect of changing job-arrival rate (λ). Figure 3(a) shows
the transient effect of changing the job arrival rate (λ) on
net job rejection rate. At time instance (t = 0, value of
λ is changed from 10 to 20 jobs/hr. In case-I and case-
II, settling times are t

(I)
set and t

(II)
set respectively. When the

change is removed (at t = 1 hr, job arrival rate is reduced
to initial value, i.e., 10 jobs/hr), net rejection rate reduces and
finally reaches a steady state value. Settling times after removal
of the change are t

(III)
set and t

(IV )
set respectively. Observe, if

we increase the mean provisioning delay, net rejection rate
becomes higher. This is because jobs take longer duration to
be provisioned, hence, queue in front of the RPDE builds
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Fig. 3: Effect of changing job arrival rate on (a) net rejection rate and (b) mean number of jobs in the RPDE.

TABLE II: Comparison of resiliency metrics for different changes.

Changes Resiliency measures for rejection rate Resiliency measures for mean # jobs in RPDE
tset PO(%) tpeak tpercentile tset PO(%) tpeak tpercentile

Increase in λ, mean provisioning delay in hot PM is
1 minute (case-I)

0.64 0.485 0.35 0.07 0.12 0.008 0.24 0.01

Increase in λ, mean provisioning delay in hot PM is
5 minutes (case-II)

0.82 0.519 0.36 0.03 0.12 0.168 0.02 0.01

Decrease in λ, mean provisioning delay in hot PM is
1 minute (case-III)

0.81 0.045 1.68 0.39 0.10 – – 0.02

Decrease in λ, mean provisioning delay in hot PM is
5 minutes (case-IV)

0.95 0.520 0.77 0.10 0.08 0.024 0.38 0.01

Removal of a hot PM (case-V) 1.94 – – 0.16 0.70 – – 0.34
Removal of a warm PM (case-VI) 0.98 – – 0.55 0.52 – – 0.49
Removal of a cold PM (case-VII) 0.85 – – 0.46 0.08 – – 0.04
Addition of a hot PM (case-VIII) 0.92 34.6 0.04 0.03 0.22 21.4 0.04 0.03
Addition of a warm PM (case-IX) 0.97 49.0 0.04 0.03 0.55 8.94 0.04 0.03
Addition of a cold PM (case-X) 0.99 60.0 0.04 0.03 0.58 1.02 0.04 0.03

up quickly and more jobs are rejected. After increasing the
arrival rate, difference between the net rejection rates (for two
different mean provisioning delays) increases by more than
factor of two. Moreover, settling time also increases if the
mean provisioning delay is longer. This shows that IaaS cloud
with faster provisioning process is more resilient to changing
workload. Similar effects are shown in Figure 3(b), where the
resiliency is computed for the mean number of jobs in RPDE
(a measure of congestion in the cloud). Effect of changing
system capacity. Next, we study the resiliency of IaaS cloud
due to addition or removal of PMs. Figure 4(a) shows the effect
of removing one PM on the net job rejection rate. We consider
three cases: removal of a hot PM (case-V), removal of a warm
PM (case-VI) and removal of a cold PM (case-VII). In all three
cases, the new PM is removed from a pool (hot/warm/cold)
at the time t = 0. After the removal of the PM, rejection rate
increases and finally reaches a steady state. Removal of a cold
PM (case-VII) has the lowest settling time and hence, change
in net rejection rate stabilizes quickly. Clearly, cloud resiliency
is maximum in this case. In contrast, resiliency is minimum
in case-V, when a hot PM is removed. Similar effects on the
mean number of jobs in RPDE are in Figure 4(b). Figure 5(a)

shows the transient effect of adding a new PM on net job
rejection rate. We consider three cases: addition of a hot PM
(case-VIII), addition of a warm PM (case-IX) and addition of
a cold PM (case-X). In all three cases, the new PM is added
to a pool (hot/warm/cold) at the time instance (t = 0). After
the addition of a new PM, rejection rate momentarily reduces
to a low value and then starts increasing and finally reaches a
steady state. This sharp “notch” in the rejection rate value can
be explained in following way. When the new PM is added to
a pool, initially it is empty for a very small duration of time.
After that, once the PM is full, rejection rate increases and
finally reaches a steady state. Addition of a hot PM provides
maximum benefit as the rejection rate is minimum in this
case. Similar effects on the mean number of jobs in RPDE
are shown in Figure 5(a). Addition of cold PM has almost
negligible effect on the mean number of jobs. Settling time
and net rejection rate are the smallest for adding a hot PM.

V. CONCLUSIONS

In this paper, we quantify the resiliency of IaaS cloud
w.r.t. two QoS measures when subjected to changes in job
arrival rate and system capacity. To the best of our knowledge,
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Fig. 4: Effect of removing a PM on (a) net rejection rate and (b) mean number of jobs in the RPDE.
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Fig. 5: Effect of adding a PM on (a) net rejection rate and (b) mean number of jobs in the RPDE.

this is perhaps the first work that quantifies resiliency of
IaaS cloud. In our future work, we plan on investigating the
effects of different types of failure (such as failures of PMs
and VMs) and compute on the resiliency of availability and
performability [9] of IaaS cloud.
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