
RC25050 (W1010-012) October 6, 2010
Computer Science

IBM Research Report

Interacting Stochastic Models Approach for
Performability Analysis of IaaS Cloud

Rahul Ghosh1, Kishor S. Trivedi1, Vijay K. Naik2, DongSeong Kim1

1Department of Electrical and Computer Engineering
Duke University

Durham, NC 27708 USA

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598 USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Interacting Stochastic Models Approach for
Performability Analysis of IaaS Cloud

Rahul Ghosh∗, Kishor S. Trivedi∗, Vijay K. Naik†, and DongSeong Kim∗
∗Dept. of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

Email: {rg51, kst, dk76}@ee.duke.edu
†IBM T. J. Watson Research Center, Hawthorne, NY 10532, USA

Email: vkn@us.ibm.com

Abstract—In this paper, we describe an analytical
modeling approach for performability analysis of cloud
provided services. We use infrastructure-as-a-service as an
example of a cloud based service, where service availability
and provisioning response delays are key service level
agreements (SLAs) to users while cost reductions are
important to service providers. A novelty of our approach
is in reducing the complexity of the analysis by dividing
the overall model into multiple interacting sub-models and
then obtaining the overall solution by iteration over sub-
model solutions. This results in a high fidelity model that is
scalable. We summarize our modeling approach, showcase
our ongoing work through initial results and outline future
avenues of research using such an approach.

I. INTRODUCTION

This paper presents an analytic modeling approach for
performability analysis of a cloud service using interact-
ing stochastic process models. To analyze large scale
cloud systems, the overall system model is composed of
interacting sub-models and the solution is obtained by
iterating over the sub-models. Such an approach provides
a model that is tractable, scalable and yet of high fidelity.
Using service unavailability (defined as the job rejection
probability) and mean provisioning response delay as the
two quality-of-service measures, we evaluate the effects
of changes in job-arrival, service time, and the effects of
system capacity on the cloud service quality.

System Model and Assumptions. We consider
infrastructure-as-a-service (IaaS) cloud. Amazon EC2 [1]
and IBM SBDT Cloud [2], [3] are examples of such
services. In such systems, in response to a user request,
pre-built images are used to create Virtual Machine (VM)
instances. When the VM instances are deployed, they
are provisioned with request specific CPU, RAM, and
disk capacity. VMs are deployed on Physical Machines
(PMs) each of which may be shared by multiple VMs. To
reduce overall VM provisioning delays and operational

costs, we assume that PMs are grouped into three server
pools; hot (i.e., running), warm (turned on, but not ready)
and cold (turned off). A pre-instantiated VM can be
provisioned and brought to ready state on hot PMs with
minimum provisioning delay. Instantiating a VM from
an image and provisioning it on a warm PM needs
additional provisioning time. PMs in the cold pool need
additional startup time to be turned on before a VM
deployment.

In the subsequent discussions we use the term job to
mean a user request for provisioning a VM and making
it available for use to a cloud user. We assume that all
requests are homogeneous where each request is for one
VM with fixed size CPU cores and RAM.

User requests (i.e., jobs) are submitted to a global
resource provisioning decision engine (RPDE) that pro-
cesses requests on a first-come, first-served (FCFS) basis
as follows. The request at the head of the queue is
provisioned on a hot PM if there is capacity to run a
VM on one of the hot PMs. If all hot PMs are serving
jobs, a PM from warm pool is used for provisioning the
requested VM. If all warm PMs are busy, a PM from
cold pool is used. If none of these PMs are available, the
request is rejected (service unavailable). When a running
job exits, the capacity used by that VM is released and
becomes available for provisioning the next job. Failures
in PMs can lead to reduction in available capacity and
repairs lead to refurbishing the available capacity.

Problem Statement. For the above described sce-
nario, we investigate how changes in job arrivals, job
service time and available system capacity can affect the
provisioning response delays and the service availability
to user requests.

II. OUR APPROACH

Shown in Figure 1 is the life-cycle of a job as it
moves through system. In the following, we describe

three pure performance models (resource provisioning
decision, VM provisioning, run-time) and an availability
model capturing the PM failures and repairs.

A. Model descriptions.

(1) Resource provisioning decision model. This is
a homogenous continuous time Markov chain (CTMC)
where all sojourn times are exponentially distributed
[4]. We assume a finite length provisioning decision
FCFS queue, where a job inserted in the queue waits
for its provisioning decision until decisions are taken
for all jobs ahead of it in the queue. In our model, we
increase buffer length with system capacity (maximum
number of VMs that can simultaneously run across
all the machines in cloud). Outputs of this model are
job rejection probability due to buffer full (Pblock),
rejection probability due to insufficient capacity (Pdrop),
mean queuing delay (E[T

q dec
]) and mean decision delay

(E[T
decision

]) conditional upon the job being accepted
(assuming no PM failure). These output measures are
computed by assigning proper reward rates to each state
of the CTMC [4].

(2) VM provisioning model. A PM can accept a
job for provisioning only if it has sufficient capacity to
execute the job. VM provisioning models capture the
actual provisioning and deployment of requested VMs
to accepted jobs. For each hot, warm and cold server,
we design one CTMC which keeps track of the number
of VMs running. VM provisioning model of a pool is
the union of individual provisioning models of each PM
in that pool. These models provide the probability that a
PM in a pool can accept a job for resource provisioning,
mean queuing delay within each PM (E[T

q vm
]), and the

weighted mean VM provisioning delay (E[T
prov

]).
(3) Run-time model. Once a job is successfully

provisioned, it utilizes the resources until its execution
is complete. We design a Discrete Time Markov Chain
(DTMC) to capture the details of job execution and to
compute mean resource holding time [4].

Resource

Provisioning

Decision

Engine

Run-time

Execution
Instance

Creation
Deploy

Job rejection

due to buffer full

Job rejection due to

insufficient capacity

Arrival Queuing Provisioning

Decision
Instantiation

VM

deployment
Actual Service Out

Provisioning response delay

Admission

control

Fig. 1. Request provisioning and servicing steps in IaaS cloud.

(4) Availability model. Availability model determines
the steady state probability of a certain number of PMs
being available. We assume that mean time to failure
(MTTF) of warm PMs is at least 2−4 times longer than
that of hot PMs, and cold PMs do not fail. Failure of
a PM in one pool also triggers migration of a new PM
from other pools.

(from resource provisioning

decision model, and from VM

provisioning model)

reject
P

VM

provisioning

models

Effective job rejection probability and effective mean response delay

Availability

model

h
P

c
P

h
P

Hot pool

model

Warm pool

model

Cold pool

model

Resource

provisioning

decision model

Run-time

model

block
P

h
P

w
P

w
P

/1
/1

/1

block
P

block
P

Pure

performance

models

Outputs from pure

performance models

][][][][][
__ provvmqdecisiondecqresp

TETETETETE

(from resource provisioning decision model)

][],[
_ decisiondecq

TETE

][],[
_ provvmq

TETE

Fig. 2. Interactions among the sub-models.

B. Model Interactions, Performability

Interactions among sub-models are shown as an im-
port graph [5] in Figure 2. For a particular type of a
job, run-time model provides mean resource holding time
(1/µ). This output is utilized as an input parameter to
each type (hot, warm or cold) of the VM provisioning
model. VM provisioning models compute the probabili-
ties (Ph, Pw and Pc) that at least one PM in a particular
pool (hot, warm and cold, respectively) can accept a
job for provisioning. These probabilities are used as
input parameters to the resource provisioning decision
model. Resource provisioning decision model computes
blocking probability (Pblock) due to buffer full, rejection
probability due to insufficient capacity (Pdrop) and net
job rejection probability (Preject as sum of Pblock and
Pdrop). The net mean response delay (E[T

resp
]) is also

computed from pure performance models. Two compo-
nents (E[T

q dec
], E[T

decision
]) of net mean response delay

are obtained from the resource provisioning decision
model and two other components (E[T

q vm
], E[T

prov
])

are computed from VM provisioning models. In the top-
most availability model, (E[T

resp
], Preject) are used as

reward rates to compute effective mean response delay
and effective job rejection probability. We note that there

Increasing capacity

(a)

Marginal gain

due to increase

in capacity

Increasing capacity

(b)

Marginal gain due

to increase in capacity

Fig. 3. Effect of (a) arrival rate and (b) job service time on effective job rejection probability.

Increasing capacity

(a)

Marginal gain

due to increase in capacity Increasing capacity

(b)

Fig. 4. Effect of (a) arrival rate and (b) job service time on effective mean response delay.

are cyclic dependencies among the sub-models. Pblock

computed in the provisioning decision model is used as
an input parameter in VM provisioning models. How-
ever, to solve the resource provisioning decision model,
outputs from VM provisioning models (Ph, Pw, Pc) are
needed as input parameters. This cyclic dependency is
resolved via fixed-point iteration.

III. NUMERICAL RESULTS

We evaluated cloud services for two metrics; (1)
effective job rejection probability and (2) effective mean
response delay (conditional upon being accepted). Here
we highlight the salient results to show the effects of
changes in job arrival rates, mean service time of jobs
and system capacity (number of PMs in each pool).

In all cases, we assume exponential distribution for
inter-arrival times, service times and PM failures/repairs;
though these restrictions can be and will be relaxed in
the future. Models were solved using the SHARPE [6]
software package. Figure 3(a) shows, at a fixed mean
service time, increasing arrival rate increases effective
job rejection probability. This effect is more pronounced
if the system capacity is low. Increasing system capacity
reduces effective job rejection probability. Although,
marginal gain (reduction in job rejection probability, as
shown by vertical arrows) diminishes with increasing
capacity. Similar effect can be observed in Figure 3(b)
where mean service time is increased at a given arrival
rate. Figure 4(a) shows that with increasing arrival rate,
effective mean response delay increases for a fixed

number of machines in each pool. Keeping the arrival
rate same, increasing PMs in each pool reduces mean
provisioning delay. Similar effect of increasing mean
service time and system capacity on mean provisioning
delay is shown in Figure 4(b).

IV. FUTURE RESEARCH

(1) Capacity planning. Results show that system
capacity is tightly coupled with a variety of system/job
parameters. We want to determine the optimal capacity
of a cloud system that can uphold the given SLA
requirements. (2) Energy profiling. Based on the gran-
ularity of energy consumptions (joules per core or joules
per server), our models can be exploited to compute
energy consumptions through reward rate assignments.
(3) Heterogenous requests. We want to evaluate the
impact of request heterogeneity [7] (different job types
having different arrival rates and service time param-
eters) on cloud services. (4) Model verification and
validation. We have developed a stochastic Petri-net
based model as a monolithic model to cross-validate
the interacting Markov chains model approach. Models
will also be validated against simulative solution and real
measurements.

V. CONCLUSIONS

We evaluated QoS measures of cloud services
through interacting analytical models. Using this ap-
proach, model complexity can be reduced significantly
without removing realistic features. We believe that the
general approach and results presented in this paper will
be very useful to solve specific problems for public,
private and hybrid cloud systems.

ACKNOWLEDGMENTS

Research by Duke authors was supported in part
under a 2009 IBM Faculty Award and a NSF grant
NSF-CNS-08-31325. Authors would like to thank Dan
Dias and Murthy Devarakonda from IBM Research for
their support. This work was completed during Rahul’s
internship at IBM T. J. Watson Research Center.

REFERENCES

[1] “Amazon EC2,” http://aws.amazon.com/ec2.
[2] “IBM SBDTC,” http://www-180.ibm.com/cloud/enterprise/beta/dashboard.
[3] “IBM Cloud,” http://www.ibm.com/ibm/cloud/.
[4] K. S. Trivedi, Probability and Statistics with Reliability, Queuing

and Computer Science Applications. Wiley, 2001.
[5] G. Ciardo and K. S. Trivedi, “A decomposition approach for

stochastic reward net models,” Performance Evaluation, vol. 18,
no. 1, pp. 37–59, July 1993.

[6] K. S. Trivedi and R. Sahner, “SHARPE at the age of twenty
two,” ACM Perf. Eval. Rev., March 2009.

[7] P. Garbacki and V. Naik, “Efficient resource virtualization and
sharing strategies for heterogeneous grid environments,” in Pro-
ceedings IM, 2007.

