
RC25051 (W1010-013) October 6, 2010
Electrical Engineering

IBM Research Report

Locally Connected Processor Arrays for Matrix
Multiplication and Linear Transforms

Chai Wah Wu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Locally Connected Processor Arrays for Matrix
Multiplication and Linear Transforms

Chai Wah Wu
IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA

contact email: chaiwahwu@ieee.org

Abstract—Cellular Neural Networks is a multiprocessor com-
puting architecture where the processors are only directly con-
nected to nearby processors. This results in a trade off between
the number of connections between processors and the number of
steps needed to perform global computation. We consider such
a locally connected computing architecture and present some
preliminary analysis on this trade off and study this architecture’s
applicability to the specific problem of matrix multiplication
including linear transforms applications such as 1-D and 2-
D DCT and DWT. We illustrate that in general there is a
trade-off between the following 3 parameters: the number of
iterations needed to perform the global computation, the amount
of memory in each processor and the connectedness of the graph.
This latter parameter is expressed as the relative diameter of the
computer architecture graph with respect to the problem graph.

I. INTRODUCTION

Cellular Neural Networks (CNN) [1] is a multiprocessor
computing architecture where the processors are only directly
connected to nearby processors. Each processor contains com-
pute units and memory. At the outset, each processor’s con-
tains data pertinent to the problem at hand. This is a particu-
larly common arrangement in CNN vision-related applications
where each processor is located near a sensor and processes
the sensor data [2]. How the processors are connected plays an
important role in the capabilities of the system. The locality of
the processors’ communication means that it cannot perform
global computations that require knowledge of the data in all
the processors, at least not in one step. However, one can trade
off space connectivity with time. Over several iterations, data
dissemination from processors to neighboring processors will
be able to propagate information to all the processors allowing
global computation to occur.

In this paper, we look at some aspects of this trade-off by
studying a general locally connected computing architecture.
In particular, the feasibility of using such an architecture
for performing matrix multiplication will be investigated. As
an example, we illustrate the possibility of using such an
architecture for performing DCT and DWT.

The question of locality in distributed algorithms was
studied in [3], [4] where the focus is on graph theoretical
algorithms such as graph coloring and finding the maximal
independent set. Our focus here is on signal and image
processing applications that CNN is especially suitable for.

II. NOTATIONS AND DEFINITIONS

Definition 1 (Relative diameter): Given two graphs with
the same vertex set V , the diameter of graph GA =
(V,EA) relative to graph GB = (V,EB) is defined as
max(v,w)∈EB

distGA
(v, w), where distGA

(v, w) is the distance
between vertices v and w in graph GA. We denote this as
diamGB

(GA).
Note that the normal definition of diameter is the same as

the diameter relative to the complete graph. Also note that the
diameter of a connected graph relative to any graph is finite.

Definition 2: The r-neighborhood of a vertex v in graph G
(denoted as Br(v,G)) is defined as the set of vertices that is
at most a distance r from v. We adopt the convention that
v ∈ Br(v).

Definition 3: The matrix of a graph (V,E) of order n is an
n by n matrix A such that Aij = 1 if and only if (vi, vj) ∈ E
and 0 otherwise.
Note that the matrix of a graph depends on a specific labeling
of the vertices to the integers {1, · · · , n}.

Definition 4: The graph of a n by n matrix A is the graph
on n vertices such as there is an edge between vertex i and
vertex j if and only if Aij 6= 0.

We consider the following locally connected computing ar-
chitecture. A computer (G,M, {fi}, {ui}) consists of proces-
sors as vertices located on a graph G = (V,E), where for each
i ∈ V , the processor vi contains M (local) memory locations
mj
i , j = 1, 2, . . . ,M . At each iteration t, each processor vi

computes a function using the data in its memory locations
and the memory locations of its neighbors and stores them in
the memory locations, overwriting the previous content, i.e.
it computes mj

i (t) = f ji (∪k∈B1(vi,G),1≤l≤mm
l
k(t − 1), t) for

each 1 ≤ j ≤ M . The output of the computer is defined as
yi(t) = ui(∪jmj

i (t)) for each i ∈ V .

III. TRADE-OFF BETWEEN CONNECTIVITY, TIME AND
MEMORY

In a CNN architecture the processors are locally connected,
i.e. the graph G is a locally connected graph. We would like
to know what the trade-offs are in terms of connectivity of the
graph, the time it takes to compute the result and the memory
needed. The following simple result shows that it is possible
to compute anything a more densely connected architecture
can do, but at a cost of increased time and memory:

Theorem 1: Assume that GA and GB have the same vertex
set V . Consider a computer CB = (GB ,MB , {fBi }, {uBi })

computing {yji } in one step. Then for any graph GA there exist
a computer CA = (GA,MA, {fAi }, {uAi }) computing {yi} in
d steps where d = diamGB

(GA) and MA = |V |MB .1

Sketch of Proof: Since MA = |V |MB , each processor v in
CA has enough storage to store the data in all the processors
of CB . For 1 ≤ t < d, let fAi be defined as the function
that propagate the data in the memory to the memory of its
neighbors in the appropriate slots. At iteration d − 1, all the
data in each processor or its neighbors in GB is either in
local memory or the memory of its neighbors in GA. The
d-th iteration will serve to compute the final result. 2

This result shows that the number of iterations needed to
mimic the other machine is d. The discussion about the prop-
agation of data in the proof also shows that this is the minimal
number of iterations needed; there exists computations for
which at least d− 1 steps are needed to propagate the data to
all the necessary nodes.

However, the requirement on the memory of CA in Theorem
1 is quite conservative and we like to know what the minimal
amount of needed “extra” memory is. In the following section,
we look at this issue for the problem of matrix multiplication
which include linear transforms such as DCT and DWT.

IV. MATRIX MULTIPLICATION

Consider the case where each fi computes vector weighted
sums of data in the memory locations of the processor and
its neighbors and store the result into the local memory. Thus
each iteration corresponds to a matrix multiplication operation
with the vector of data in memory.

For the simplest case where each processor has a scalar
memory location (i.e. M = 1), the corresponding problem is
the following: Given a matrix A and a graph G, find a set of d
matrices Ai such that ‖A− πiAi‖ ≤ δ for some δ > 0 under
the constraint is that the graph of each Ai is a subgraph of G.2

What can we say about d, the number of matrices in the set
{Ai}? It is easy to show that in general the number d needs
to be at least distGA

(G) where GA is the graph of the matrix
A. Furthermore, by counting the degree of freedom in A and
Ai as the number of nonzero elements, we see that in general
we also require d to be at least

⌈
n(A)
n(G)

⌉
where n(A) is the

number of nonzero elements in A and n(G) is the number of
nonzero elements of the adjacency matrix of G. For a specific
matrix A, this latter constraint on d might not be needed.

A. Discrete Cosine Transform (DCT)

Consider the n by n orthogonal matrix C corresponding to
the 1-D DCT of size n: C1j = 1√

n
cos
(
π
n

(
j − 1

2

)
(i− 1)

)
for j = 1, · · · , n and Cij =

√
2
n cos

(
π
n

(
j − 1

2

)
(i− 1)

)
for

i = 2, · · · , n, j = 1, · · · , n.
Consider a CNN topology where the processors are arranged

in a line and each processor only communicates with its

1Assuming that d is finite.
2Since each processor can access its own local memory, we assume that

all the graphs G we consider has self-loops added, i.e. there is an edge from
each vertex to itself.

nearest neighbors. This means the the underlying graph is the
path graph Pn. The graph of the matrix C is the complete
graph Kn. To implement this on a path graph Pn topology
would require at least n − 1 iterations since the diameter of
Pn is n − 1.3 Let us consider the case n = 8. For various
values k, we use a line-search algorithm to find a set of k
matrices Ai such that ‖C − πAi‖ is minimized with each of
the graph of Ai a subgraph of P8. The matrix norm used will
be the Frobenius norm. Figure 2 shows the minimal value of
this norm found for various values of k and various types of
graphs. As can be seen, a transition occurs at k = 7 for the
path graph, in accordance with the above conclusion that at
least 7 matrices are needed to approximate C.

As an illustration, the following set of 7 matrices Ai when
multiplied together generate a matrix A1A2 · · ·A7 that is close
to the 1-D DCT matrix C of order 8. Each Ai is tridiagonal
and thus has P8 as its graph.

1.162 −0.802
0.573 0.887 −1.250

0.719 1.273 1.399
1.328 0.480 0.462

−1.027 −0.418 −0.490
0.888 0.044 1.478

−1.540 −0.466 −0.039
0.969 1.029

0.784 0.037
0.194 −0.455 0.994

1.165 0.579 0.749
0.083 0.946 −0.047

−0.479 0.678 −0.232
0.332 0.555 0.673

−0.503 0.604 0.663
0.321 −1.044

−0.301 0.591
0.746 0.899 0.237

−0.123 1.227 −1.257
−0.242 1.027 −0.469

0.219 0.058 0.768
0.672 −0.070 0.073

0.129 0.129 1.212
1.295 0.110

−0.784 0.006
0.598 −0.036 1.156

0.854 −0.488 −0.413
−0.584 0.571 −0.445

0.516 0.761 −0.267
−0.025 0.458 0.923

−1.008 0.581 −0.654
−0.023 −0.841

0.798 0.735
0.719 −0.516 −0.292

−0.001 0.389 1.251
−0.674 0.142 0.305

0.666 −0.405 0.425
0.410 0.971 −0.194

0.386 0.891 0.570
0.681 −0.362

0.804 −0.415
0.344 0.290 0.886

1.093 −0.169 0.286
0.797 −1.048 0.607

0.343 0.488 0.603
0.774 −0.357 1.134

0.630 0.919 −0.991
0.350 0.446

1.409 0.758
0.783 −1.612 0.867

0.446 0.914 0.352
1.364 −0.404 −0.037

−0.760 0.767 0.191
−0.536 1.141 1.023

0.796 0.016 −1.644
0.954 −0.270

3One can see that the FFT butterfly network is equivalent to the case where
the coupling graph can change at each iteration. At each iteration, each graph
is a disconnected set of n/2 edges. Because of the time-varying nature, each
node can connect to every other node in log2(n) iterations.

Consider now processors arranged on a 2-D grid graph (Fig.
1). Since the 2-D DCT is separable into 1-D DCTs applied to
the rows and columns sequentially, the result for the path graph
can be applied here first row-wise and then column-wise and
this shows that the 2-D DCT of order 64 can be computed on
the grid graph topology in 7+7 = 14 iterations. Thus we can
implement an order 64 2-D DCT on a CNN architecture where
each processor performs 3 multiply-and-add’s in parallel and
repeat for 14 iterations.

Fig. 1. 2-D 8 by 8 grid graph.

Figure 2 also shows that the star graph topology and the
balanced binary tree4 topology (Fig. 3) can approximate C
using fewer matrices at k = 6 and k = 5 respectively.

1 2 3 4 5 6 7 8 9
k

10-5

10-4

10-3

10-2

10-1

100

101

m
in

im
u
m

 F
ro

b
e
n
iu

s
n
o
rm

 o
f
C
−
π
iA

i

path
star
binary tree

Fig. 2. Minimum Frobenius norm of C − πiAi for various values of k and
graph topologies.

This indicates that among the 3 types of spanning trees
(path, star and balanced binary tree), the binary tree is a better

4defined as a binary tree with the smallest diameter.

Fig. 3. Balanced binary tree of 8 vertices.

topology to compute the DCT. From the degree of freedom
discussion earlier, a matrix whose graph is a spanning tree
will have 8 + 7 + 7 = 22 nonzero entries, and thus we
expect to require at least

⌈
64
22

⌉
= 3 matrices Ai to form an

adequate approximation of C. Numerical experiments indicate
that among all spanning trees (which necessarily have 7 edges)
at least 5 matrices are needed. On the other hand, by adding a
single edge to the balanced binary tree in Fig. 3, we obtain the
following graph of 8 edges (Fig. 4), for which only 4 matrices
are needed.

Fig. 4. A graph of 8 edges for which only 4 matrices are needed to
approximate C.

How many edges does the graph need to have in order
to require only 3 matrices to approximate C? It turns out a
graph of 10 edges is sufficient. For instance, the graph in Fig.
5 obtained by adding 3 edges to Fig. 3 is such that only 3
matrices with this graph as the matrix graph are sufficient to
approximate C. For instance the following 3 matrices when
multiplied result in a matrix that is close to C.

0.145 0.584 1.214 −0.334
0.145 0.857 −0.543 −0.766

−0.096 0.568 1.012
1.050 0.616

−1.175 1.211
1.099 −0.448 −0.255 −0.922

−0.070 0.262 0.940 0.229
0.671 0.783 −0.762 0.296 −0.770

−0.717 0.509 0.206 −0.355
−1.069 −1.820 1.182 −0.953

−0.845 0.179 −0.390
−0.976 −0.810

−0.166 1.166
0.539 −0.611 −0.862 −0.958

0.497 −0.399 0.612 0.511
−0.491 −0.209 0.833 −0.683 −0.275

0.508 −0.919 −0.400 0.799
0.914 −1.008 0.182 −0.207

−1.156 −0.408 0.531
−1.148 0.879

0.268 1.158
0.769 1.165 1.198 0.329

−0.175 0.879 1.458 0.401
−0.558 −0.337 0.849 −0.849 −0.380

Fig. 5. A graph of 10 edges for which only 3 matrices are needed to
approximate C. The diameter of this graph is 3.

B. Discrete Wavelet Transform (DWT)

The number of steps needed to compute a full matrix A
using sparse matrices Ai depends on the entries of A. Let
us study another widely use linear transform and compare it
with the DCT. Consider the 1-D 3-stage Cohen-Daubechies-
Feauveau 9/7 discrete wavelet transform of order 8 and apply
the same procedure to construct a sequence of matrices whose
product approximates the DWT matrix (denoted as W). In
Table I we show the number of steps needed to approximate
the DCT matrix C and the DWT matrix W for various graph
topologies:

diameter DCT matrix C DWT matrix W
Path graph P8 7 7 7
Star graph 2 6 7
Balanced tree (Fig. 3) 4 5 5
Fig. 4 3 4 4
Fig. 5 3 3 3

TABLE I
NUMBER OF STEPS TO APPROXIMATE THE MATRICES C AND W FOR

VARIOUS GRAPH TOPOLOGIES.

We see that approximating the DWT matrix is similar to the
DCT case (with the exception of the star graph), although we
noticed that the optimization algorithm seems to have more
difficulty finding a solution in the DWT case, suggesting that
the DWT is a “harder” transform than the DCT.

V. TRADE-OFF BETWEEN MEMORY AND NUMBER OF
ITERATIONS

Recall that from Theorem 1 the global computation can be
performed in d steps on a locally connected architecture with
sufficient auxiliary memory storage. On the other hand, the
numerical results above show that for the 2 graphs in Figs.
3-4, the number of steps required is 1 more than the diameter
d. This is because the number of memory locations in each
processor is 1, the same as the global problem of computing
C and presumably there is not enough degrees of freedom

for the sparse matrices to approximate C. If we increase the
number of memory locations in each processor to 2, and have
each processor compute a weighted sum of its own data and
those of its neighbors, then numerical experiments show that
we could approximate the matrix C in d steps, the minimal
required.

Consider next the star graph. This graph has diameter 2.
For M = 1, the number of steps required is 6. Figure 6 shows
that as we add memory to each processor, the number of steps
needed decreases until at M = 5 the number of steps needed
is 2, which is the minimum dictated by the diameter.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Memory locations per processor (M)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

N
u
m

b
e
r

o
f

st
e
p
s

n
e
e
d
e
d
 t

o
 a

p
p
ro

x
im

a
te

 1
D

 D
C

T

Star graph

Fig. 6. Number of iterations needed to approximate C versus the number
of memory locations in each processor for the star graph topology.

VI. CONCLUSIONS

We consider a locally connected computer architecture such
as the CNN and study its feasibility in implementing global
computations such as DCT and DWT. In particular, we show
that for the 2-D DCT of order 64, processors located on a
locally connected 2-D grid can approximate it in 14 iterations.
In general, there is a trade-off between the following 3
parameters: the number of iterations, the amount of memory in
each processor and the connectedness of the graph. This latter
parameter is expressed as the relative diameter of the computer
architecture graph with respect to the problem graph. More
research is needed to determine the exact nature of this trade-
off and perhaps the insights gained can be used to choose the
optimal topology in a CNN architecture design.

REFERENCES

[1] L. O. Chua and T. Roska, “The CNN paradigm,” IEEE Transactions on
Circuits and Systems-I, vol. 40, pp. 147–156, mar 1993.

[2] B. J. Sheu, K.-B. Cho, and W. C. Young, “Integration of sensor/processor
under cellular neural networks paradigm for multimedia applications,” in
Proceedings of Fifth IEEE International Workshop on Cellular Neural
Networks and Their Applications (CNNA), 1998, pp. 45–49.

[3] B. Awerbuch, M. Luby, A. Goldberg, and S. Plotkin, “Network decom-
position and locality in distributed computation,” in Proceedings of 30th
Annual Symposium on Foundations of Computer Science (FOCS), 1989,
pp. 364–369.

[4] N. Linial, “Locality in distributed graph algorithms,” SIAM J. Computing,
vol. 21, no. 1, pp. 193–201, 1992.

