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Abstract 

 

In this paper we present our recent research and development work for multicore computing of 

Line of Sight (LoS) on the Cell Broadband Engine (CBE) processors.  LoS can be found in many 

applications where real-time high performance computing is required. We will describe an 

efficient LoS multi-core parallel computing algorithm, including the data partition and 

computation load allocation strategies to fully utilize the CBE’s computational resources for 

efficient LoS viewshed parallel computing.  In addition, we will also illustrate a successive fast 

transpose algorithm to prepare the input data for efficient Single-Instruction-Multiple-Data 

(SIMD) operations.  Furthermore, we describe the data input and output (I/O) management 

scheme to reduce the (I/O) latency in Direct-Memory-Access (DMA) data fetching and storing 

operations.  The performance evaluation of our LoS viewshed computing scheme over an area of 

interest (AOI) with more than 4.19 million points has shown that our parallel computing 

algorithm on CBE takes less than 2.3 ms, which is more than 15 times faster than the computation 

on an Intel x86 system. 

 

1. Introduction 
High performance real-time Line-of-Sight (LoS) viewshed   computation has important 

applications in civil, defense, and military operations.  In these applications, the visibility 

from an observation or target point to other points within an area of interest (AOI) needs 

to be determined.  The map of all visible points in the AOI from that given point 

constitutes the LoS viewshed. In general, the problem of LoS viewshed computation is to 

determine the visibility of all points in an AOI from the given observation or target point. 

Some real-time applications often require the LoS viewshed computation to be performed 

faster than the real-time to save time for subsequent operations.  The run-time 

performance of current available commercial software packages ESRI ArcGIS (3D 

Analysis/Viewshed) [3] and MicroDEM [4] are in order of magnitudes slower than the 

real-time. For examples, to compute viewshed over a square of 2047x2047 grid points, it 

takes ESRI ArcGIS 61,000 milliseconds and MicroDEM 17,000 milliseconds on a 2.4 

GHz Core II Duo computer, respectively. Therefore new and efficient parallel computing 

algorithms for LoS viewshed are needed to enable and support faster than real-time 

application. 

 

The calculation of the LoS viewshed involves computing the visibility of all the points in 

AOI.  Determining the visibility of a point Pt takes two steps.  The first step is to compute 

the coordinates of the points on the line between the observation point P0 and Pt .  In the 

discrete coordinate system, a line is represented by a zig-zag approximation as shown in 

Figure 1(a).  We use IBM’s well known Bresenham Line Drawing Algorithm to 



determine the coordinates of the points on the line.  The second step is to calculate the 

slope in elevation between P0 and Pt to determine the visibility of Pt, as shown in Figure 

1(b).  The slope is determined by the ratio of the difference in the elevation over the 

distance between Pt and P0.  If the slope is larger than the maximum slope among all 

previous points on the same line, then Pt is visible from P0; otherwise P0 is invisible.  

These two steps can be combined and simplified to optimize the viewshed computing. 

For significant size of AOI, real-time LoS viewshed calculation in general requires a high 

performance computer system.  For convenience, we use the square shaped AOI. 

However the parallel computing algorithm we describe here can be extended to AOI with 

different shapes. The square AOI can be defined by a parameter R to represent a (2R+1) 

by (2R+1) square.  The input elevation data is typically the Digital Elevation Model 

(DEM) images in GTIF file format.   

Figure 1. (a) Bresenham Algorithm to draw a line from point P0 to  Pt; (b) the Angle 

algorithm to calculate the elevation slope and compare it with the previous maximum 

slope to determine its visibility;  

 

The Cell Broadband Engine (CBE) or Cell [2] in short was jointly developed by Sony, 

IBM, and Toshiba for Sony’s PlayStation video game consoles.  CBE is a heterogeneous 

multiprocessor chip consisting eight synergistic processing elements (SPEs) that are 

coordinated by a PowerPC Processing Element (PPE) (Figure 3). The SPEs execute 32-

bit wide instructions in Single Instruction Multiple Data (SIMD) operations on four 

parallel 32-bit words and 128-bit registers. The PPE also has 128-bit vector processing 

capability. All the elements are connected to an internal Element Interconnect Bus (EIB). 

An on-chip Memory Interface Controller (MIC) is also connected to the EIB. SPEs and 
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PPE access the system main storage by asynchronous Direct Memory Access (DMA) 

through MIC and the Rambus XDR IOs. Such asynchronous DMA design provides high 

speed data transfer with a total bandwidth of 25.6 GB/s and concurrent computation 

operations. The Cell Broadband Engine Interface (BEI) provides communications with 

the rest of the system through the high speed Flex IO interface. In short, CBE is designed 

for running computation intensive SIMD applications with large data volume; it provides 

a very impressive computing power with an aggregate performance of 204.8 Giga 

FLOPS at a 3.2 GHz operating frequency.   

In this paper, we will present our new work on developing better than real-time parallel 

computing of LoS viewshed on Cell. Specifically, we will describe an efficient parallel 

computing algorithm, including data partition scheme, successive byte shuffle algorithm 

for data transpose for SIMD opeartion, and data input and output managing strategies to 

leverage the computing power and throughput of the Cell computer to efficiently 

calculate LoS viewshed. We will also show an exemplary client-server system for the 

application. Our test results have shown that our Cell based LoS computing algorithm can 

perform more than 15 times faster than that on Intel’s x86 system. 

 

The rest of the paper is organized as the follows. In Section 2, we will describe the LoS 

viewshed parallel computing algorithm on Cell, including data partition, computation 

load distribution, and SIMD parallel computing in SPEs; then in Section 3, we will 

illustrate a successive byte shuffle algorithm to transpose data for SIMD; in Section 4, we 

will present our data input and output strategies to minimize the overall latency; and In 

Section 5 we will show the test performance of our algorithm. 
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Figure 2.  An example of the AOI data partition scheme 



 

2. LoS Viewshed Parallel Computing on CBE 

One important issue in parallel computing algorithm design for LoS viewshed application 

is how to partition the data and distribute the computing load of the LoS problem to 

efficiently utilize the resource and HW/SW capabilities of CBE. The data partition and 

computation load allocation will directly impact the LoS viewshed computing 

performance.  In this section we will describe our strategies and schemes on data partition 

and work load distribution. 

 

2.1 Data Partition Strategy for Parallel Computing 

From the LoS algorithm description in the previous section, we can see that the visibility 

of a point on a line depends on the maximum elevation slope of all previous points.  To 

maximize the LoS parallel computing efficiency, we need to partition the data into sub-

areas such that each sub-area can be processed independent from the other sub-areas.  

Furthermore, to fully utilize the parallel computing resources and capability of a CBE 

with 8 SPEs and 1 PPE, we also need to allocate the computation load wisely among the 

processors.  Since PPE is designed for launching SPEs and data IO operations between 

the CBE and the external storage, it is more suitable for the control logic, i.e., playing the 

managing and bookkeeping roles.  

 

For the given AOI, we partition it into sub-areas in such a way that a ray coming out from 

the observation point will intersect with only one sub-area as the ray grows.  Figure 2 

shows an example of our data partition method. We partition the AOI of a (2R+1) by 

(2R+1) square into 8 octants; the lines of sight grow out of the center observation point 

will not intersect with more than one octant. Such partition can enable the independent 

computing of each and every octant by a processor while the redundancy in data fetching 

and store is minimized. 

 

 

             
 

Figure 3.   LoS viewshed computation load distribution on CBE 
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2.2 Computation Load Distribution 

We use 8 SPEs and 1 PPE of the CBE to do the LoS viewshed parallel computation work.  

To make efficient use of the characteristics of SPE and PPE, we assign each SPE to 

compute the LoS viewshed for one octant of the AOI while use PPE for the 

administrative work, such as preparing the parameters and passing them to SPEs, 

initiating the tasks on SPEs, and assembling the results from SPEs.  Figure 3 illustrates 

the computation load partition in our LoS viewshed parallel computing scheme. 

 

 
         

                    Figure 4.  Parallel computing using SIMD operations in SPE 

 

 

3 Parallel Computing in SPEs 

One very important aspect of our LoS parallel computing scheme is about how to 

efficiently utilize the single-instruction-multiple-data (SIMD) capability, also known as 

vector processing.  Because the visibility of a point on a ray has dependency on the 

maximum slope of all previous points on that ray, parallel computation using SIMD 

operations can not be done on multiple points along the same ray.  However, we can 

apply SIMD operations on multiple points across the rays.  For example as shown in 
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Figure 4, in Octant 0, we need to grow R+1 rays from the center point where x=0 to the 

edge of the AOI where x = R.  For each step in x, we use SIMD operations to compute 

the visibilities of the points of 4 rays at the same x (as the yellow box shown in Figure 4) 

one step at a time, until the visibilities of all rays at that x (only y varies) are computed.  

In Octant 1, the same parallel computing scheme can be applied with x and y coordinates 

exchanged.  

 

From Figure 4, it can be seen that in order to apply SIMD in Octant 0, the DEM data of a 

4-point column needs to be loaded into the instruction register.  Since the physical 

memory is designed for data to be read from and write to in rows not in columns, it 

would require 4 memory-reads to fetch the data followed by several other instructions to 

put the needed bytes into the register.  Such process would be very inefficient.  We 

devised and implemented a novel scheme by fetching in the data in multiple rows and 

transposing the data using an efficient successive byte shuffle algorithm.   
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Fig. 5. Successive Byte Shuffling Algorithm for Data Transpose (a) Original 8x8 Data: 8 

vectors each with 8 data elements;  (b) After byte shuffles between v0 and v2, v1 and v3, 

v4  and v6, v5 and v7, respectively; (c) After byte shuffles between v0 and v4, v1 and v5,  

v2 and v6, v3 and v7, respectively;  (d) After byte shuffles between v0 and v1, v2 and v3, 

v4 and v5, v6 and v7, respectively. 

 p0 p1 p2 p3 p4 p5 p6 p7 

v0 D0 D1 D2 D3 D4 D5 D6 D7 

v1 D0 D1 D2 D3 D4 D5 D6 D7 

v2 D0 D1 D2 D3 D4 D5 D6 D7 

v3 D0 D1 D2 D3 D4 D5 D6 D7 

v4 D0 D1 D2 D3 D4 D5 D6 D7 

v5 D0 D1 D2 D3 D4 D5 D6 D7 

v6 D0 D1 D2 D3 D4 D5 D6 D7 

v7 D0 D1 D2 D3 D4 D5 D6 D7 

 p0 p1 p2 p3 p4 p5 p6 p7 

v0 D0 D1 D2 D3 D0 D1 D2 D3 

v1 D0 D1 D2 D3 D0 D1 D2 D3 

v2 D0 D1 D2 D3 D0 D1 D2 D3 

v3 D0 D1 D2 D3 D0 D1 D2 D3 

v4 D4 D5 D6 D7 D4 D5 D6 D7 

v5 D4 D5 D6 D7 D4 D5 D6 D7 

v6 D4 D5 D6 D7 D4 D5 D6 D7 

v7 D4 D5 D6 D7 D4 D5 D6 D7 

 p0 p1 p2 p3 p4 p5 p6 p7 

v0 D0 D1 D0 D1 D0 D1 D0 D1 

v1 D0 D1 D0 D1 D0 D1 D0 D1 

v2 D2 D3 D2 D3 D2 D3 D2 D3 

v3 D2 D3 D2 D3 D2 D3 D2 D3 

v4 D4 D5 D4 D5 D4 D5 D4 D5 

v5 D4 D5 D4 D5 D4 D5 D4 D5 

v6 D6 D7 D6 D7 D6 D7 D6 D7 

v7 D6 D7 D6 D7 D6 D7 D6 D7 

 p0 p1 p2 p3 p4 p5 p6 p7 

v0 D0 D0 D0 D0 D0 D0 D0 D0 

v1 D1 D1 D1 D1 D1 D1 D1 D1 

v2 D2 D2 D2 D2 D2 D2 D2 D2 

v3 D3 D3 D3 D3 D3 D3 D3 D3 

v4 D4 D4 D4 D4 D4 D4 D4 D4 

v5 D5 D5 D5 D5 D5 D5 D5 D5 

v6 D6 D6 D6 D6 D6 D6 D6 D6 

v7 D7 D7 D7 D7 D7 D7 D7 D7 



                    
3.1 Data Transpose Using Successive Byte Shuffling Algorithm 

We have devised an algorithm to transpose data using efficient SIMD byte shuffle 

operations successively.  Fig. 5 illustrates how the algorithm works by an example of 

transposing an 8x8 block of data. The elements of the 8x8 data block are loaded into 8 

vector variables or registers, v0, v1, …, v7, and each of the vectors holds 8 data elements 

in position p0, p1, …, p7, respectively, as shown in Fig. 5 (a). In this case, the algorithm 

completes the transpose in three successive steps with SIMD byte shuffle operations.  

 

Step 1:  Perform a 4x4 data block swap in the reverse diagonal direction, i.e., the 

data elements in position p4~p7 in v0~v3 are swapped with the elements in p0~p3 in 

v4~v7.  Fig. 5 (b) shows the results after the SIMD byte shuffle operations of this step. 

 

Step 2:  Perform 2x2 data block swaps, i.e., data elements in p2~p3 and p6~p7 in 

v0~v1 and v4~v5 are swapped with the data elements in p0~p1 and p4~p5 in v2~v3 and 

v6~v7, respectively.  Fig. 5(c) shows the results after the SIMD byte shuffle operations of 

this step. 

 

Step 3:  Perform 1x1 data block swaps, i.e., data elements in p1, p3, p5, and p7 in 

v0, v2, v4, and v6 are swapped with the data elements in p0, p2, p4, and p6 in v1, v3, v5, 

and v7, respectively.  Fig. 5(d) shows the results after the SIMD byte shuffle operations 

of this step.  

 

 

                     
 

               Figure 6.  Reflections of other octants with respect to Octant 0 or Octant 1  
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Once we developed efficient schemes to compute Octant 0 and Octant 1 using SIMD 

operations, the other octants can be treated as various reflections of Octant 0 or Octant 1 

and processed similarly as shown in Figure 6.  Specifically, Octants 3, 4, and 7 can be 

computed using the same method for Octant 0 with data transpose and special attention to 

negative axis increment.  Octants 2, 5, and 6 can be viewed as one of the flips of Octant 1 

and processed accordingly.  

 

4. DMA and Time-line Management 

Another important aspect in efficient parallel computing is the memory access and task 

time-line management. The SPEs access the system main memory through the Direct 

Memory Access (DMA) operations.  Because memory access requires certain time cycles 

to fetch or store data, if data is not available when a processor needs the data to process, it 

has to waits for the DMA operation to complete and becomes idle before it can proceed.  

This will result in the loss of computing cycles.  The objective of DMA operation time-

line management is to wisely parallelize the memory access operations with the 

computing processing to hide the DMA wait time and minimize or even eliminate the 

processor’s idle time so that the parallel computation performance can be maximized.  In 

this section, we will present our DMA double buffering scheme and their time-line 

arrangement aligned with the computation process in order to achieve the best attainable 

performance. 

 

                           
                 Figure 7.  DMA double buffer scheme to minimize wait time 
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4.1 DMA Double Buffering Scheme  

To hide the DMA operation time as much as possible, we devised a double buffering 

scheme to parallelize the operations of DMA and LoS viewshed computing.  Figure 7 

illustrates the double buffer scheme that parallelizes the operations of LoS computing and 

DMA data fetching of a SPE operating on an octant.  The octant is partitioned into bands 

of columns with certain width.  The entire band of data is fetched from the system 

memory into the SPE local store efficiently using the DMA list operation.  While the SPE 

processor is computing the LoS visibilities on the data in Band k that has been already 

read in and transposed in one data buffer, it is also fetching the DEM data of Band k+1 

into another data buffer into the SPE’s local store.  In the double buffering scheme, the 

data computing process and the data fetch or store processes are organized into parallel 

processes.  We used DMA double buffering schemes for the DEM data fetches as well as 

the viewshed result output stores and almost all DMA operation time have been hidden.  

The total SPE processors’ idle time has been reduced to negligible cycle numbers.  

For the octants that do not need data transposed, we also employed the DMA double 

buffering schemes for fetching DEM input data and storing viewshed output to 

effectively minimize the processor wait time.  

 

4.2 Data Processing and DMA Operation Time-line Management 

To minimize the processor’s idle time, the order and the alignment of the data 

computation process and DMA process are also extremely important.  The order of these 

processes need to be carefully planed and managed because the arrangement of the 

execution orders of these processes in the time-line will directly impact the over 

performance.  Figure 8 depicts the time-line orders for our LoS parallel computing on 

CBE.  As it can be seen, the DMA operations are mostly in parallel with the data 

computing process. 

 

 
               Figure 8.   LoS data processing and DMA operation alignment in time-line 
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5. Performance  

In order to facilitate the research and development for the LoS viewshed application, we 

developed a Graphic User Interface (GUI) tool for displaying the DEM image and 

viewshed results.  Figure 9 shows the GUI is displaying a DEM image; the AOI is a 

square in the green frame with a size of (2R+1)x(2R+1) and R is specified by the user.  

The calculated viewshed of this AOI is also displayed on the GUI with the visible points 

marked in red. The system we developed for LoS viewshed application is a server-client 

system as shown in Figure 10.  The server is running on a Cell Blade QS21 with 8 

Synergistic Processing Elements (SPEs) and one PowerPC Processing Element (PPE).  It 

also has main memory and file system installed. On the client side is an Intel x86 

computer (a desk-top or laptop PC) with the GUI installed for DEM data viewing and the 

computed viewshed displaying.  The server and the client are connected through a high 

data transport link.   

                                 

                          

                Figure 10.  Line of Sight AOI and computed viewshed displayed on GUI 

 

In the process, the user at the client side selects an AOI in the DEM image displaying on 

the GUI window and sends a request for LoS viewshed calculation to the server.  The 

DEM data in the specified AOI on the GUI window will be sent to the server.  The server 

then computes the LoS viewshed and sends the viewshed back to the client for overlay 

displaying in the GUI window. 

 



Table 1 presents the LoS time performance on CBE QS21 we have achieved. For 

comparison, we also implement the LoS viewshed calculation on an Intel 2 Duo 

CPU@2.2 GHz.  For (2R+1)x(2R+1) =2027x2027, the LoS performance on Cell is ~15x 

faster than that on the x86.  

 

     Table 1.  LoS Performance on CBE (Time in Milliseconds) 

R SPE 0 SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6 SPE 7 
PPE 

Proc 

Cell 

Total 
x86 

255 .300 .248 .286 .300 .300 .281 .250 .300 1.495 2.037 21.499 

511 1.216 0.903 1.019 1.249 1.223 1.002 0.907 1.272 5.729 7.276 95.380 

1023 5.266 3.213 3.692 5.324 5.354 3.678 3.212 5.330 19.809 25.421 378.81 

 

             Figure 10.  Server and client configuration for LoS viewshed system 
 

6. Conclusions 

In this paper we presented our work on high performance computing of LoS viewshed 

based on CBE. We described our efficient parallel computing algorithm by utilizing the 

HW resources and computation power of the CBE. We presented our strategies in data 

partition and work load distribution, and illustrated our data transpose algorithm using 

successive byte shuffling for efficient SIMD operations in SPEs. In addition, we showed 

how to timely align the LoS computing process and DMA IO operations to reduce the 

latency. Our results have shown that our LoS viewshed computation on CBE achieved 

faster than run-time performance.  
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