
RC25068 (W1010-109) October 27, 2010
Computer Science

IBM Research Report

High Performance Computing of Line of Sight Viewshed

Ligang Lu, Brent Paulovicks, Vadim Sheinin, Michael Perrone
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

High Performance Computing of Line of Sight Viewshed

Ligang Lu, Brent Paulovicks, Vadim Sheinin, and Michael Perrone

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598 USA

Abstract

In this paper we present our recent research and development work for multicore computing of

Line of Sight (LoS) on the Cell Broadband Engine (CBE) processors. LoS can be found in many

applications where real-time high performance computing is required. We will describe an

efficient LoS multi-core parallel computing algorithm, including the data partition and

computation load allocation strategies to fully utilize the CBE’s computational resources for

efficient LoS viewshed parallel computing. In addition, we will also illustrate a successive fast

transpose algorithm to prepare the input data for efficient Single-Instruction-Multiple-Data

(SIMD) operations. Furthermore, we describe the data input and output (I/O) management

scheme to reduce the (I/O) latency in Direct-Memory-Access (DMA) data fetching and storing

operations. The performance evaluation of our LoS viewshed computing scheme over an area of

interest (AOI) with more than 4.19 million points has shown that our parallel computing

algorithm on CBE takes less than 2.3 ms, which is more than 15 times faster than the computation

on an Intel x86 system.

1. Introduction
High performance real-time Line-of-Sight (LoS) viewshed computation has important

applications in civil, defense, and military operations. In these applications, the visibility

from an observation or target point to other points within an area of interest (AOI) needs

to be determined. The map of all visible points in the AOI from that given point

constitutes the LoS viewshed. In general, the problem of LoS viewshed computation is to

determine the visibility of all points in an AOI from the given observation or target point.

Some real-time applications often require the LoS viewshed computation to be performed

faster than the real-time to save time for subsequent operations. The run-time

performance of current available commercial software packages ESRI ArcGIS (3D

Analysis/Viewshed) [3] and MicroDEM [4] are in order of magnitudes slower than the

real-time. For examples, to compute viewshed over a square of 2047x2047 grid points, it

takes ESRI ArcGIS 61,000 milliseconds and MicroDEM 17,000 milliseconds on a 2.4

GHz Core II Duo computer, respectively. Therefore new and efficient parallel computing

algorithms for LoS viewshed are needed to enable and support faster than real-time

application.

The calculation of the LoS viewshed involves computing the visibility of all the points in

AOI. Determining the visibility of a point Pt takes two steps. The first step is to compute

the coordinates of the points on the line between the observation point P0 and Pt . In the

discrete coordinate system, a line is represented by a zig-zag approximation as shown in

Figure 1(a). We use IBM’s well known Bresenham Line Drawing Algorithm to

determine the coordinates of the points on the line. The second step is to calculate the

slope in elevation between P0 and Pt to determine the visibility of Pt, as shown in Figure

1(b). The slope is determined by the ratio of the difference in the elevation over the

distance between Pt and P0. If the slope is larger than the maximum slope among all

previous points on the same line, then Pt is visible from P0; otherwise P0 is invisible.

These two steps can be combined and simplified to optimize the viewshed computing.

For significant size of AOI, real-time LoS viewshed calculation in general requires a high

performance computer system. For convenience, we use the square shaped AOI.

However the parallel computing algorithm we describe here can be extended to AOI with

different shapes. The square AOI can be defined by a parameter R to represent a (2R+1)

by (2R+1) square. The input elevation data is typically the Digital Elevation Model

(DEM) images in GTIF file format.

Figure 1. (a) Bresenham Algorithm to draw a line from point P0 to Pt; (b) the Angle

algorithm to calculate the elevation slope and compare it with the previous maximum

slope to determine its visibility;

The Cell Broadband Engine (CBE) or Cell [2] in short was jointly developed by Sony,

IBM, and Toshiba for Sony’s PlayStation video game consoles. CBE is a heterogeneous

multiprocessor chip consisting eight synergistic processing elements (SPEs) that are

coordinated by a PowerPC Processing Element (PPE) (Figure 3). The SPEs execute 32-

bit wide instructions in Single Instruction Multiple Data (SIMD) operations on four

parallel 32-bit words and 128-bit registers. The PPE also has 128-bit vector processing

capability. All the elements are connected to an internal Element Interconnect Bus (EIB).

An on-chip Memory Interface Controller (MIC) is also connected to the EIB. SPEs and

pt

∆xt

∆yt

p0

pt

dt = √∆xt
2
+∆yt

2

pma

xt

yt

y0

x0

visible

block
et

PPE access the system main storage by asynchronous Direct Memory Access (DMA)

through MIC and the Rambus XDR IOs. Such asynchronous DMA design provides high

speed data transfer with a total bandwidth of 25.6 GB/s and concurrent computation

operations. The Cell Broadband Engine Interface (BEI) provides communications with

the rest of the system through the high speed Flex IO interface. In short, CBE is designed

for running computation intensive SIMD applications with large data volume; it provides

a very impressive computing power with an aggregate performance of 204.8 Giga

FLOPS at a 3.2 GHz operating frequency.

In this paper, we will present our new work on developing better than real-time parallel

computing of LoS viewshed on Cell. Specifically, we will describe an efficient parallel

computing algorithm, including data partition scheme, successive byte shuffle algorithm

for data transpose for SIMD opeartion, and data input and output managing strategies to

leverage the computing power and throughput of the Cell computer to efficiently

calculate LoS viewshed. We will also show an exemplary client-server system for the

application. Our test results have shown that our Cell based LoS computing algorithm can

perform more than 15 times faster than that on Intel’s x86 system.

The rest of the paper is organized as the follows. In Section 2, we will describe the LoS

viewshed parallel computing algorithm on Cell, including data partition, computation

load distribution, and SIMD parallel computing in SPEs; then in Section 3, we will

illustrate a successive byte shuffle algorithm to transpose data for SIMD; in Section 4, we

will present our data input and output strategies to minimize the overall latency; and In

Section 5 we will show the test performance of our algorithm.

Oct 0

Oct 7

Oct 5 Oct 6

Oct 1

Oct 4

Oct 3

Oct 2

Figure 2. An example of the AOI data partition scheme

2. LoS Viewshed Parallel Computing on CBE

One important issue in parallel computing algorithm design for LoS viewshed application

is how to partition the data and distribute the computing load of the LoS problem to

efficiently utilize the resource and HW/SW capabilities of CBE. The data partition and

computation load allocation will directly impact the LoS viewshed computing

performance. In this section we will describe our strategies and schemes on data partition

and work load distribution.

2.1 Data Partition Strategy for Parallel Computing

From the LoS algorithm description in the previous section, we can see that the visibility

of a point on a line depends on the maximum elevation slope of all previous points. To

maximize the LoS parallel computing efficiency, we need to partition the data into sub-

areas such that each sub-area can be processed independent from the other sub-areas.

Furthermore, to fully utilize the parallel computing resources and capability of a CBE

with 8 SPEs and 1 PPE, we also need to allocate the computation load wisely among the

processors. Since PPE is designed for launching SPEs and data IO operations between

the CBE and the external storage, it is more suitable for the control logic, i.e., playing the

managing and bookkeeping roles.

For the given AOI, we partition it into sub-areas in such a way that a ray coming out from

the observation point will intersect with only one sub-area as the ray grows. Figure 2

shows an example of our data partition method. We partition the AOI of a (2R+1) by

(2R+1) square into 8 octants; the lines of sight grow out of the center observation point

will not intersect with more than one octant. Such partition can enable the independent

computing of each and every octant by a processor while the redundancy in data fetching

and store is minimized.

Figure 3. LoS viewshed computation load distribution on CBE

PPE

SPE 5

SPE 7

SPE 4

SPE 3

SPE 2

SPE 1

SPE 0

EIB

I/O
 In
terface

Oct 0

Oct 7 Oct 6 Oct 5 Oct 4

Oct 1 Oct 2 Oct 3

SPE 6

2.2 Computation Load Distribution

We use 8 SPEs and 1 PPE of the CBE to do the LoS viewshed parallel computation work.

To make efficient use of the characteristics of SPE and PPE, we assign each SPE to

compute the LoS viewshed for one octant of the AOI while use PPE for the

administrative work, such as preparing the parameters and passing them to SPEs,

initiating the tasks on SPEs, and assembling the results from SPEs. Figure 3 illustrates

the computation load partition in our LoS viewshed parallel computing scheme.

 Figure 4. Parallel computing using SIMD operations in SPE

3 Parallel Computing in SPEs

One very important aspect of our LoS parallel computing scheme is about how to

efficiently utilize the single-instruction-multiple-data (SIMD) capability, also known as

vector processing. Because the visibility of a point on a ray has dependency on the

maximum slope of all previous points on that ray, parallel computation using SIMD

operations can not be done on multiple points along the same ray. However, we can

apply SIMD operations on multiple points across the rays. For example as shown in

Not Visible Visible

SIMD

x

y

SIMD

Oct 1

 Not Processed

Oct 0

Figure 4, in Octant 0, we need to grow R+1 rays from the center point where x=0 to the

edge of the AOI where x = R. For each step in x, we use SIMD operations to compute

the visibilities of the points of 4 rays at the same x (as the yellow box shown in Figure 4)

one step at a time, until the visibilities of all rays at that x (only y varies) are computed.

In Octant 1, the same parallel computing scheme can be applied with x and y coordinates

exchanged.

From Figure 4, it can be seen that in order to apply SIMD in Octant 0, the DEM data of a

4-point column needs to be loaded into the instruction register. Since the physical

memory is designed for data to be read from and write to in rows not in columns, it

would require 4 memory-reads to fetch the data followed by several other instructions to

put the needed bytes into the register. Such process would be very inefficient. We

devised and implemented a novel scheme by fetching in the data in multiple rows and

transposing the data using an efficient successive byte shuffle algorithm.

 (a) (b)

 (c) (d)

Fig. 5. Successive Byte Shuffling Algorithm for Data Transpose (a) Original 8x8 Data: 8

vectors each with 8 data elements; (b) After byte shuffles between v0 and v2, v1 and v3,

v4 and v6, v5 and v7, respectively; (c) After byte shuffles between v0 and v4, v1 and v5,

v2 and v6, v3 and v7, respectively; (d) After byte shuffles between v0 and v1, v2 and v3,

v4 and v5, v6 and v7, respectively.

 p0 p1 p2 p3 p4 p5 p6 p7

v0 D0 D1 D2 D3 D4 D5 D6 D7

v1 D0 D1 D2 D3 D4 D5 D6 D7

v2 D0 D1 D2 D3 D4 D5 D6 D7

v3 D0 D1 D2 D3 D4 D5 D6 D7

v4 D0 D1 D2 D3 D4 D5 D6 D7

v5 D0 D1 D2 D3 D4 D5 D6 D7

v6 D0 D1 D2 D3 D4 D5 D6 D7

v7 D0 D1 D2 D3 D4 D5 D6 D7

 p0 p1 p2 p3 p4 p5 p6 p7

v0 D0 D1 D2 D3 D0 D1 D2 D3

v1 D0 D1 D2 D3 D0 D1 D2 D3

v2 D0 D1 D2 D3 D0 D1 D2 D3

v3 D0 D1 D2 D3 D0 D1 D2 D3

v4 D4 D5 D6 D7 D4 D5 D6 D7

v5 D4 D5 D6 D7 D4 D5 D6 D7

v6 D4 D5 D6 D7 D4 D5 D6 D7

v7 D4 D5 D6 D7 D4 D5 D6 D7

 p0 p1 p2 p3 p4 p5 p6 p7

v0 D0 D1 D0 D1 D0 D1 D0 D1

v1 D0 D1 D0 D1 D0 D1 D0 D1

v2 D2 D3 D2 D3 D2 D3 D2 D3

v3 D2 D3 D2 D3 D2 D3 D2 D3

v4 D4 D5 D4 D5 D4 D5 D4 D5

v5 D4 D5 D4 D5 D4 D5 D4 D5

v6 D6 D7 D6 D7 D6 D7 D6 D7

v7 D6 D7 D6 D7 D6 D7 D6 D7

 p0 p1 p2 p3 p4 p5 p6 p7

v0 D0 D0 D0 D0 D0 D0 D0 D0

v1 D1 D1 D1 D1 D1 D1 D1 D1

v2 D2 D2 D2 D2 D2 D2 D2 D2

v3 D3 D3 D3 D3 D3 D3 D3 D3

v4 D4 D4 D4 D4 D4 D4 D4 D4

v5 D5 D5 D5 D5 D5 D5 D5 D5

v6 D6 D6 D6 D6 D6 D6 D6 D6

v7 D7 D7 D7 D7 D7 D7 D7 D7

3.1 Data Transpose Using Successive Byte Shuffling Algorithm

We have devised an algorithm to transpose data using efficient SIMD byte shuffle

operations successively. Fig. 5 illustrates how the algorithm works by an example of

transposing an 8x8 block of data. The elements of the 8x8 data block are loaded into 8

vector variables or registers, v0, v1, …, v7, and each of the vectors holds 8 data elements

in position p0, p1, …, p7, respectively, as shown in Fig. 5 (a). In this case, the algorithm

completes the transpose in three successive steps with SIMD byte shuffle operations.

Step 1: Perform a 4x4 data block swap in the reverse diagonal direction, i.e., the

data elements in position p4~p7 in v0~v3 are swapped with the elements in p0~p3 in

v4~v7. Fig. 5 (b) shows the results after the SIMD byte shuffle operations of this step.

Step 2: Perform 2x2 data block swaps, i.e., data elements in p2~p3 and p6~p7 in

v0~v1 and v4~v5 are swapped with the data elements in p0~p1 and p4~p5 in v2~v3 and

v6~v7, respectively. Fig. 5(c) shows the results after the SIMD byte shuffle operations of

this step.

Step 3: Perform 1x1 data block swaps, i.e., data elements in p1, p3, p5, and p7 in

v0, v2, v4, and v6 are swapped with the data elements in p0, p2, p4, and p6 in v1, v3, v5,

and v7, respectively. Fig. 5(d) shows the results after the SIMD byte shuffle operations

of this step.

 Figure 6. Reflections of other octants with respect to Octant 0 or Octant 1

Oct 0

Oct 7

Oct 5 Oct 6

Oct 1

Oct 4

Oct 3

Oct 2

x

y

Once we developed efficient schemes to compute Octant 0 and Octant 1 using SIMD

operations, the other octants can be treated as various reflections of Octant 0 or Octant 1

and processed similarly as shown in Figure 6. Specifically, Octants 3, 4, and 7 can be

computed using the same method for Octant 0 with data transpose and special attention to

negative axis increment. Octants 2, 5, and 6 can be viewed as one of the flips of Octant 1

and processed accordingly.

4. DMA and Time-line Management

Another important aspect in efficient parallel computing is the memory access and task

time-line management. The SPEs access the system main memory through the Direct

Memory Access (DMA) operations. Because memory access requires certain time cycles

to fetch or store data, if data is not available when a processor needs the data to process, it

has to waits for the DMA operation to complete and becomes idle before it can proceed.

This will result in the loss of computing cycles. The objective of DMA operation time-

line management is to wisely parallelize the memory access operations with the

computing processing to hide the DMA wait time and minimize or even eliminate the

processor’s idle time so that the parallel computation performance can be maximized. In

this section, we will present our DMA double buffering scheme and their time-line

arrangement aligned with the computation process in order to achieve the best attainable

performance.

 Figure 7. DMA double buffer scheme to minimize wait time

x

y

Band

k

Band

k+1

LoS

Process

DMA Fetch Data

4.1 DMA Double Buffering Scheme

To hide the DMA operation time as much as possible, we devised a double buffering

scheme to parallelize the operations of DMA and LoS viewshed computing. Figure 7

illustrates the double buffer scheme that parallelizes the operations of LoS computing and

DMA data fetching of a SPE operating on an octant. The octant is partitioned into bands

of columns with certain width. The entire band of data is fetched from the system

memory into the SPE local store efficiently using the DMA list operation. While the SPE

processor is computing the LoS visibilities on the data in Band k that has been already

read in and transposed in one data buffer, it is also fetching the DEM data of Band k+1

into another data buffer into the SPE’s local store. In the double buffering scheme, the

data computing process and the data fetch or store processes are organized into parallel

processes. We used DMA double buffering schemes for the DEM data fetches as well as

the viewshed result output stores and almost all DMA operation time have been hidden.

The total SPE processors’ idle time has been reduced to negligible cycle numbers.

For the octants that do not need data transposed, we also employed the DMA double

buffering schemes for fetching DEM input data and storing viewshed output to

effectively minimize the processor wait time.

4.2 Data Processing and DMA Operation Time-line Management

To minimize the processor’s idle time, the order and the alignment of the data

computation process and DMA process are also extremely important. The order of these

processes need to be carefully planed and managed because the arrangement of the

execution orders of these processes in the time-line will directly impact the over

performance. Figure 8 depicts the time-line orders for our LoS parallel computing on

CBE. As it can be seen, the DMA operations are mostly in parallel with the data

computing process.

 Figure 8. LoS data processing and DMA operation alignment in time-line

Prepare
DEM Data

PPE

SPE 0-7

Start SPE
Execution

Wait for
SPE to Finish

Assemble
Viewshed Results

Set DMA

List for D0

 Initialization
and set k=0

 DMA get Dk

Set DMA list

for Dk+1

DMA Queue: DMA get Dk+1

Wait for DMA

Dk to end

Process

Dk

Set DMA

list for Vk

DMA put Vk

Set
k=k+1

• Dk : DEM Data Band k;

• Vk: Viewshed Result for Band k

5. Performance

In order to facilitate the research and development for the LoS viewshed application, we

developed a Graphic User Interface (GUI) tool for displaying the DEM image and

viewshed results. Figure 9 shows the GUI is displaying a DEM image; the AOI is a

square in the green frame with a size of (2R+1)x(2R+1) and R is specified by the user.

The calculated viewshed of this AOI is also displayed on the GUI with the visible points

marked in red. The system we developed for LoS viewshed application is a server-client

system as shown in Figure 10. The server is running on a Cell Blade QS21 with 8

Synergistic Processing Elements (SPEs) and one PowerPC Processing Element (PPE). It

also has main memory and file system installed. On the client side is an Intel x86

computer (a desk-top or laptop PC) with the GUI installed for DEM data viewing and the

computed viewshed displaying. The server and the client are connected through a high

data transport link.

 Figure 10. Line of Sight AOI and computed viewshed displayed on GUI

In the process, the user at the client side selects an AOI in the DEM image displaying on

the GUI window and sends a request for LoS viewshed calculation to the server. The

DEM data in the specified AOI on the GUI window will be sent to the server. The server

then computes the LoS viewshed and sends the viewshed back to the client for overlay

displaying in the GUI window.

Table 1 presents the LoS time performance on CBE QS21 we have achieved. For

comparison, we also implement the LoS viewshed calculation on an Intel 2 Duo

CPU@2.2 GHz. For (2R+1)x(2R+1) =2027x2027, the LoS performance on Cell is ~15x

faster than that on the x86.

 Table 1. LoS Performance on CBE (Time in Milliseconds)

R SPE 0 SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6 SPE 7
PPE

Proc

Cell

Total
x86

255 .300 .248 .286 .300 .300 .281 .250 .300 1.495 2.037 21.499

511 1.216 0.903 1.019 1.249 1.223 1.002 0.907 1.272 5.729 7.276 95.380

1023 5.266 3.213 3.692 5.324 5.354 3.678 3.212 5.330 19.809 25.421 378.81

 Figure 10. Server and client configuration for LoS viewshed system

6. Conclusions

In this paper we presented our work on high performance computing of LoS viewshed

based on CBE. We described our efficient parallel computing algorithm by utilizing the

HW resources and computation power of the CBE. We presented our strategies in data

partition and work load distribution, and illustrated our data transpose algorithm using

successive byte shuffling for efficient SIMD operations in SPEs. In addition, we showed

how to timely align the LoS computing process and DMA IO operations to reduce the

latency. Our results have shown that our LoS viewshed computation on CBE achieved

faster than run-time performance.

Reference

[1]. J.E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems

Journal, vol. 4, no.1, January 1965, pp. 25–30.

Cell Blade Server/

Main Storage/

File System

X86 PC

with DEM

GUI

High Speed

Data Link

[2] “Cell Broadband Engine,” Book IV for DD1.0, Version 1.0, SCIE/Toshiba/IBM,

May, 2004.

[3] http://www.esri.com/software/arcgis/arcgisengine/extension/3danalyst/index.html

[4] http://www.usna.edu/Users/oceano/pguth/website/microdem/microdem.htm

