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ABSTRACT
Multicore processors have recently emerged as a better so-
lution to leverage the benefits of semiconductor technology
scaling than traditional architectures based on a single CPU.
Meanwhile, graphics processing units (GPUs) are increas-
ingly used not only for graphics rendering but also for general
purpose computing. High-end GPUs also follow the trend of
integrating multiple processing units on a single chip while
adding high memory-access bandwidth. Exploiting the com-
putational potential of multicore architectures requires new
programming paradigms and tools that are optimized for par-
allel computing rather than conventional (single-processor)
sequential programming. We select three non-graphics bench-
mark applications to conduct head-to-head performance com-
parisons between two data-parallel multicore processors: a
state-of-the-art GPU, the NVIDIA GeForce 8800 GTX, and
a leading heterogeneous multicore processor, the IBM Cell
Broadband Engine. We also present a preliminary analy-
sis of the trade-offs between programmability and code effi-
ciency for these benchmarks by comparing implementations
that are based on processor-specific software development en-
vironments with those obtained with a portable multi-core
development platform.

1. INTRODUCTION
Thanks to continuous progress in semiconductor technol-

ogy a single chip will soon host hundreds of processing cores
that may either share the same architecture (homogeneous
cores) or be specialized for particular tasks (heterogeneous
cores) [11]. As systems based on multicore processors are
soon to deliver tens of tera operations per seconds, the chal-
lenge from the programmers’ perspective is to harness this
unprecedented computational power efficiently. This will
require exploiting parallelism at various levels of granular-
ity: not only instruction-level parallelism, the main target
of traditional microprocessors, but also thread-level, coarse-
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grained task-level, and data parallelism [16].
High-end Graphic Processing Units (GPUs) are arguably

the first example of multi-core chips having hundreds of pro-
cessing cores. Originally designed for the specific graphics-
rendering purpose, GPUs have recently been considered for
general-purpose computing [2] as well as high-performance
computing [7]. The computational capabilities of a GPU,
measured by the traditional metrics of graphics performance,
have compounded at an average yearly rate of 1.7× (pix-
els/second) to 2.3× (vertices/second), a growth rate out-
pacing Moore’s Law as applied to traditional microproces-
sors [30]. The reason for this disparity is that traditional
CPU’s hardware has been optimized for a sequential pro-
gramming model: a large fraction of their transistors and
wires implement complex control functionality such as branch
prediction to extract instruction-level parallelism and cache
memories to minimize the latency of memory access. In con-
trast, the bulk of the transistors in a GPU chip are used to
exploit the high levels of data parallelism in graphics applica-
tions and to maximize the bandwidth of many simultaneous
memory accesses [29]. However, there are many important
non-graphics applications that map well to the GPU’s dense
array of stream processors or that require sifting through
large quantities of data, thus mapping well to the GPU’s
high-bandwidth memory subsystem. In fact, it is reported
that for certain applications GPUs can be as much as 20 to
100 times faster compared to state-of-the-art CPUs running
optimized code [22]. Furthermore, this computational power
is both available and inexpensive as GPU chips are used in
pervasive off-the-shelf graphics cards for personal computer
and video game consoles.

As discussed in [30], the next-generation of GPU archi-
tects face the challenge of improving the programmability
and generality of GPU architectures, but without sacrific-
ing the specialized performance that have made them suc-
cessful. Meanwhile, the competition is growing as other
commodity data-parallel multicore processors are emerging.
Among these, the Cell Broadband Engine (BE) [19, 20, 31],
which was originally designed for the PlayStation 3 video
game console, is now used for both general-purpose enter-
prise applications [13] and high-performance computing ap-
plications [3]. The Cell BE is a heterogeneous multicore pro-
cessor that combines GPU-like features (such as an array of
SIMD processors and high-bandwidth off-chip communica-
tion links) with a traditional CPU processor core and on-
chip cache. These two architectures have different strengths
and weaknesses and are each better suited to different types



IBM NVIDIA
Cell BE [31] 8800 GTX [9]

processing core # 2× (1 PPE + 8 SPEs) 128 SPs
technology (nm) 90 90
core clock rate (GHz) 3.2 1.35
transistors (M) 2× 239 690
main memory (MB) 1000 768
mem. bandwidth (GB/s) 25.6 86.4

Table 1: Main features of the two hardware execu-
tion platforms.

of applications. It is an open question which data-parallel
multicore architecture can be considered a “better” architec-
ture for general-purpose programming as a whole.

Contributions. This paper presents initial experiments
of using novel programming tools with two leading data-
parallel multicore processors available today. Our approach
is to explore a few benchmarks which range from compu-
tation intensive (Monte Carlo simulation for option pric-
ing) to communication intensive (sorting). We consider the
use of novel programming tools, which promise to limit the
complexity and offer the simplicity and portability to work
with emerging multicore processing chips. Our goal is not to
achieve the fastest possible benchmark implementation, but
instead to understand how much performance is lost when
we move from processor-specific software development kits
to high-level portable multi-core development platform.

Our second goal is to compare the performance of Cell and
the NVIDIA GPU. The comparison is not yet conclusive as
more detailed examination is needed. So far, we conclude
that for communication-rich applications the Cell BE is bet-
ter, while the NVIDIA GPU is stronger for computation-rich
applications.

These comparisons (high-level vs. low-level programming
tools, and Cell vs GPU architectures) are complementary
since the programming tools must expose and utilize the fea-
tures of the platforms. Likewise, the architectures must pro-
vide memory, communication, and computing support for
general-purpose applications. As both programming tools
and multicore chips evolve, we expect that each will influ-
ence the other.

2. HARDWARE EXECUTION PLATFORMS
The two computation platforms used in our experiments

are the IBM Cell blade QS20 equipped with two Cell BE
multicore processors, and a GPU graphics card with the
NVIDIA GeForce 8800 GTX. Table 1 presents the main
hardware features of these platforms. We briefly describe
each of them next.

2.1 Cell Broadband Engine
The Cell Broadband Engine (BE) [19, 20, 31] was jointly

designed by IBM, Sony and Toshiba for the PlayStation 3
game console (PS3). Although Cell is well known for its
use on the PS3, it is also used in servers designed for high-
performance computing applications such as IBM’s QS20
and QS21 Cell blades [28] and Mercury System’s Dual Cell-
Based servers [5].

The Cell processor is a heterogeneous multicore processor
featuring eight synergistic processing units (SPE) cores and
one dual-threaded 64-bit PowerPC Element (PPE), which
is used as the supervising core. Each SPE contains a sin-
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Figure 1: Cell BE Architecture.

gle instruction multiple data (SIMD) processor operating on
entries of 128-bit registers that, for instance, can each be
organized as a vector of four 32-bit integers. Each SPE core
operates on a local store (LS) memory of 256KB that is used
for both data and code. A local store is not a traditional
cache memory as it is software managed. Data is transferred
between cores via direct memory access (DMA).

The Cell BE has a powerful on-chip network for inter-core
communication, called the Element Interconnect Bus (EIB),
made up of four circuit-switched rings [10, 21]. Two rings
transfer data in one direction and two transfer data in the
opposite direction. Only data transfer circuits that are less
than half of a ring away are scheduled. Each ring supports
up to three concurrent, non-overlapping data transfers. The
EIB supports an on-chip communication bandwidth of over
200 GB/s. The main memory uses an XDR RAM interface
with a 25.6 GB/s bandwidth.

Our Cell BE experiments were performed on an IBM QS20
Cell Blade with a 1GB of memory and two Cell BE chips
directly connected by a 20 GB/s cache coherent bidirectional
link [28].

2.2 NVIDIA GeForce 8800 GTX
The second hardware platform used in our experiments is

the NVIDIA GeForce 8800 GTX GPU. This is a high-end
programmable GPU with massive floating-point computa-
tion performance. It is this programmability which makes
it also suitable for general-purpose computing (hence, the
acronym GPGPU) [22].

Figure 2 shows the high-level architecture of the GeForce
8800 GPU. It has 128 programmable processing units, called
stream processors (SP), running at a clock rate of 1.5GHz.
The 768MB external memory is connected to the SPs by
several links with an aggregated maximum bandwidth of
86.4GB/sec. The SPs are divided into 16 groups, called mul-
tiprocessors, each with 8 SPs. The SPs in one group execute
instructions in a SIMD fashion, i.e. at every clock cycle they
execute the same instruction on different data. If a branch
instruction changes the fetch direction of some, but not all
of the SPs of the same group, the execution of instructions
at the two different basic blocks will be serialized (leading
to some SPs to stall). The SPs of the same multiprocessor
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Figure 2: NVIDIA GTX 8800 Architecture

communicate with each other through on-chip shared mem-
ory. Global communication between processing units across
multiprocessor boundaries is only possible through a shared
location in the the external memory. This point is criti-
cal for the performance of applications with communication
patterns requiring complex communications and is an im-
portant difference between this GPU and the Cell BE. Such
difference, if exploited by the programming tools, leads to
performance difference for certain applications.

For simplicity, in the following discussions we refer NVIDIA
GeForce 8800 GTX as G80.

3. PLATFORMS FOR SOFTWARE
DEVELOPMENT

Multiple software platforms can be used to program the
Cell blade and G80. Each architecture has a native software
development toolset (the Cell SDK and the NVIDIA CUDA,
respectively). These give good control of the underlying
hardware resources at a cost of requiring the programmer
to take care of explicit thread and memory management.
Software tools such as RapidMind abstract the underlying
hardware details in exchange of providing less control on the
underlying hardware platform resources

3.1 Cell BE SDK
The Cell BE Software Development Kit (Cell SDK) is

collection of tools and libraries for programming the Cell.
We use Version 2.1 of the Cell SDK for all of our experi-
ments [4, 18]. The SDK includes a C/C++ compiler and
programs can be written in standard C/C++. The code for
the PPE is written separately from the code for the SPEs
and during compilation different libraries are linked to each
code set.

Thread Management. The main execution of an appli-
cation as well as all I/O operations are handled by the PPE.
From the PPE, threads are launched on the SPEs, which
handle the core of the computation. The SPE consists of
three tightly coupled units: the synergistic processing unit
(SPU), the local store (LS), and the memory flow controller
(MFC). The SPU is a SIMD processor with an instruction
set architecture optimized for compute-intensive and media

applications: It operates only on instructions and data in
the associated local store. Decoupling the SPU from other
aspects of the system provides a very deterministic process-
ing environment for the programmer [19].

DMA. The bulk of data movement between the local
store of an SPE and the main memory or the local store
of another SPE takes place via asynchronous, coherent di-
rect memory access (DMA) transfers under the supervision
of a DMA controller in the MFC unit. Since local stores
are not cache memories, data consistency must be explicitly
managed. Data movement and synchronization are initiated
by using MFC commands. Either the local SPU or another
processor in the system (the PPE or another SPU) can issue
such MFC commands. The PPE may also send and receive
small messages from the SPEs with mailbox transfers. The
SPEs cannot send each other mailbox messages, but there
is a mechanism for exchanging signals.

Vector Operations. The SPU provides the program-
mer with 128 128-bit SIMD registers. The large number of
registers facilitates efficient instruction scheduling and also
enables important optimization techniques such as loop un-
rolling [4]. The Cell SDK provides a library of vector oper-
ations that expose the SIMD capabilities of the SPEs. The
SPEs can perform both mathematical vector operations and
conditional operations, for example, using a mask to select
between the elements of two vectors.

3.2 NVIDIA CUDA
The Compute Unified Device Architecture (CUDA) is a

programming interface and environment developed by NVI-
DIA for general-purpose programming of its own GPUs [6].
Together with its run-time library and tools, CUDA allows
programmers to use the C programming language with sim-
ple extensions to write general-purpose software on GPU.
Additionally, the CUDA library provides basic functions to
allow programmers to access the specialized hardware on
the GPU (for example, the texture memory). At a higher
level it also offers optimized library for scientific computing,
like the CUDA FFT library that we used in some of our
experiments.

A CUDA program is launched on the host CPU and it dis-
tributes the GPU execution code and the data among the
GPU devices over the system bus. The computation tasks
to be executed on the GPU are implemented in C func-
tions with special labels (part of the extended C language).
Each invocation of such functions triggers CUDA’s run-time
backend to create threads running on the GPU processing
units. Programmers have direct control over the number of
threads to be created and their division within and across
the multiprocessor groups. The remaining part of a CUDA
program, which runs on the host CPU, is responsible for
transferring data between GPU’s on-board memory and the
main memory.

3.3 RapidMind
RapidMind is a high-level data-parallel tool for program-

ming multicore processors, including the NVIDIA and ATI
GPUs as well as the Cell BE [25]. RapidMind adopts a sin-
gle program multiple data (SPMD) streaming programming
model where a single program can operate concurrently on
an array of data [27].

RapidMind grew out of Sh, a tool for programming GPUs
intended to both unify shader programs with their host pro-



grams and provide a more general-purpose programming
platform for GPUs than was previously available [24].

RapidMind provides C++ libraries that add a few new
types: Array, Value, and Program. A RapidMind program
is called with a RapidMind array as input, and the program
executes separately on each array element. For example,
consider the following snippet of C++ code:

main {

int i, a[N],b[N];

// ... initialize a[] and b[] ...

for(i=0; i<N; i++) {

a[i] *= b[i];

}

}

The code above is rewritten in RapidMind by first creating
a RapidMind Program, that can be called as a subroutine:

Program vector_mult = BEGIN {

In<Value1f>a;

In<Value1f>b;

a = a*b;

}

where Value1f indicates that a and b are each floats (Value4f
would indicate a vector of four floats). Next, vector_mult
replaces the for loop, and a[] and b[] are defined with
RapidMind types.

main {

Array<1,Value1f> A(N);

Array<1,Value1f> B(N);

// ... initialize values ...

A = vector_mult(A,B);

}

RapidMind automatically parallelizes and distributes the
program over the target platform, hiding platform specific
thread management and data transfer operations from the
programmer. RapidMind also supports reduction functions,
multi-dimensional Array types, and data views such as shift-
ing or striping for manipulating the arrays.

4. BENCHMARK APPLICATIONS
For our experimental analysis we selected three bench-

mark applications that exemplify different spaces in the spec-
trum of applications which ranges from computation-bound
applications to data-bound applications.

4.1 Monte Carlo for Option Pricing
An option is a right to sell or buy a financial asset at a

predetermined price on a future date. An option itself can
be traded and its price is the discounted profit made by ex-
ercising the option. The future price of the asset, which
determines the present price of an option, can be predicted
using the Black-Scholes option pricing model [12, 26]. This
assumes that the price fluctuations of the underlying finan-
cial asset can be modeled as geometrical Brownian motion:

dSt = µStdt+ vStdWt (1)

where St is the asset price at time t, Wt is Wiener random
process, and µ (drift) and v (volatility) are two constants.
Based on Eq. 1, the asset price at time T is:

ST = S0e
((µ−0.5v2)T+vT1/2N(0,1)) (2)

a0

a2

a5

a7

a1

a3
a4

a6

ω(2)0
y0

y1

y2

y3
y4
y5
y6
y7

ω(2)0

ω(2)0

ω(2)0

ω(4)0

ω(4)1

ω(4)0

ω(4)1

ω(8)0

ω(8)1

ω(8)2

ω(8)3

stage 1 stage 2 stage 3

butterfly
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where N(0, 1) is a normally-distributed random number be-
tween 0 and 1.

Based on Eq. 2, Monte Carlo simulations can be applied
to estimate the expected value of ST at a future time T .
Each simulation consists of the following two steps:

1. generate a normally distributed random number x;

2. replace N(0, 1) in Eq. 2 with x to get one price S′T .

The average of all the S′T ’s obtained at step 2 is an esti-
mation of the expected value of ST in Eq. 2. For the es-
timation of the expected ST to converge, a sufficient num-
ber of simulations must be performed. Since all simulations
are independent from each other, they can be exercised by
parallel processes between which there is little communica-
tion. Hence, this is an embarrassingly parallel workload that
can be tackled by distributing the various simulations evenly
across the processing elements of the multi-processor hard-
ware platform. Such a workload represents one extreme on
the spectrum of computation and communication patterns
that we are considering in our experiments.

4.2 Fast-Fourier Transform (FFT)
Fast Fourier Transform (FFT) is a divide-and-conquer

algorithm to compute the discrete-time Fourier transform
(DFT), which converts discrete signals from time domain
to frequency domain. Given an input of N discrete signals
(x1, x2, . . . , xN ), the DFT (X1, X2, . . . , XN ) is defined as
follows:

Xk =

N−1X
n=0

xn e
− 2πi
N
nk, k = 0, . . . , N − 1

While a näıve implementation of this convolution requires
O(n2) floating point operations, the FFT requires onlyO(n logn)
of them.

Figure 3 illustrates a simple implementation of FFT on
eight signals. The input signals are fed from the left side,
and the transformed signals are output from the right. The
FFT is divided into three stages, and each stage has four
“butterfly” operations, each of which is applied to two sig-
nals (this is the so called radix-2 FFT). Since the butterfly
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operations of a single stage are independent, they can be ex-
ecuted in parallel. The FFT belongs to the class of spectral
methods [11].

The FFT benchmark requires both intensive computa-
tional and communication support from the hardware ex-
ecution platform. From the computational aspect, a but-
terfly operation takes in two inputs and a complex number
ω(k), called “twiddle factor”, which is the k-th root of unity,
and performs two sets of floating point additions and one
set of multiplications. To compute each twiddle factor, two
trigonometric function calls are required.

The communication aspect of FFT is also very challeng-
ing. Each butterfly box reads two input signals, which may
reside in remote memory (like in the local store of another
SPE on Cell) or may be stored in the same bank of memory
(like in the same bank of the global memory on G80). In
the formal case, inter-process communications (like DMAs
on Cell) are required to bring in the right data before butter-
fly operations can be applied; in the latter case the memory
bandwidth will degrade due to bank conflict.

4.3 Bitonic Sort
Bitonic sort is a popular O(n log2n) sorting algorithm

for parallel architectures. Although its complexity is less
optimal than O(n log n) sorting algorithms like merge sort,
bitonic sort is desirable because the order of its compare-
and-swap operations is not dependent on their outcome.

The bitonic sort algorithm uses a divide-and-conquer ap-
proach. To sort a list of elements, the list is broken into
two even pieces. The two pieces are sorted in opposite di-
rections and then merged together with the (O(n)) bitonic
merge operation. Bitonic merge works as follows: assum-
ing there are two lists sorted in opposite directions, first
compare-and-swap the 1st element to the n

2
th element, next

compare and swap the 2nd element to the (n
2

+1)th element,
etc. Figure 4 shows how a list of 8 integers is sorted with
the bitonic sort algorithm. In Step 1, every other set of two
elements is sorted in ascending order, and the other sets are
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sorted in descending order. In Step 2, every other set of four
elements is sorted in ascending order, and so on.

Sorting, in general, is a task that requires very little com-
putation, but intensive data movement. Bitonic sort can be
implemented in a variety of ways. A recursive implementa-
tion is intuitive from the divide-and-conquer definition of the
algorithm; however, non-recursive iterative implementations
are typically used.

5. EXPERIMENTAL RESULTS
We first report the experimental results for each of the

three benchmarks separately and then we present some pre-
liminary conclusions that can be drawn by comparing them.

5.1 Option Pricing Experiments
We evaluate three distinct implementations of Monte Carlo

simulations for option pricing with the Black-Scholes model.
The three implementations compute the same pricing of
an option, but differ in the way of generating and trans-
forming random numbers. The first two approaches adopt
the Mersenne-Twister random number generator [23], but
use different methods for transforming uniformly distributed
random numbers to normally distributed ones. The third
approach uses Hammersley sequence, a low discrepancy se-
quence, instead of pseudo-random numbers1.

Figure 5 reports the run time of each implementation
for two hundred million simulations on both the Cell blade
and the G80. Comparing the performance of hardware us-
ing platform-specific SDKs, G80 (using CUDA) outperforms
the Cell blade (using Cell SDK) in all three variations of
Monte Carlo simulations by a wide margin. Note that us-
ing Hammersley sequence on GPU boosts the performance
significantly, compared to performances of the other two ap-
proaches based on pseudo random numbers. This is because
the low-latency texture memory of GPUs can be exploited to
store the read-only lookup table required by the Hammersley
sequence algorithm. However, using Hammersley sequence

1This is referred as “quasi Monte Carlo”.
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is no more advantageous on the Cell processor, which does
not provide such specialized hardware.

Comparing the performance of RapidMind and platform-
specific SDKs on the same hardware, the SDK versions run
faster than their corresponding RapidMind versions both on
Cell and on G80. Note that on G80, however, the Rapid-
Mind implementation of Mersenne-Twister random number
generator cannot run on GPUs, because the algorithm reads
and writes a local array, which is not supported by the latest
RapidMind backend (version 2.1) of GPUs2.

Both of the processing cores of Cell BE and G80 are
SIMD-like architectures which favor straight lines of code.
The usual control structures in most high-level programming
languages, like while, if, for statements, can significantly
degrade the performance of such architectures, since these
control structures make the code hard to SIMDize. In par-
ticular, on both hardware platforms the Box-Muller polar
transformation runs slower than the Cartesian version. The
Box-Muller transformation requires less computation but re-
lies on control structures (like a while loop); the Carte-
sian transformation use straight lines of code but needs two
trigonometric function calls.

5.2 FFT Experiments
Figure 6 reports the run time of two-dimensional FFT

on various architectures. On Cell we use one of the most
popular FFT library, FFTW [14], whose core computation
optimally combines several straight lines of code fragments
called codelets written in platform natives; on G80 we use
CUFFT [8], which is the FFT library in CUDA and pro-
vides a similar interface to FFTW. We also compare im-
plementations using RapidMind on Cell and G80. The run
time measurements are performed by interfacing the above
libraries with the “benchFFT” environment, an extensible
FFT benchmark program [1].

Depending on input sizes, the fastest FFT-performing ar-
chitecture varies accordingly. For inputs smaller than 64×64
2D arrays, the FFTW library on Cell runs faster than the

2This restriction is lifted in RapidMind’s Cell backend.

CUFFT on G80. For the inputs of size between (64× 64 to
256 × 256), CUFFT/G80 outperforms FFTW/Cell. For in-
put size beyond 256× 256, the FFTW/Cell is slightly faster
than CUFFT/G80.

The results of the FFT performance can be analyzed in
the context of the computation and communication aspect
of the FFT algorithm. The FFT algorithm requires not only
intensive floating-point computations but also frequent data
communications between processing elements. On most 2D
FFT instances Cell’s flexible, on-chip communication fabric
overcomes its floating-point computation disadvantage with
respect to G80, which does not provide direct links for inter-
multiprocessor communications. Therefore for large inputs,
the Cell edges G80, even though it has less floating-point
computation capability.

The RapidMind implementations have worse performance
compared to their SDK counterparts on both platforms.
Compared to FFTW/Cell BE, this is not surprising be-
cause RapidMind’s programming model does not support
direct communications between concurrent processes, thus
the powerful Cell on-chip ring is not utilized. On the other
hand, RapidMind’s limited communication model is actually
based on GPU’s hardware. Therefore on large data inputs
RapidMind’s performance is comparable to CUFFT/G80.

We also benchmark the FFT run time on a general-purpose
Intel CPU (Intel Kentsfield quad-core clocked at 2.6GHz),
and its results are also shown in Figure 6. For input data
smaller than 128× 128, the quad-core CPU has better FFT
performance than Cell and G80, which incur the overhead
of distributing the work to processing cores, including the
time investment of “forking” and “joining” parallel processes
on the processing units.

5.3 Bitonic Sort Experiments
Our RapidMind implementation of bitonic sort is an it-

erative loop-based solution, where the innermost loops are
replaced with data-parallel RapidMind program calls. Our
initial RapidMind implementation was tuned for the two
chosen hardware execution platforms: we use vectorization
in both cases and RapidMind local arrays (arrays within
RapidMind programs) on the Cell in order to take advan-
tage of the SPU local storage.

We compare our RapidMind implementation with Cell-
Sort [15] on the Cell QS20 and GPUSort [17] on the G80.
The results for the different software implementations and
hardware platforms are shown in Figure 7. The curves end at
different input data sizes because the different implementa-
tions do not support the same maximum sizes. The Rapid-
Mind and CellSort implementations sorted integers, while
the GPUSort implementation sorted floats (GPUs tend to
handle floats more efficiently, but Cell handles both equally).

The performance of RapidMind bitonic sort comes much
closer to the performance of hand-written code on the GPU
than it does on the Cell. For smaller cases (<256K ele-
ments), RapidMind performs better than GPUSort. In con-
trast, RapidMind is on average a factor of 50 times slower
on the Cell than CellSort.

The results show that the Cell blade is faster than G80 for
computing the bitonic sort, but the gap diminishes as the
input data size increases. Sorting 32K elements on the G80
is about 25 times slower, but sorting 8M integers is only 4
times slower. The curve of CellSort’s performance has three
distinct sections: 4K-32K, 32K-512K, and >512K. In the
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Figure 7: Bitonic sort results for various input sizes.

first section, the data is small enough to fit into the local
store of a single SPU, and sorting is handled locally. In the
second section, the data is too large for a single SPU’s local
store, but small enough to fit into the combined local stores
so off-chip communication is not necessary during the sorting
(except in the case of 512K where data must be transferred
between the two Cell chips). In the last case, the problem
size is too large to fit onto the chips and so data must be
swapped in and out of main memory throughout the sort.
In these larger problem sizes, the G80 begins to catch up
because it has higher off-chip memory bandwidth than the
Cell as shown in Figures 1 and 2.

5.4 Discussion
In this section we summarize our experiment results. In

particular, we qualitatively evaluate the impact of the com-
putation and communication aspects of the two hardware
platforms and the three benchmark programs.

Figure 8 highlights the relative performance of the Cell
blade (16 SPEs) and the G80 using platform-specific SDKs
across the spectrum of different computation and commu-
nication patterns. If the ratio is above 1, the Cell blade is
faster. The general trend is that G80 has an edge on com-
putation bound workloads; in contrast Cell performs better
on communication intensive applications. For example, the
G80 runs faster if the application is computation bound,
like Monte Carlo methods. On the other hand, Cell is faster
than G80 on applications like FFT on large data inputs and
bitonic sort, both of which require intensive data communi-
cations.

In particular, data movement is the limiting factor in the
performance of bitonic sort. Thus the memory capacity and
communication network of a multi-core play an important
role for this application. The Cell’s EIB gives the Cell a
great advantage since cores can transfer data between each
other very quickly. However as the problem size scales up
and data must be swapped in and out of the off-chip memory,
the bandwidth to main memory has more of an impact.

The relative performance of RapidMind programs and
their platform-specific SDK counterparts are reported in
Figure 9. If a RapidMind program runs faster, its relative
ratio is larger than one. Except for the bitonic sort OpenGL
implementations on G80, RapidMind’s performance cannot
compete with the SDK-based implementations yet. At best
RapidMind program are slightly faster (only in one problem

Performance Comparison of RapidMind vs Platform-Specific SDKs
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Figure 9: Performance comparison of RapidMind
and platform-specific SDKs.

instance), but at worst they are orders of magnitude slower
than the corresponding SDK versions.

One reason of this performance gap is due to RapidMind’s
programming model, which is MapReduce. This fits ap-
plications like Monte Carlo methods well, which are spe-
cial cases of the MapReduce pattern. However, this pro-
gramming model provides no inter-process communications.
This is overly restrictive for applications like FFT and sort-
ing where data movements between parallel processes are
as important as computation itself. Especially when these
applications are implemented on Cell using RapidMind, the
high-bandwidth inter-SPE communication links are not ex-
ercised, thus leading to poor overall performance.



6. CONCLUSIONS
We evaluate the performance of two leading multicore ar-

chitectures: IBM Cell processor and NVIDIA GeForce 8800
GTX as a GPU. We find that the Cell BE and GeForce
8800 GTX excel over different domains of general-purpose
applications. The differences in the types of applications
that perform best with each architecture reflect the differ-
ences in the communication and computation strengths of
the architectures. The Cell allows high-bandwidth commu-
nication between SPEs; accordingly, the Cell outperforms
the GeForce 8800 GTX for communication-bound applica-
tions (like FFT and bitonic sort). On the other hand, while
the GeForce 8800 GTX uses a shared memory approach and
does not have a mechanism for direct communication, it has
its strength in the large number of processing units. With
the ability to perform four times more floating point opera-
tions concurrently than the Cell, the GeForce 8800 GTX per-
forms better in applications which are computation-bound
like Monte Carlo simulations.

In addition to comparing which architectures are better
suited to general purpose computation, we also study what
tools are most effective over a broad class of applications.
The new multicore programming tool RapidMind provides
an abstract programming interface for multicore systems
and frees the programmer from managing low-level thread
and memory management in parallel programs. However,
despite its elegant programming interface, RapidMind strug-
gles to deliver performance for some applications. The great-
est performance losses are experienced with the Cell archi-
tecture for applications that require non-trivial data move-
ment. We conclude that inter-core communication is an im-
portant aspect of multicore architectures for the overall class
of general-purpose applications, and we expect that its im-
portance will grow as the number of processing units per chip
increases in the future. Not only must multicore program-
ming tools fully utilize a multicore system’s communication
capabilities, but the multicore architectures must also be
designed with programmable communication networks.
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